Articles | Volume 9, issue 2
https://doi.org/10.5194/gmd-9-671-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/gmd-9-671-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Decadal evaluation of regional climate, air quality, and their interactions over the continental US and their interactions using WRF/Chem version 3.6.1
Khairunnisa Yahya
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State
University, Raleigh, NC 27695, USA
Kai Wang
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State
University, Raleigh, NC 27695, USA
Patrick Campbell
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State
University, Raleigh, NC 27695, USA
Timothy Glotfelty
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State
University, Raleigh, NC 27695, USA
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State
University, Raleigh, NC 27695, USA
Yang Zhang
CORRESPONDING AUTHOR
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State
University, Raleigh, NC 27695, USA
Related authors
Provat K. Saha, Andrey Khlystov, Khairunnisa Yahya, Yang Zhang, Lu Xu, Nga L. Ng, and Andrew P. Grieshop
Atmos. Chem. Phys., 17, 501–520, https://doi.org/10.5194/acp-17-501-2017, https://doi.org/10.5194/acp-17-501-2017, 2017
K. Yahya, K. Wang, Y. Zhang, and T. E. Kleindienst
Geosci. Model Dev., 8, 2095–2117, https://doi.org/10.5194/gmd-8-2095-2015, https://doi.org/10.5194/gmd-8-2095-2015, 2015
Short summary
Short summary
The application of WRF/Chem to North America shows that it can reproduce most observations and their variation trends from 2006 to 2010. The inclusion of chemical feedbacks reduces biases in meteorological predictions in 2010 but increases errors in comparison to WRF. The net changes in meteorology from 2006 to 2010 are mostly influenced by changes in meteorology and those of ozone and fine particles are influenced by changes in emissions and chemical BCONs, and to a lesser extent meteorology.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, Raffaele Montuoro, and Robert C. Gilliam
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-107, https://doi.org/10.5194/gmd-2024-107, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during August 2023 shows that the updated model greatly improves the simulation of MDA8 O3 by reducing the bias by 72 % in the contiguous US. PM2.5 prediction is only enhanced in regions less affected by wildfire, highlighting the need for future refinements.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024, https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Short summary
Residential and commercial cooking emits pollutants that degrade air quality. Here, ambient observations show that cooking is an important contributor to anthropogenic volatile organic compounds (VOCs) emitted in Las Vegas, NV. These emissions are not fully presented in air quality models, and more work may be needed to quantify emissions from important sources, such as commercial restaurants.
Calvin Howes, Pablo E. Saide, Hugh Coe, Amie Dobracki, Steffen Freitag, Jim M. Haywood, Steven G. Howell, Siddhant Gupta, Janek Uin, Mary Kacarab, Chongai Kuang, L. Ruby Leung, Athanasios Nenes, Greg M. McFarquhar, James Podolske, Jens Redemann, Arthur J. Sedlacek, Kenneth L. Thornhill, Jenny P. S. Wong, Robert Wood, Huihui Wu, Yang Zhang, Jianhao Zhang, and Paquita Zuidema
Atmos. Chem. Phys., 23, 13911–13940, https://doi.org/10.5194/acp-23-13911-2023, https://doi.org/10.5194/acp-23-13911-2023, 2023
Short summary
Short summary
To better understand smoke properties and its interactions with clouds, we compare the WRF-CAM5 model with observations from ORACLES, CLARIFY, and LASIC field campaigns in the southeastern Atlantic in August 2017. The model transports and mixes smoke well but does not fully capture some important processes. These include smoke chemical and physical aging over 4–12 days, smoke removal by rain, sulfate particle formation, aerosol activation into cloud droplets, and boundary layer turbulence.
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023, https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary
Short summary
We show that for air quality, the densely populated eastern US may see even larger impacts of wildfires due to long-distance smoke transport and associated positive climatic impacts, partially compensating the improvements from regulations on anthropogenic emissions. This study highlights the tension between natural and anthropogenic contributions and the non-local nature of air pollution that complicate regulatory strategies for improving future regional air quality for human health.
Youngseob Kim, Lya Lugon, Alice Maison, Thibaud Sarica, Yelva Roustan, Myrto Valari, Yang Zhang, Michel André, and Karine Sartelet
Geosci. Model Dev., 15, 7371–7396, https://doi.org/10.5194/gmd-15-7371-2022, https://doi.org/10.5194/gmd-15-7371-2022, 2022
Short summary
Short summary
This paper presents the latest version of the street-network model MUNICH, v2.0. The description of MUNICH v1.0, which models gas-phase pollutants in a street network, was published in GMD in 2018. Since then, major modifications have been made to MUNICH. The comprehensive aerosol model SSH-aerosol is now coupled to MUNICH to simulate primary and secondary aerosol concentrations. New parameterisations have also been introduced. Test cases are defined to illustrate the new model functionalities.
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022, https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Short summary
This study develops an interpretable machine learning (ML) model predicting monthly PM2.5 fire emission over the contiguous US at 0.25° resolution and compares the prediction skills of the ML and process-based models. The comparison facilitates attributions of model biases and better understanding of the strengths and uncertainties in the two types of models at regional scales, for informing future model development and their applications in fire emission projection.
Ruili Wu, Christopher W. Tessum, Yang Zhang, Chaopeng Hong, Yixuan Zheng, Xinyin Qin, Shigan Liu, and Qiang Zhang
Geosci. Model Dev., 14, 7621–7638, https://doi.org/10.5194/gmd-14-7621-2021, https://doi.org/10.5194/gmd-14-7621-2021, 2021
Short summary
Short summary
Reduced-complexity air quality models are less computationally intensive and easier to use. We developed a reduced-complexity air quality Intervention Model for Air Pollution over China (InMAP-China) to rapidly predict the air quality and estimate the health impacts of emission sources in China. We believe that this work will be of great interest to a broad audience, including environmentalists in China and scientists in relevant fields at both national and local institutes.
Kai Wang, Yang Zhang, Shaocai Yu, David C. Wong, Jonathan Pleim, Rohit Mathur, James T. Kelly, and Michelle Bell
Geosci. Model Dev., 14, 7189–7221, https://doi.org/10.5194/gmd-14-7189-2021, https://doi.org/10.5194/gmd-14-7189-2021, 2021
Short summary
Short summary
The two-way coupled WRF-CMAQ model accounting for complex chemistry–meteorology feedbacks has been applied to the long-term predictions of regional meteorology and air quality over the US. The model results show superior performance and importance of chemistry–meteorology feedbacks when compared to the offline coupled WRF and CMAQ simulations, which suggests that feedbacks should be considered along with other factors in developing future model applications to inform policy making.
