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Abstract. The Weather Research and Forecasting model

with Chemistry (WRF/Chem) v3.6.1 with the Carbon Bond

2005 (CB05) gas-phase mechanism is evaluated for its first

decadal application during 2001–2010 using the Representa-

tive Concentration Pathway 8.5 (RCP 8.5) emissions to as-

sess its capability and appropriateness for long-term clima-

tological simulations. The initial and boundary conditions

are downscaled from the modified Community Earth Sys-

tem Model/Community Atmosphere Model (CESM/CAM5)

v1.2.2. The meteorological initial and boundary conditions

are bias-corrected using the National Center for Environ-

mental Protection’s Final (FNL) Operational Global Anal-

ysis data. Climatological evaluations are carried out for

meteorological, chemical, and aerosol–cloud–radiation vari-

ables against data from surface networks and satellite re-

trievals. The model performs very well for the 2 m temper-

ature (T2) for the 10-year period, with only a small cold bias

of −0.3 ◦C. Biases in other meteorological variables includ-

ing relative humidity at 2 m, wind speed at 10 m, and pre-

cipitation tend to be site- and season-specific; however, with

the exception of T2, consistent annual biases exist for most of

the years from 2001 to 2010. Ozone mixing ratios are slightly

overpredicted at both urban and rural locations with a nor-

malized mean bias (NMB) of 9.7 % but underpredicted at ru-

ral locations with an NMB of −8.8 %. PM2.5 concentrations

are moderately overpredicted with an NMB of 23.3 % at ru-

ral sites but slightly underpredicted with an NMB of−10.8 %

at urban/suburban sites. In general, the model performs rel-

atively well for chemical and meteorological variables, and

not as well for aerosol–cloud–radiation variables. Cloud-

aerosol variables including aerosol optical depth, cloud water

path, cloud optical thickness, and cloud droplet number con-

centration are generally underpredicted on average across the

continental US. Overpredictions of several cloud variables

over the eastern US result in underpredictions of radiation

variables (such as net shortwave radiation – GSW – with

a mean bias – MB – of −5.7 W m−2) and overpredictions

of shortwave and longwave cloud forcing (MBs of ∼ 7 to

8 W m−2), which are important climate variables. While the

current performance is deemed to be acceptable, improve-

ments to the bias-correction method for CESM downscaling

and the model parameterizations of cloud dynamics and ther-

modynamics, as well as aerosol–cloud interactions, can po-

tentially improve model performance for long-term climate

simulations.

1 Introduction

Regional atmospheric models have been developed and ap-

plied for high-resolution climate, meteorology, and air qual-

ity modeling in the past few decades. Comparing to global

models with a coarser domain resolution (Leung et al., 2003),

those regional models have advantages over global models

because they can more accurately represent mesoscale vari-

ability (Feser et al., 2011) and also better predict the local

variability of concentrations of specific species such as black

carbon and sulfate (Petikäinen et al., 2012). General circula-

tion models (GCMs) and global chemical transport models

(GCTMs) are usually downscaled to regional meteorologi-

cal models such as the Weather Research and Forecasting

(WRF) model (Caldwell et al., 2009; Gao et al., 2012), re-
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gional climate models such as REMO-HAM (Petikäinen et

al., 2012), the regional modeling system known as Provid-

ing Regional Climates for Impacts Studies (PRECIS) (Jones

et al., 2004; Fan et al., 2014), and a number of European

models described in Jacob et al. (2007), as well as regional

CTMs such as the Community Multiscale Air Quality Model

(CMAQ) (Penrod et al., 2014; Xing et al., 2015). These re-

gional models are used for climate/meteorology or air qual-

ity simulations. Some are applied for more than 10 years

(Caldwell et al., 2009; Warrach-Sagi et al., 2013; Xing et

al., 2015). However, these regional models either lack the

detailed treatment of chemistry (e.g., in WRF), or use pre-

scribed chemical concentrations (e.g., REMO-HAM uses

monthly mean oxidant fields for several chemical species),

or do not have online-coupled meteorology and chemistry

(e.g., in CMAQ). In addition, the past regional model sim-

ulations and analyses have mainly focused on meteorologi-

cal parameters such as surface temperature and precipitation,

cloud variables such as net radiative cloud forcing, and chem-

ical constituents such as ozone. Regional climate model sim-

ulations tend to focus on significant climatic events such as

extreme temperatures (very cold or very hot) (Dasari et al.,

2014), heat waves, heavy precipitation, drought, and storms

(Beniston et al., 2007), rather than the important air quality

and climate interactions. In addition, the impacts of com-

plex chemistry–aerosol–cloud–radiation–climate feedbacks

on future climate change remain uncertain, and these feed-

backs are most accurately represented using online-coupled

meteorology and chemistry models (Zhang, 2010; IPCC,

2013). An online-coupled meteorology and chemistry model,

however, is more computationally expensive compared to an

offline-coupled model (Grell et al., 2004), and thus requires

significant computing resources for their long-term (a decade

or longer) applications. With rapid increases in the availabil-

ity of high-performance computing resources on the petaflop

scale, however, long-term simulations using online-coupled

models have become possible in recent years. For example,

recently, the WRF model has been coupled online to the

CMAQ model with the inclusion of aerosol indirect effects

to study chemistry and climate interactions (Yu et al., 2014).

The online-coupled WRF model with Chemistry

(WRF/Chem) (Grell et al., 2005) has been updated with a

suite of physical parameterizations from the Community

Atmosphere Model version 5 (CAM5) (Neale et al., 2010)

so that the physics in the global CAM5 model is consistent

with the regional model for downscaling purposes (Ma et

al., 2014). There are also limited applications of dynamical

downscaling (Gao et al., 2013) under the new Intergovern-

mental Panel on Climate Change (IPCC) Fifth Assessment

Report’s Representative Concentration Pathway (RCP)

scenarios (van Vuuren et al., 2011). Gao et al. (2013) applied

dynamic downscaling to link the CAM-Chem global-

climate-chemistry model with WRF and CMAQ using RCP

8.5 and RCP 4.5 emissions to study the impacts of climate

change and emissions on ozone (O3). Molders et al. (2014)

downscaled the Community Earth System Model (CESM)

(Hurrell et al., 2013) to drive the online-coupled WRF/Chem

model over southeastern Alaska using RCP 4.5 emissions;

however, their study did not address the feedback processes

between chemistry and meteorology. This study evaluates

the online-coupled regional WRF/Chem model, which takes

into account gas- and aerosol-phase chemistry, as well as

aerosol direct and indirect effects. WRF/Chem is used to

simulate the “current” climate scenario for 10 years from

2001 to 2010 using the RCP 8.5 emissions and boundary

conditions from an updated version of CESM with advanced

chemistry and aerosol treatments over the continental US

(CONUS) (He and Zhang, 2014; Glotfelty et al., 2016), with

a focus on air-quality and climate interactions. Both CESM

and WRF/Chem include similar gas-phase chemistry and

aerosol treatments. To our best knowledge, this study is the

first to report the WRF/Chem simulation, evaluation, and

analyses over a period of 10 years (i.e., 2001–2010) to assess

whether the model is able to accurately simulate decadal

long air quality and climatology by taking into account

feedback processes between chemistry and meteorology.

This study also assesses whether the RCP 8.5 emissions for

the 10-year period are robust enough to produce satisfactory

performance against observations with WRF/Chem.

2 Model setup and evaluation protocol

2.1 Model configurations and simulation design

The model used is the modified WRF/Chem v3.6.1 with up-

dates similar to those implemented in WRF/Chem v3.4.1 as

documented in Wang et al. (2015a). The main updates in-

clude the implementation of an extended version of the Car-

bon Bond 2005 (CB05) (Yarwood et al., 2005) gas-phase

mechanism with the chlorine chemistry (Sarwar et al., 2007)

and its coupling with the Modal Aerosol Dynamics for Eu-

rope/Volatility Basis Set (MADE/VBS) (Ahmadov et al.,

2012). MADE/VBS incorporates a modal aerosol size distri-

bution, and includes an advanced secondary organic aerosol

(SOA) treatment based on gas-particle partitioning and gas-

phase oxidation in volatility bins. The CB05-MADE/VBS

option has also been coupled to existing model treatments

of various feedback processes such as the aerosol semi-

direct effect on photolysis rates of major gases and the

aerosol indirect effect on cloud droplet number concentra-

tion (CDNC) and resulting impacts on shortwave radiation.