Syuichi Itahashi, Rohit Mathur, Christian Hogrefe, Sergey L. Napelenok, and Yang Zhang
Geosci. Model Dev., 14, 5751–5768, https://doi.org/10.5194/gmd-14-5751-2021, https://doi.org/10.5194/gmd-14-5751-2021, 2021
Short summary
Short summary
The Community Multiscale Air Quality (CMAQ) modeling system extended for hemispheric-scale applications (H-CMAQ) incorporated the satellite-constrained degassing SO2 emissions from 50 volcanos across the Northern Hemisphere. The impact on tropospheric sulfate aerosol (SO42−) is assessed for 2010. Although the considered volcanic emissions occurred at or below the middle of free troposphere (500 hPa), SO42− enhancements of more than 10 % were detected up to the top of free troposphere (250 hPa).
Xiaoyang Chen, Yang Zhang, Kai Wang, Daniel Tong, Pius Lee, Youhua Tang, Jianping Huang, Patrick C. Campbell, Jeff Mcqueen, Havala O. T. Pye, Benjamin N. Murphy, and Daiwen Kang
Geosci. Model Dev., 14, 3969–3993, https://doi.org/10.5194/gmd-14-3969-2021, https://doi.org/10.5194/gmd-14-3969-2021, 2021
Short summary
Short summary
The continuously updated National Air Quality Forecast Capability (NAQFC) provides air quality forecasts. To support the development of the next-generation NAQFC, we evaluate a prototype of GFSv15-CMAQv5.0.2. The performance and the potential improvements for the system are discussed. This study can provide a scientific basis for further development of NAQFC and help it to provide more accurate air quality forecasts to the public over the contiguous United States.
Mario Eduardo Gavidia-Calderón, Sergio Ibarra-Espinosa, Youngseob Kim, Yang Zhang, and Maria de Fatima Andrade
Geosci. Model Dev., 14, 3251–3268, https://doi.org/10.5194/gmd-14-3251-2021, https://doi.org/10.5194/gmd-14-3251-2021, 2021
Short summary
Short summary
The MUNICH model was used to calculate pollutant concentrations inside the streets of São Paulo. The VEIN emission model provided the vehicular emissions and the coordinates of the streets. We used information from an air quality station to account for pollutant concentrations over the street rooftops. Results showed that when emissions are calibrated, MUNICH satisfied the performance criteria. MUNICH can be used to evaluate the impact of traffic-related air pollution on public health.
Yohei Shinozuka, Pablo E. Saide, Gonzalo A. Ferrada, Sharon P. Burton, Richard Ferrare, Sarah J. Doherty, Hamish Gordon, Karla Longo, Marc Mallet, Yan Feng, Qiaoqiao Wang, Yafang Cheng, Amie Dobracki, Steffen Freitag, Steven G. Howell, Samuel LeBlanc, Connor Flynn, Michal Segal-Rosenhaimer, Kristina Pistone, James R. Podolske, Eric J. Stith, Joseph Ryan Bennett, Gregory R. Carmichael, Arlindo da Silva, Ravi Govindaraju, Ruby Leung, Yang Zhang, Leonhard Pfister, Ju-Mee Ryoo, Jens Redemann, Robert Wood, and Paquita Zuidema
Atmos. Chem. Phys., 20, 11491–11526, https://doi.org/10.5194/acp-20-11491-2020, https://doi.org/10.5194/acp-20-11491-2020, 2020
Short summary
Short summary
In the southeast Atlantic, well-defined smoke plumes from Africa advect over marine boundary layer cloud decks; both are most extensive around September, when most of the smoke resides in the free troposphere. A framework is put forth for evaluating the performance of a range of global and regional atmospheric composition models against observations made during the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) airborne mission in September 2016.
Syuichi Itahashi, Rohit Mathur, Christian Hogrefe, and Yang Zhang
Atmos. Chem. Phys., 20, 3373–3396, https://doi.org/10.5194/acp-20-3373-2020, https://doi.org/10.5194/acp-20-3373-2020, 2020
Short summary
Short summary
The state-of-the-science Community Multiscale Air Quality model extended for hemispheric applications (H-CMAQ) is used to model the trans-Pacific transport which has been recognized as a potential source of air pollutants over the US. In Part 1, modeled ozone is evaluated with observations at surface, by ozonesonde and airplane, and by satellite across the Northern Hemisphere. In addition, a newly developed air mass characterization method to estimate stratospheric intrusion is presented.
Syuichi Itahashi, Rohit Mathur, Christian Hogrefe, Sergey L. Napelenok, and Yang Zhang
Atmos. Chem. Phys., 20, 3397–3413, https://doi.org/10.5194/acp-20-3397-2020, https://doi.org/10.5194/acp-20-3397-2020, 2020
Short summary
Short summary
The state-of-the-science Community Multiscale Air Quality model extended for hemispheric applications (H-CMAQ) is used to model the trans-Pacific transport which has been recognized as a potential source of air pollutants over the US. In Part 2, the higher-order decoupled direct method (HDDM) is applied to investigate the emission impacts from east Asia and the US during April 2010. Furthermore, changes in trans-Pacific transport caused by the recent emissions are examined.
Jian He, Vaishali Naik, Larry W. Horowitz, Ed Dlugokencky, and Kirk Thoning
Atmos. Chem. Phys., 20, 805–827, https://doi.org/10.5194/acp-20-805-2020, https://doi.org/10.5194/acp-20-805-2020, 2020
Short summary
Short summary
In this work, methane representation in AM4.1 is improved by optimizing CH4 emissions to match surface observations. We find increases in CH4 sources balanced by increases in sinks lead to CH4 stabilization during 1999–2006, and anthropogenic sources (e.g., agriculture, energy, and waste) are more likely major contributors to the renewed growth after 2006. Increases in CH4 emissions and decreases in OH levels during 2008–2015 prolong CH4 lifetime and amplify methane response to emission changes.
Junxi Zhang, Yang Gao, Kun Luo, L. Ruby Leung, Yang Zhang, Kai Wang, and Jianren Fan
Atmos. Chem. Phys., 18, 9861–9877, https://doi.org/10.5194/acp-18-9861-2018, https://doi.org/10.5194/acp-18-9861-2018, 2018
Short summary
Short summary
We used a regional model to investigate the impact of atmosphere with high temperature and low wind speed on ozone concentration. When these compound events (heat waves and stagnant weather) occur simultaneously, a striking ozone enhancement is revealed. This type of compound event is projected to increase more dominantly compared to single events in the future over the US, Europe, and China, implying the importance of reducing emissions in order to alleviate the impact from the compound events.
Kai Duan, Ge Sun, Steven G. McNulty, Peter V. Caldwell, Erika C. Cohen, Shanlei Sun, Heather D. Aldridge, Decheng Zhou, Liangxia Zhang, and Yang Zhang
Hydrol. Earth Syst. Sci., 21, 5517–5529, https://doi.org/10.5194/hess-21-5517-2017, https://doi.org/10.5194/hess-21-5517-2017, 2017
Short summary
Short summary
We examined the potential roles of major climatic variables (including precipitation, air temperature, solar radiation, specific humidity, and wind speed) in altering annual runoff, which is an important indicator of freshwater supply, in the United States through the 21st century. Increasing temperature, precipitation, and humidity are recognized as three major climatic factors that drive runoff to change in different directions across the country.
Chaopeng Hong, Qiang Zhang, Yang Zhang, Youhua Tang, Daniel Tong, and Kebin He
Geosci. Model Dev., 10, 2447–2470, https://doi.org/10.5194/gmd-10-2447-2017, https://doi.org/10.5194/gmd-10-2447-2017, 2017
Short summary
Short summary
A regional coupled climate–chemistry modeling system using the dynamical downscaling technique was established and evaluated. The modeling system performed well for both the climatological and the short-term air quality applications over east Asia. Regional models outperformed global models in regional climate and air quality predictions. The coupled modeling system improved the model performance, although some biases remained in the aerosol–cloud–radiation variables.
Khairunnisa Yahya, Timothy Glotfelty, Kai Wang, Yang Zhang, and Athanasios Nenes
Geosci. Model Dev., 10, 2333–2363, https://doi.org/10.5194/gmd-10-2333-2017, https://doi.org/10.5194/gmd-10-2333-2017, 2017
Provat K. Saha, Andrey Khlystov, Khairunnisa Yahya, Yang Zhang, Lu Xu, Nga L. Ng, and Andrew P. Grieshop
Atmos. Chem. Phys., 17, 501–520, https://doi.org/10.5194/acp-17-501-2017, https://doi.org/10.5194/acp-17-501-2017, 2017
Kai Duan, Ge Sun, Steven G. McNulty, Peter V. Caldwell, Erika C. Cohen, Shanlei Sun, Heather D. Aldridge, Decheng Zhou, Liangxia Zhang, and Yang Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-493, https://doi.org/10.5194/hess-2016-493, 2016
Revised manuscript not accepted
Short summary
Short summary
This study examines the potential shift of the relative roles of changing precipitation and temperature in controlling freshwater availability in the USA. The influence of temperature is projected to outweigh that of precipitation in a continued warming future in the 21st century, although precipitation has been the primary control in recent decades. The vast croplands and grasslands across the central and forests in the northwestern regions might be particularly vulnerable to climate change.
Shanlei Sun, Ge Sun, Erika Cohen, Steven G. McNulty, Peter V. Caldwell, Kai Duan, and Yang Zhang
Hydrol. Earth Syst. Sci., 20, 935–952, https://doi.org/10.5194/hess-20-935-2016, https://doi.org/10.5194/hess-20-935-2016, 2016
Short summary
Short summary
This study links an ecohydrological model with WRF (Weather Research and Forecasting Model) dynamically downscaled climate projections of the HadCM3 model under the IPCC SRES A2 emission scenario. Water yield and ecosystem productivity response to climate change were highly variable with an increasing trend across the 82 773 watersheds. Results are useful for policy-makers and land managers in formulating appropriate watershed-specific strategies for sustaining water and carbon sources.
J. He, Y. Zhang, S. Tilmes, L. Emmons, J.-F. Lamarque, T. Glotfelty, A. Hodzic, and F. Vitt
Geosci. Model Dev., 8, 3999–4025, https://doi.org/10.5194/gmd-8-3999-2015, https://doi.org/10.5194/gmd-8-3999-2015, 2015
Short summary
Short summary
The global simulations with CB05_GE and MOZART-4x predict similar chemical profiles for major gases compared to aircraft measurements, with better agreement for the NOy profile by CB05_GE. The SOA concentrations of SOA at four sites in CONUS and organic carbon over the IMPROVE sites are better predicted by MOZART-4x. The two simulations result in a global average difference of 0.5W m-2 in simulated shortwave cloud radiative forcing, with up to 13.6W m-2 over subtropical regions.
J. He, R. He, and Y. Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-9965-2015, https://doi.org/10.5194/gmdd-8-9965-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
WRF/Chem simulations are performed to understand the impacts of cumulus parameterizations and air-sea interactions on coastal air quality. The use of different cumulus parameterizations gives different vertical mixing and wet scavenging. The use of different air-sea interaction treatments also gives different predictions of O3 and PM2.5 by up to 17.3 ppb and 7.9 μg m-3, respectively. WRF/Chem-ROMS improves model predictions, illustrating the benefits and needs of using coupled atmospheric-ocean
K. Yahya, K. Wang, Y. Zhang, and T. E. Kleindienst
Geosci. Model Dev., 8, 2095–2117, https://doi.org/10.5194/gmd-8-2095-2015, https://doi.org/10.5194/gmd-8-2095-2015, 2015
Short summary
Short summary
The application of WRF/Chem to North America shows that it can reproduce most observations and their variation trends from 2006 to 2010. The inclusion of chemical feedbacks reduces biases in meteorological predictions in 2010 but increases errors in comparison to WRF. The net changes in meteorology from 2006 to 2010 are mostly influenced by changes in meteorology and those of ozone and fine particles are influenced by changes in emissions and chemical BCONs, and to a lesser extent meteorology.