The main physics and chemistry options used in this study

as well as their corresponding references can be found in

Table 1. The simulations are performed at a horizontal res-

olution of 36 km with 148× 112 horizontal grid cells over

the CONUS domain and parts of Canada and Mexico, and a

vertical resolution of 34 layers from the surface to 100 hPa.

Considering the decadal applications of WRF/Chem in this

work, which is much longer than many past WRF/Chem ap-
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Table 1. Model configurations and setup.

Model attribute Configuration Reference

Domain and resolutions 36 km× 36 km, 148× 112 horizontal resolution

over continental US, with 34 layers vertically from

the surface to 100 hPa

–

Simulation period January 2001 to December 2010 –

Chemical and meteorological ICs/BCs Downscaled from the modified Community Earth

System Model/Community Atmosphere Model

(CESM/CAM5) v1.2.2;

meteorological ICs/BCs bias-corrected with Na-

tional Center for Environmental Protection’s Final

(FNL) Operational Global Analysis data

He and Zhang (2014)

Glotfelty et al. (2016)

Biogenic emissions Model of Emissions of Gases and Aerosols from

Nature (MEGAN2)

Guenther et al. (2006)

Dust emissions Atmospheric and Environmental Research Inc. and

Air Force Weather Agency (AER/AFWA)

Jones and Creighton (2011)

Sea-salt emissions Gong et al. (1997) parameterization Gong et al. (1997)

Radiation Rapid and accurate Radiative Transfer Model for

GCM (RRTMG) SW and LW

Clough et al. (2005)

Iacono et al. (2008)

Boundary layer Yonsei University (YSU) Hong et al. (2006)

Hong (2010)

Land surface National Center for Environmental Prediction, Ore-

gon State University, Air Force and Hydrologic Re-

search Lab (NOAH)

Chen and Dudhia (2001)

Ek at al. (2003)

Tewari et al. (2004)

Microphysics Morrison double-moment scheme Morrison et al. (2009)

Cumulus parameterization Grell 3-D ensemble Grell and Freitas (2014)

Gas-phase chemistry Modified CB05 with updated chlorine chemistry Yarwood et al. (2005)

Sarwar et al. (2006)

Sarwar et al. (2007)

Photolysis Fast Troposphere Ultraviolet Visible (FTUV) Tie et al. (2003)

Aqueous-phase chemistry AQ chemistry module (AQCHEM) for both re-

solved and convective clouds

Based on AQCHEM in

CMAQv4.7 of Sarwar et

al. (2011)

Aerosol module MADE/VBS Ahmadov et al. (2012)

Aerosol activation Abdul-Razzak and Ghan (2000) Abdul-Razzak and

Ghan (2000)

plications, the simulations are reinitialized monthly (rather

than 1–4 days used in most past WRF/Chem applications

to short-term episodes that are on an order of months up to

1 year, e.g., Zhang et al., 2012a, b; Yahya et al., 2015a, b) to

constrain meteorological fields toward National Centers for

Environmental Prediction (NCEP) reanalysis data while al-

lowing chemistry–meteorology feedbacks within the system.