B. Zheng, Q. Zhang, Y. Zhang, K. B. He, K. Wang, G. J. Zheng, F. K. Duan, Y. L. Ma, and T. Kimoto
Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, https://doi.org/10.5194/acp-15-2031-2015, 2015
T. Glotfelty, Y. Zhang, P. Karamchandani, and D. G. Streets
Atmos. Chem. Phys., 14, 9379–9402, https://doi.org/10.5194/acp-14-9379-2014, https://doi.org/10.5194/acp-14-9379-2014, 2014
J. He and Y. Zhang
Atmos. Chem. Phys., 14, 9171–9200, https://doi.org/10.5194/acp-14-9171-2014, https://doi.org/10.5194/acp-14-9171-2014, 2014
B. Gantt, J. He, X. Zhang, Y. Zhang, and A. Nenes
Atmos. Chem. Phys., 14, 7485–7497, https://doi.org/10.5194/acp-14-7485-2014, https://doi.org/10.5194/acp-14-7485-2014, 2014
F. Yan, E. Winijkul, D. G. Streets, Z. Lu, T. C. Bond, and Y. Zhang
Atmos. Chem. Phys., 14, 5709–5733, https://doi.org/10.5194/acp-14-5709-2014, https://doi.org/10.5194/acp-14-5709-2014, 2014
M. Li, Q. Zhang, D. G. Streets, K. B. He, Y. F. Cheng, L. K. Emmons, H. Huo, S. C. Kang, Z. Lu, M. Shao, H. Su, X. Yu, and Y. Zhang
Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, https://doi.org/10.5194/acp-14-5617-2014, 2014
L. T. Wang, Z. Wei, J. Yang, Y. Zhang, F. F. Zhang, J. Su, C. C. Meng, and Q. Zhang
Atmos. Chem. Phys., 14, 3151–3173, https://doi.org/10.5194/acp-14-3151-2014, https://doi.org/10.5194/acp-14-3151-2014, 2014
A. Baklanov, K. Schlünzen, P. Suppan, J. Baldasano, D. Brunner, S. Aksoyoglu, G. Carmichael, J. Douros, J. Flemming, R. Forkel, S. Galmarini, M. Gauss, G. Grell, M. Hirtl, S. Joffre, O. Jorba, E. Kaas, M. Kaasik, G. Kallos, X. Kong, U. Korsholm, A. Kurganskiy, J. Kushta, U. Lohmann, A. Mahura, A. Manders-Groot, A. Maurizi, N. Moussiopoulos, S. T. Rao, N. Savage, C. Seigneur, R. S. Sokhi, E. Solazzo, S. Solomos, B. Sørensen, G. Tsegas, E. Vignati, B. Vogel, and Y. Zhang
Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, https://doi.org/10.5194/acp-14-317-2014, 2014
Y. Zhang, K. Sartelet, S.-Y. Wu, and C. Seigneur
Atmos. Chem. Phys., 13, 6807–6843, https://doi.org/10.5194/acp-13-6807-2013, https://doi.org/10.5194/acp-13-6807-2013, 2013
Y. Zhang, K. Sartelet, S. Zhu, W. Wang, S.-Y. Wu, X. Zhang, K. Wang, P. Tran, C. Seigneur, and Z.-F. Wang
Atmos. Chem. Phys., 13, 6845–6875, https://doi.org/10.5194/acp-13-6845-2013, https://doi.org/10.5194/acp-13-6845-2013, 2013
Related subject area
Atmospheric sciences
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Similarity-Based Analysis of Atmospheric Organic Compounds for Machine Learning Applications
Cell tracking -based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Improving the EnSRF in the Community Inversion Framework: a case study with ICON-ART 2024.01
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
The MESSy DWARF (based on MESSy v2.55.2)
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
A Bayesian method for predicting background radiation at environmental monitoring stations
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025, https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely developed area in Cologne. Statistically significant average cooling effects of up to −11.1 K were found for surface temperature and up to −2.9 K for 1 m air temperature.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025, https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Short summary
The Artificial-Intelligence-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of the aerosol direct radiation effect and was coupled online with a chemical weather model. The AI-NAOS scheme considers black carbon as fractal aggregates and soil dust as super-spheroids, encapsulated with hygroscopic aerosols. Real-case simulations emphasize the necessity of accurately representing nonspherical and inhomogeneous aerosols in chemical weather models.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025, https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
Short summary
The Python tool Orbital-Radar transfers suborbital radar data (ground-based, airborne, and forward-simulated numerical weather prediction model) into synthetic spaceborne cloud profiling radar data, mimicking platform-specific instrument characteristics, e.g. EarthCARE or CloudSat. The tool's novelty lies in simulating characteristic errors and instrument noise. Thus, existing data sets are transferred into synthetic observations and can be used for satellite calibration–validation studies.
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025, https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Short summary
The Modular and Integrated Data Assimilation System (MIDAS) software is described. The flexible design of MIDAS enables both deterministic and ensemble prediction applications for the atmosphere and several other Earth system components. It is currently used for all main operational weather prediction systems in Canada and also for sea ice and sea surface temperature analysis. The use of MIDAS for multiple Earth system components will facilitate future research on coupled data assimilation.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-145, https://doi.org/10.5194/gmd-2024-145, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements in 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Hilda Sandström and Patrick Rinke
EGUsphere, https://doi.org/10.48550/arXiv.2406.18171, https://doi.org/10.48550/arXiv.2406.18171, 2024
Short summary
Short summary
Machine learning has the potential to aid the identification organic molecules involved in aerosol formation. Yet, progress is stalled by a lack of curated atmospheric molecular datasets. Here, we compared atmospheric compounds with large molecular datasets used in machine learning and found minimal overlap with similarity algorithms. Our result underlines the need for collaborative efforts to curate atmospheric molecular data to facilitate machine learning model in atmospheric sciences.
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-99, https://doi.org/10.5194/gmd-2024-99, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rainfall. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and then the model skill is evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with 4 open-source models.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2197, https://doi.org/10.5194/egusphere-2024-2197, 2024
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a more efficient implementation of the serial and batch versions of the Ensemble Square Root Filter (EnSRF) algorithm in CIF.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Felipe Cifuentes, Henk Eskes, Folkert Boersma, Enrico Dammers, and Charlotte Bryan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2225, https://doi.org/10.5194/egusphere-2024-2225, 2024
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOX emissions using synthetic NO2 satellite column retrievals derived from high-resolution model simulations. The FDA accurately reproduced NOX emissions when column observations were limited to the boundary layer and when the variability of NO2 lifetime, NOX:NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces a strong model dependency, reducing the simplicity of the original FDA formulation.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Astrid Kerkweg, Timo Kirfel, Doung H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-117, https://doi.org/10.5194/gmd-2024-117, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This article introduces the MESSy DWARF. Usually, the Modular Earth Submodel System (MESSy) is linked to full dynamical models to build chemistry climate models. However, due to the modular concept of MESSy, and the newly developed DWARF component, it is now possible to create simplified models containing just one or some process descriptions. This renders very useful for technical optimisation (e.g., GPU porting) and can be used to create less complex models, e.g., a chemical box model.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Jens Peter K. W. Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-137, https://doi.org/10.5194/gmd-2024-137, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
To detect anomalous radioactivity in the environment, it is paramount that we understand the natural background level. In this work, we propose a statistical model to describe the most likely background level and the associated uncertainty in a network of dose rate detectors. We train, verify and validate the model using real environmental data. Using the model, we show that we can correctly predict the background level in a subset of the detector network during a known `anomalous’ event.