As discussed in Sects. 3.1 and 3.3, the reinitialization fre-

quency of 1 month may be too large to constrain some of

the meteorological fields such as moisture that in turn affect

other parameters, and a more frequent reinitialization may be

needed to improve the model performance. The impact of the

frequency of the reinitialization on simulated meteorological

and cloud parameters will be further discussed in Sects. 3.1

and 3.2. A list of acronyms used in this paper can be found

in Table S1 in the Supplement.
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2.2 Processing of emissions and initial conditions

(ICs)/boundary conditions (BCs)

Global RCP emissions are available as monthly average

emissions for 2000, 2005, and every 10 years between 2010

and 2100, at a grid resolution of 0.5◦× 0.5◦ (Moss et al.,

2010; van Vuuren et al., 2011). The RCP emissions in 2000,

2005, and 2010 are used to cover the 10-year emissions

needed for WRF/Chem simulations, i.e., the periods of 2001–

2003, 2004–2006, and 2007–2010, respectively. Processing

global RCP emissions in 2000, 2005, and 2010 into re-

gional hourly emissions needed for the 10-year WRF/Chem

simulations requires essentially three main tasks. These in-

clude 1) mapping the RCP species to CB05 speciation

used in WRF/Chem; 2) re-gridding the RCP emissions from

0.5× 0.5◦ grid resolution to the 36× 36 km grid resolution

used for regional simulation over North America; and 3) ap-

plying species- and location-dependent temporal allocations

(i.e., emissions variation over time) to the re-gridded RCP

emissions. Table S2 shows the species mapping between

RCP species and CB05 species. To map the RCP species to

CB05 speciation, some assumptions are made due to the rel-

atively detailed speciation required by CB05. Some of the

CB05 species are directly available in RCP; however, others

are lumped into RCP groups; for example, the “other alka-

nals” and “hexanes and higher alkanes” in the RCP groups

can be considered to approximately represent the acetalde-

hyde and higher aldehyde emissions required by CB05, re-

spectively (Table S2). For the CB05 species such as ethanol,

methanol, internal and terminal olefin carbon bonds in the

gas phase, and elemental and organic carbon in the accu-

mulation mode of the aerosol particles, other RCP groups

are used to approximate these emissions (Table S2). For the

remaining CB05 species that are not available in the RCP

(i.e., chlorine, HCl, HONO, NH+4 , NO−3 , PAR, unspeciated

PM2.5, H2SO4, and SO2−
4 ), their 2000 emissions are based

on the 2002 National Emission Inventory (NEI) (version 3,

http://www.epa.gov/ttn/chief/emch/), while their 2005 and

2010 emissions are based on the 2008 NEI-derived emis-

sions (version 2) from the Air Quality Modelling Evalua-

tion International Initiative (AQMEII) project as described

in Pouliot et al. (2015), which include year-specific updates

for on-/off-road transport, wildfires and prescribed fires, and

continuous emission monitoring-equipped point sources. To

re-grid the RCP emissions, the RCP rectilinear grid is first in-

terpolated to a WRF/Chem curvilinear grid using a simple in-

verse distance weighting (NCAR Command Language Func-

tion – rgrid2rcm), and a subset of the RCP grid that covers

the WRF/Chem CONUS domain is then extracted. To derive

a temporal allocation for monthly averaged RCP emissions,

hourly emission profiles are taken from those used in-house

WRF/Chem simulations over CONUS during 2001 (Yahya et

al., 2015c), and 2006 and 2010 as part of the AQMEII project

(Yahya et al., 2015a, b). The emissions for those existing in-

house simulations were generated based on the 2002 NEI;

the emissions were generated with the Sparse Matrix Op-

erator Kernel Emissions (SMOKE) model version 2.3. The

emissions for the existing in-house 2006 and 2010 simula-

tions were generated based on the pre-merged emissions pro-

vided by the US EPA, which were derived from the 2008

NEI with year-specific section emissions for 2006 and 2010

as part of the AQMEII. SMOKE version 3.4 was used to

prepare the spatially, temporally, and chemically speciated

“model-ready” emissions for the existing in-house 2006 and

2010 WRF/Chem simulations. Since NEI is updated and re-

leased every 3 years, the temporal profiles of emissions used

in SMOKE for 2002, 2006, and 2010 are assumed to be

valid for 3–4 years around the NEI years, i.e., 2001–2003,

2004–2006, and 2007–2010, respectively. The temporal al-

locations applied to the RCP emissions are therefore based

on the SMOKE model’s profiles for each species and source

location, and include non-steady-state emissions rates (i.e.,

seasonal, weekday or weekend, and diurnal variability) that

are valid for the entire simulation periods of 2001–2010.