Cited articles
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation,
2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, 2000.
Aitken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A.,
Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y.,
Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R.,
Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J.,
Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios of
primary, secondary and ambient organic aerosols with high-resolution time of
flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485,
2008.
Ahmadov, R., McKeen, S. A., Robinson, A. L., Bareini, R., Middlebrook, A. M.,
De Gouw, J. A., Meagher, J., Hsie, E.-Y., Edgerton, E., Shaw, S., and Trainer,
M.: A volatility basis set model for summertime secondary organic aerosols
over the eastern United States in 2006, J. Geophys. Res. 117, D06301,
https://doi.org/10.1029/2011JD016831, 2012.
Alapaty, K., Herwehe, J., Nolte, C. G., Bullock, R. O., Otte, T. L., Mallard,
M. S., Dudhia, J., and Kain, J. S.: Introducing subgrid-scale cloud feedbacks
to radiation in WRF, the 13th WRF Users Workshop, Boulder, CO, 26–29 June 2012.
Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A. T., Frei, C.,
Goyette, S., Halsnaes, K., Holt, T., Jylha, K., Koffi, B., Palutikof, J.,
Scholl, R., Semmler, T., and Woth, K.: Future extreme events in European
climate: an exploration of regional climate model projections, Clim. Change,
81, 71–95, https://doi.org/10.1007/s10584-006-9226-z, 2007.
Bennartz, R.: Global assessment of marine boundary layer cloud droplet
number concentration from satellite, J. Geophys. Res.-Atmos., 112, D02201,
https://doi.org/10.1029/2006JD007547, 2007.
Brunner, D., Savage, N., Jorba, O., Eder, B., Giordano, L., Badia, A.,
Balzarini, A., Baro, R., Bianconi, R., Chemel, C., Curci, G., Forkel, R.,
Jimenez-Guerrero, P., Hirtl, M., Hodzic, A., Hozak, L., Im, U., Knote, C.,
Makar, P., Manders-Groot, A., van Meijgaard, E., Neal, L., Perez, J. L.,
Pirovano, G., San Jose, R., Schroder, W., Sokhi, R. S., Syrakov, D., Torian,
A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y.,
Hogrefe, C., and Galmarini, S.: Comparative analysis of meteorological
performance of coupled chemistry-meteorology models in the context of AQMEII
phase 2, Atmos. Environ., 115, 470–498,
https://doi.org/10.1016/j.atmosenv.2014.12.032,
2015.
Caldwell, P., Chin, H.-N. S., Bader, D. C., and Bala, G.: Evaluation of a
WRF dynamical downscaling simulation over California, Clim. Change., 95,
499–521, 2009.
Campbell, P. C., Zhang, Y., Yahya, K., Wang, K., Hogrefe, C., Pouliot, G.,
Knote, C., Hodzic, A., San Jose, R., Perez, J., Jimenez-Guerrero, P., Baro,
R., and Makar, P.: A Multi-Model Assessment for the 2006 and 2010 Simulations
under the Air Quality Model Evaluation International Initiative (AQMEII)
Phase 2 over North America: Part I, Indicators of the Sensitivity of O3
and PM2.5 Formation Regimes, Atmos. Environ.,
https://doi.org/10.1016/j.atmosenv.2014.12.026, 115, 569–586, 2015.
Chen, F. and Dudhia, J.: Coupling an advanced land-surface/hydrology model
with the Penn State/NCAR MM5 modeling system. Part I: Model implementation
and sensitivity, Mon. Weather Rev., 129, 569–585, 2001.
Clough, S. A., Shephard, M. W., Mlawer, J. E., Delamere, J. S., Iacono, M. J.,
Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative
transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. R., 91, 233–244, https://doi.org/10.1016/j.qsrt.2004.05.058, 2005.
Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M.,
Galbally, I. E., Gilge, S., Horowitz, L., Jensen, N. R., Lamarque, J.-F.,
Naik, V., Oltmans, S. J., Schwab, J., Shindell, D. T., Thompson, A. M.,
Thouret, V., Wang, Y., and Zbinden, R. M.: Global distribution and trends of
tropospheric ozone: An observation-based review, Elem. Sci. Anth., 2,
000029, https://doi.org/10.12952/journal.elementa.000029, 2014.
Dasari, H. P., Salgado, R., Perdigao, J., and Challa, V. S.: A regional climate
simulation study using WRF-ARW model over Europe and evaluation for extreme
temperature weather events, Intl., J. Atmos. Sci., 2014, 704079,
https://doi.org/10.1155/2014/704079, 2014.
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V.,
Gayno, G., and Tarpley, J. D.: Implementation of NOAH land surface model
advances in the National Centers for Environmental Prediction operational
mesoscale model, J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296,
2003.
EPA.: Our Nation's Air – Status and Trends through 2010, Particle
Pollution, Report by the US EPA, 4 pp., available at: http://www.epa.gov/airtrends/2011 (last access: 6 July 2015)
2011.
Fan, F., Bradley, R. S., and Rawlins, M. A.: Climate change in the northeastern
U.S.: regional climate validation and climate change projections, Clim.
Dyn., 43, 145–161, https://doi.org/10.1007/s00382-014-2198-1, 2014.
Feser, F., Rockel, B., Von Storch, H., Winterfeldt, J., and Zahn, M.:
Regional climate models add value to global model data, B. Am. Meteorol. Soc., 92, 1181–1192, 2011.
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P.,
Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V.,
Reason, C., and Rummukainen, M.: Evaluation of Climate Models, in: Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker,
T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels,
A., Xia, Y., Bex V., and Midgley, P. M., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 743–863, 2013.
Gao, Y., Fu, J. S., Drake, J. B., Liu, Y., and Lamarque, J. F.: Projected
changes of extreme weather events in the eastern United States based on a
high resolution climate modeling system, Environ. Res. Lett., 7, 044025,
https://doi.org/10.1088/1748-9326/7/4/044025,
2012.
Gao, Y., Fu, J. S., Drake, J. B., Lamarque, J.-F., and Liu, Y.: The impact of
emission and climate change on ozone in the United States under
representative concentration pathways (RCPs), Atmos. Chem. Phys., 13,
9607–9621, https://doi.org/10.5194/acp-13-9607-2013, 2013.
Glotfelty, T., He, J., and Zhang, Y.: Updated organic aerosol treatments in
CESM/CAM5: development and initial application, Atmos. Environ., in preparation,
2016.
Gong, S., Barrie, L. A., and Blanchet, J. P.: Modeling sea salt aerosols in the
atmosphere: 1. Model development, J. Geophys. Res., 102, 3805–3818,
https://doi.org/10.1029/96JD02953, 1997.
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic
convective parameterization for weather and air quality modeling, Atmos.
Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
Grell, G. A., Knoche, R., Peckham, S. E., and McKeen, S. A.: Online vs.
offline air quality modeling on cloud-resolving time scales, Geophys. Res.
Lett., 31, L16117, https://doi.org/10.1029/2004GL020175, 2004.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within the
WRF model, Atmos. Environ., 39, 6957–6975, 2005.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron,
C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of
Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6,
3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
He, J. and Zhang, Y.: Improvement and further development in CESM/CAM5:
gas-phase chemistry and inorganic aerosol treatments, Atmos. Chem. Phys., 14,
9171–9200, https://doi.org/10.5194/acp-14-9171-2014, 2014.
Hong, S.-Y.: A new stable boundary-layer mixing scheme and its impact on the
simulated East Asian summer monsoon, Q. J. Roy. Meteor. Soc., 136, 1481–1496, https://doi.org/0.1002/qj.665, 2010.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with
an explicit treatment of entrainment processes, Mon. Weather Rev., 134,
2318–2341, 2006.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus,
S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and
Marshall, S.: The Community Earth System Model: A framework for
collaborative research, B. Am. Meteorol. Soc., 94, 1339–1360,
https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shepard, M. W., Clough, S. A., and
Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res., 113,
D13103, https://doi.org/10.1029/2008JD009944, 2008.
IPCC: Summary for Policymakers, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin,
D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia,
Y., Bex, V., and Midley, P. M., Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 1–30,
https://doi.org/10.1017/CBO9781107415324.004,
2013.
Jacob, D., Barring, L., Christensen, O. B., Christensen, J. H., de Castro, M.,
Deque, M., Giorgi, F., Hagemann, S., Hirschi, M., Jones, R., Kjellstrom, E.,
Lenderink, G., Rockel, B., Sanchez, E., Schar, C., Seneviratne, S.I., Somot,
S., van Ulden, A., and van den Hurk, B.: An inter-comparison of regional
climate models for Europe: model performance in present-day climate, Clim.
Change, 81, 31–52, 2007.
Jimenez, P. A. and Dudhia, J.: Improving the representation of resolved and
unresolved topographic effects on surface wind in the WRF model, J. Appl.
Meteor. Climatol., 51, 300–316, 2012.
Jones, R. G., Noguer, M., Hassell, D. C., Hudson, D., Wilson, S. S., Jenkins
G. J., and Mitchell, J. F. B.: Generating high resolution climate change
scenarios using PRECIS, Met Office Hadley Centre, Exeter, UK, 40 pp., April
2004.
Jones, S. and Creighton, G.: AFWA dust emission scheme for WRF/Chem-GOCART,
2011 WRF workshop, 20–24 June Boulder, CO, USA, 2011.
Karamchandani, P., Zhang, Y., Chen, S.-Y., and Balmori-Bronson, R.:
Development of an extended chemical mechanism for global-through-urban
applications, Atmos. Poll. Res., 3, 1–24,
https://doi.org/10.5094/APR.2011.047, 2012.
Kim, J., Waliser, D. E., Mattmann, C. A., Mearns, L. O., Goodale, C. E., Hart,
A. F., Crichton, D. J., McGinnis, S., Lee, H., Loikith, P. C., and Boustani, M.:
Evaluation of the surface climatology over the conterminous United States in
the North American Regional Climate Change Assessment Program Hindcast
Experiment using a regional climate model evaluation system, J. Climate, 26,
5698–5715, 2013.
King, N. J., Bower, K. N., Crosier, J., and Crawford, I.: Evaluating MODIS
cloud retrievals with in situ observations from VOCALS-REx, Atmos. Chem.
Phys., 13, 191–209, https://doi.org/10.5194/acp-13-191-2013, 2013.
Legates, D. R. and McCabe Jr., G. J.: Evaluating the use of
“goodness-of-fit” measures in hydrologic and hydroclimatic model
validation, Water Resour. Res., 35, 233–241, https://doi.org/10.1029/1998WR900018, 1999.
Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical properties
and application to Moderate Resolution Imaging Spectroradiometer aerosol
retrieval over land, J. Geophys. Res., 112, D13210, https://doi.org/10.1029/2006JD007815,
2007.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia,
F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and
ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
Leung, R. L., Qian, Y., and Bian, X.: Hydroclimate of the Western United
States based on Observations and Regional Climate Simulation of 1981–2000,
Part I: Seasonal Statistics, J. Clim., 16, 1892–1911, 2003.
Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X.,
Lamarque, J.-F., Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S.,
Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W.,
Iacono, M. J., Bretherton, C. S., Flanner, M. G., and Mitchell, D.: Toward a
minimal representation of aerosols in climate models: description and
evaluation in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5,
709–739, https://doi.org/10.5194/gmd-5-709-2012, 2012.
Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, L., Keyes, D. F., Kato,
S., Manalo-Smith, N., and Wong, T.: Toward Optimal Closure of the earth's
top-of-atmosphere radiation budget, J. Climate, 22, 748–766, 2009.
Ma, P.-L., Rasch, P. J., Fast, J. D., Easter, R. C., Gustafson Jr., W. I.,
Liu, X., Ghan, S. J., and Singh, B.: Assessing the CAM5 physics suite in the
WRF-Chem model: implementation, resolution sensitivity, and a first
evaluation for a regional case study, Geosci. Model Dev., 7, 755–778,
https://doi.org/10.5194/gmd-7-755-2014, 2014.