Specifically, the hourly re-gridded RCP emission rates for

each species E, or ERCP
hr , are calculated by

ERCP
hr (t,z, lat, lon)= ERCP

mon (z, lat, lon)

·

[
EWRF

hr (t,z, lat, lon)

EWRF
mon (z, lat, lon)

]
, (1)

where ERCP
mon , EWRF

mon , and EWRF
hr represent the origi-

nal monthly averaged RCP emissions rates, the monthly

averaged WRF/Chem emissions rates, and the hourly

WRF/Chem emission rates, respectively, which are valid at

each model time t , layer z, and lat and lon grid points. The

RCP elevated source emissions for sulfur dioxide (SO2),

sulfate (SO2−
4 ), elemental carbon (EC), and organic carbon

(OC) were also incorporated into the model-ready emissions

for WRF/Chem using steps 1–3 and Eq. (1) above. Lastly,

RCP aircraft source emissions for EC, nitric oxide (NO), and

nitrogen dioxide (NO2) are directly injected into the closest

model layers. No temporal allocations are applied to the RCP

aircraft source emissions.

Biogenic emissions are calculated online using the Model

of Emissions of Gases and Aerosols from Nature version 2

(MEGAN2) (Guenther et al., 2006). Emissions from dust

are based on the online Atmospheric and Environmental Re-

search Inc. and Air Force Weather Agency (AER/AFWA)

scheme (Jones and Creighton, 2011). Emissions from sea salt

are generated based on the scheme of Gong et al. (1997).

The chemical and meteorological ICs/BCs come from

the modified CESM/CAM5 version 1.2.2 with updates by

He and Zhang (2014) and Glotfelty et al. (2016) devel-

oped at North Carolina State University (CESM_NCSU).

WRF/Chem and CESM both use the CB05 gas-phase mech-

anism (Yarwood et al., 2005); however, WRF/Chem includes

additional chlorine chemistry from Sarwar et al. (2007),

whereas CESM_NCSU uses a modified version of CB05,

Geosci. Model Dev., 9, 671–695, 2016 www.geosci-model-dev.net/9/671/2016/
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the CB05 Global Extension (CB05GE) by Karamchandani

et al. (2012). In addition to original reactions in CB05 and

chlorine chemistry of Sarwar et al. (2007), CB05GE in-

cludes chemistry on the lower stratosphere, reactions in-

volving mercury species, and additional heterogeneous reac-

tions on aerosol particles, cloud droplets, and on polar strato-

spheric clouds (PSCs). Both WRF/Chem and CESM_NCSU

use a modal aerosol size representation rather than a

sectional size representation. While WRF/Chem includes

MADE/VBS with three prognostic modes (Ahmadov et al.,

2012), CESM_NCSU includes the Modal Aerosol Model

with seven prognostic modes (Liu et al., 2012) that is used

in CESM_NCSU. In addition to similar gas-phase chem-

istry and aerosol treatments, CESM_NCSU and WRF/Chem

use the same shortwave and longwave radiation schemes

(i.e., the Rapid and accurate Radiative Transfer Model for

GCM (RRTMG)), though they use different cloud micro-

physics parameterizations, PBL, and convection schemes. As

GCMs generally contain systematic biases that can influence

the downscaled simulation, the meteorological ICs/BCs pre-

dicted by CESM_NCSU are bias-corrected before they are

used by WRF/Chem using the simple bias-correction tech-

nique based on Xu and Yang (2012). Temperature, water va-

por, geopotential height, wind, and soil moisture variables

available every 6 h from the NCEP Final Reanalyses (NCEP

FNL) data set are used to correct the ICs and BCs derived

based on results from CESM_NCSU for WRF/Chem sim-

ulations. In this bias-correction approach, monthly climato-

logical averages for ICs and BCs are first derived from both

NCEP and CESM_NCSU cases. The differences between the

ICs and BCs from the NCEP and CESM_NCSU climato-

logical averages are then added onto the CESM_NCSU ICs

and BCs to generate bias-corrected CESM_NCSU ICs/BCs.