Mass, C.: Improved subgrid drag or hyper PBL/vertical resolution? Dealing
with the stable PBL problems in WRF, presented at the 13th WRF Users'
Workshop, 26–29 June, Boulder, CO, 2012.
Molders, N., Bruyere, C. L., Gende, S., and Pirhala, M. A.: Assessment of the
2006–2012 Climatological Fields and Mesoscale Features from Regional
Downscaling of CESM Data by WRF/Chem over Southeast Alaska, Atmos. Clim.
Sci., 4, 589–613, 2014.
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics
on the development of trailing stratiform precipitation in a simulated squall
line: Comparison of One- and Two-Moment Schemes, Mon. Weather Rev., 137,
991–1007, 2009.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van
Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A.,
Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R.
J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation
of scenarios for climate change research and assessment, Nature, 463,
747–756, https://doi.org/10.1038/nature08823, 2010.
Nasrollahi, N., AghaKouchak, A., Li, J., Gao, X., Hsu, K., and Sorooshian,
S.: Assessing the Impacts of Different WRF Precipitation Physics in Hurricane
Simulations, Weather Forecast., 27, 1003–1016, 2012.
Neale, R. B., Jadwiga, H. R., Conley, A. J., Park, S., Lauritzen, P. H.,
Gettelman, A., Williamson, D. L., Rasch, P., Vavrus, S. J., Taylor, M. A.,
Collins, W. D., Zhang, M., and Lin, S.-J.: Description of the NCAR Community
Atmosphere Model (CAM 5.0), NCAR Tech. Note NCAR/TN-486+STR, Natl. Cent.
for Atmos. Res., Boulder, CO, available at:
http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf
(last access: 6 July 2015), 2010.
Otte, T. L., Nolte, C. G., Otte, M. J., and Bowden, J. H.: Does Nudging
squelch the extremes in regional climate modeling? J. Clim., 25, 7046–7066,
https://doi.org/10.1175/JCLI-D-12-00048.1, 2012.
Penrod, A., Zhang, Y., Wang, K., Wu, S.-Y., and Leung, R. L.: Impacts of
future climate and emission changes on U.S. air quality, Atmos. Environ., 89,
533–547, 2014.
Pietikäinen, J.-P., O'Donnell, D., Teichmann, C., Karstens, U., Pfeifer,
S., Kazil, J., Podzun, R., Fiedler, S., Kokkola, H., Birmili, W., O'Dowd, C.,
Baltensperger, U., Weingartner, E., Gehrig, R., Spindler, G., Kulmala, M.,
Feichter, J., Jacob, D., and Laaksonen, A.: The regional aerosol-climate
model REMO-HAM, Geosci. Model Dev., 5, 1323–1339,
https://doi.org/10.5194/gmd-5-1323-2012, 2012.
Pleim, J. E. and Gilliam, R.: An indirect data assimilation scheme for deep
soil temperature in the Pleim-Xiu Land Surface Model, J. Appl. Meteor.
Climatol., 48, 1362–1376, 2009.
Pouliot, G., van der Gon, H. A. C. D., Kuenen, J., Zhang, J., Moran, M., and
Makar, P.: Analysis of the Emission Inventories and Model-Ready Emission
Datasets of Europe and North America for Phase 2 of the AQMEII Project,
Atmos. Environ., 115, 345–360, https://doi.org/10.1016/j.atmosenv.2014.10.061,
2015.
Rawlins, M. A., Bradley, R. S., and Diaz, H. F.: Assessment of regional
climate model simulation estimates over the northeast United States, J.
Geophys. Res., 117, D23112, https://doi.org/10.1029/2012JD018137, 2012.
Refslund, J., Dellwik, E., Hahmann, A. N., Barlage, M. J., and Boegh, E.:
Development of satellite green vegetation fraction time series for use in
mesoscale modeling: application to the European heat wave 2006, Theor. Appl.
Climatol., 117, 377–392, https://doi.org/10.1007/s00704-013-1004-z, 2014.
Sarwar, G., Luecken, D. J., and Yarwood, G.: Developing and implementing an
updated chlorine chemistry into the Community Multiscale Air Quality Model,
presented at the 28th NATO/CCMS International Technical Meeting, Lepzig,
Germany, 15–19 May 2006.
Sarwar, G., Luecken, D., and Yarwood, G.: Chapter 2.9: Developing and
implementing an updated chlorine chemistry into the community multiscale air
quality model, Developments in Environmental Science, Volume 6, edited by:
Borrego, C. and Renner, E., Elsevier Ltd,
https://doi.org/10.1016/S1474-8177(07)06029-9, 168 pp., 2007.
Sarwar, G., Fahey, K., Napelenok, S., Roselle, S., and Mathur, R.: Examining
the impact of CMAQ model updates on aerosol sulfate predictions, the 10th
Annual CMAS Models-3 User's Conference, October, Chapel Hill, NC, 2011.
Shan, Z., Parol, F., Riedi, J., Cornet, C., and Thieuleux, F.: Examination of
POLDER/PARASOL and MODIS/Aqua cloud fractions and properties
representativeness, J. Climate, 24, 4435–4450, 2011.
Sievering, H.: Small-particle dry deposition under high wind speed
conditions: Eddy flux measurements at the boulder atmospheric observatory,
Atmos. Environ., 21, 2179–2185, 1987.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek,
M., Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and verification
of the unified NOAH land surface model in the WRF model, 20th conference on
weather analysis and forecasting/16th conference on numerical weather
prediction, 11–15, 2004.
Tie, X., Madronich, S., Walters, S., Zhang, R., Rasch, P., and Collins, W.:
Effect of clouds on photolysis and oxidants in the troposphere, J. Geophys.
Res., 108, 4642, https://doi.org/10.1029/2003JD003659, 2003.
Toth, T. D., Zhang, J., Campbell, J. R., Reid, J. S., Shi, Y., Johnson, R.
S., Smirnov, A., Vaughan, M. A., and Winker, D. M.: Investigating enhanced
Aqua MODIS aerosol optical depth retrievals over the mid-to-high latitude
Southern Oceans through intercomparison with co-located CALIOP, MAN and
AERONET data sets, J. Geophys. Res.-Atmos., 18, 1–15, 2013.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Climate Change, 109,
5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Wang, K., Zhang, Y., Yahya, K., Wu, S.-Y., and Grell, G.:, Implementation and
initial application of new chemistry-aerosol options in WRF/Chem for
simulating secondary organic aerosols and aerosol indirect effects for
regional air quality, Atmos. Environ., 115, 371–388, https://doi.org/10.1016/j.atmosenv.2014.12.007, 2015a.
Wang, K., Yahya, K., Zhang, Y., Hogrefe, C., Pouliot, G., Knote, C., Hodzic,
A., San Jose, R., Perez, J. L., Guerrero, P. J., Baro, R., and Makar, P.:
Evaluation of Column Variable Predictions Using Satellite Data over the
Continental United States: A Multi-Model Assessment for the 2006 and 2010
Simulations under the Air Quality Model Evaluation International Initiative
(AQMEII) Phase 2, Atmos. Environ., 115, 587–603, https://doi.org/10.1016/j.atmosenv.2014.07.044,
2015b.
Warrach-Sagi, K., Schwitalla, T., Wulfmeyer, V., and Bauer, H.-S.: Evaluation
of a climate simulation in Europe based on the WRF-NOAH model system:
precipitation in Germany, Clim. Dyn., 41, 755–774,
https://doi.org/10.1007/s00382-013-1727-7, 2013.
Willmott, C. J.: On the validation of models, Phys. Geog., 2, 184–194, 1981.
Xing, J., Mathur, R., Pleim, J., Hogrefe, C., Gan, C.-M., Wong, D. C., Wei,
C., Gilliam, R., and Pouliot, G.: Observations and modeling of air quality
trends over 1990–2010 across the Northern Hemisphere: China, the United
States and Europe, Atmos. Chem. Phys., 15, 2723–2747,
https://doi.org/10.5194/acp-15-2723-2015, 2015.
Xu, Z. and Yang, Z.-L.: An improved dynamical downscaling method with GCM
Bias Corrections and Its Validation with 30 years of climate simulations, J.
Clim., 25, 6271–6286, 2012.
Yahya, K., Wang, K., Gudoshava, M., Glotfelty, T., and Zhang, Y.: Application
of WRF/Chem over North America under the AQMEII Phase 2. Part I.
Comprehensive Evaluation of 2006 Simulation, Atmos. Environ., 115, 733–755,
https://doi.org/10.1016/j.atmosenv.2014.08.063, 2015a.
Yahya, K., Wang, K., Zhang, Y., and Kleindienst, T. E.: Application of
WRF/Chem over North America under the AQMEII Phase 2 – Part 2: Evaluation of
2010 application and responses of air quality and meteorology-chemistry
interactions to changes in emissions and meteorology from 2006 to 2010,
Geosci. Model Dev., 8, 2095–2117, https://doi.org/10.5194/gmd-8-2095-2015,
2015b.
Yahya, K., He, J., and Zhang, Y.: Multi-Year Applications of WRF/Chem over
Continental U.S.: Model Evaluation, Variation Trend, and Impacts of Boundary
Conditions over CONUS, J. Geophy. Res., 120, 12748–12777, https://doi.org/10.1002/2015JD023819,
2015c.
Yarwood, G., Rao, S., Yocke, M., and Whitten, G. Z.: Final Report – Updates
to the Carbon Bond Chemical Mechanism: CB05, Rep. RT-04-00675, 246 pp., Yocke
and Co., Novato, Calif., 2005.
Yu, S., Dennis, R., Roselle, S., Nenes, A., Walker, J., Eder, B., Schere,
K., Swall, J., and Robarge, W.: An assessment of the ability of 3-D air
quality models with current thermodynamic equilibrium models to predict
aerosol NO3-, J. Geophys. Res., 110, D07S13, https://doi.org/10.1029/2004JD004718, 2005.
Yu, S., Eder, B., Dennis, R., Chu, S.-H., and Schwartz, S.: New unbiased
symmetric metrics for evaluation of air quality models, Atmos. Sci. Lett., 7,
26–34, 2006.
Yu, S., Mathur, R., Pleim, J., Wong, D., Gilliam, R., Alapaty, K., Zhao, C.,
and Liu, X.: Aerosol indirect effect on the grid-scale clouds in the two-way
coupled WRF-CMAQ: model description, development, evaluation and regional
analysis, Atmos. Chem. Phys., 14, 11247–11285,
https://doi.org/10.5194/acp-14-11247-2014, 2014.
Zhang, Y., Liu, P., Pun, B., and Seigneur, C.: A comprehensive performance
evaluation of MM5-CMAQ for summer 1999 Southern Oxidants Study Episode,
Part-I. Evaluation Protocols, Databases and Meteorological Predictions,
Atmos. Environ., 40, 4825–4838, 2006.
Zhang, Y., Wen, X.-Y., and Jang, C. J.: Simulating
chemistry-aerosol-cloud-radiation-climate feedbacks over the CONUS using the
online-coupled Weather Research Forecasting Model with chemistry (WRF/Chem),
Atmos. Environ., 44, 3568–3582, 2010.
Zhang, Y., Chen, Y.-C., Sarwar, G., and Schere, K.: Impact of Gas-Phase
Mechanisms on Weather Research Forecasting Model with Chemistry (WRF/Chem)
Predictions: Mechanism Implementation and Comparative Evaluation, J. Geophys.
Res., 117, D01301, https://doi.org/10.1029/2011JD015775, 2012a.
Zhang, Y., Karamchandani, P., Glotfelty, T., Streets, D. G., Grell, G.,
Nenes, A., Yu, F.-Q., and Bennartz, R.: Development and Initial Application
of the Global-Through-Urban Weather Research and Forecasting Model with
Chemistry (GU-WRF/Chem), J. Geophys. Res., 117, D20206,
https://doi.org/10.1029/2012JD017966, 2012b.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(7307 KB) - Full-text XML
- Corrigendum
-
Supplement
(1176 KB) - BibTeX
- EndNote
Short summary
The Weather Research and Forecasting model with Chemistry (WRF/Chem) v3.6.1 is evaluated for its first decadal application during 2001 to 2010 using the Representative Concentration Pathway 8.5 emissions. The model evaluation shows acceptable performance for long-term climatological simulations of most meteorological variables and chemical concentrations. Larger biases exist for aerosol-cloud-radiation variables, which future model improvement should focus on.
The Weather Research and Forecasting model with Chemistry (WRF/Chem) v3.6.1 is evaluated for its...
Special issue