Assuming that the causes of the biases remain the same in

future, this bias-correction technique can also be applied to

future year simulations for which NCEP FNL data are not

available.

2.3 Model evaluation protocol

The focus of the model evaluation is mainly to assess whether

the model is able to adequately reproduce the spatial and

temporal distributions of key meteorological and chemical

variables as compared to observations on a climatological

timescale. A scientific question to be addressed in this work

is whether WRF/Chem is sufficiently good for regional cli-

mate and air-quality simulations on a decadal scale. A cli-

matological month refers to the average of the month for all

10 years. For example, January refers to the average for all

the months of January from 2001 to 2010. Statistical evalu-

ations such as mean bias (MB), Pearson’s correlation coef-

ficient (R), normalized mean bias (NMB), normalized mean

error (NME) (the definition of those measures can be found

in Yu et al., 2006, and Zhang et al., 2006), and index of agree-

ment (IOA) ranging from 0 to 1 (Willmott et al., 1981) for

major chemical and meteorological variables are included.

IOA can be calculated as

IOA= 1−

N∑
i

(Oi − Si)
2

N∑
i

(|Oi −O| + |Si − S|)2

, (2)

where Oi and Si denote time-dependent observations and

predictions at time and location i, respectively, N is the num-

ber of samples (by time and/or location), O denotes mean

observation, and S denotes mean predictions over all times

and locations; they can be calculated as

O = (1/N)

N∑
i=1

Oi,S = (1/N)

N∑
i=1

Si .

IOA values range from 0 to 1, with a value of 1 indicating a

perfect agreement.

For surface networks with hourly data, e.g., National Cli-

matic Data Center (NCDC), the observational data are paired

up with the simulated data on an hourly basis for each site.

The observational data and simulated data are averaged out

for each site. The statistics are then calculated based on the

site-specific data pairs. The satellite-derived data are usu-

ally available on a monthly basis, and the simulated data are

also averaged out on a monthly basis. The satellite-derived

data are regridded to the same domain and number of grid

cells similarly to the simulated data. The time dimension is

removed for the climatological evaluation; the statistics are

based on a site-specific average or a grid cell average. The

statistics are then calculated based on the paired satellite-

derived vs. simulated grid cell values. The spatial and tempo-

ral analyses include spatial plots of MB over CONUS, spa-

tial overlay plots of averaged simulated and observational

data, monthly climatologically averaged time series of ma-

jor meteorological and chemical variables, annual average

time series, probability distribution functions of major me-

teorological and chemical variables, and spatial plots of ma-

jor aerosol and cloud variables compared with satellite data.

A summary of the observational data from surface networks

and satellite retrievals can be found in Table S3. The vari-

ables that are analyzed in this study include O3, particulate

matter with diameters less than and equal to 2.5 and 10 µm

(PM2.5 and PM10, respectively), and PM2.5 species including

sulfate (SO2−
4 ), ammonium (NH+4 ), nitrate (NO−3 ), EC, OC,

total carbon (TC=EC+OC), temperature at 2 m (T2), rel-

ative humidity at 2 m (RH2), wind speed at 10 m (WS10),

wind direction at 10 m (WD10), precipitation, aerosol op-

tical depth (AOD), cloud fraction (CLDFRA), cloud water

path (CWP), cloud optical thickness (COT), CDNC, cloud

condensation nuclei (CCN), downward shortwave radiation

(SWDOWN), net shortwave radiation (GSW), downward

longwave radiation (GLW), outgoing longwave radiation at

the top of atmosphere (OLR), and shortwave and longwave

www.geosci-model-dev.net/9/671/2016/ Geosci. Model Dev., 9, 671–695, 2016
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Table 2. The 10-year (2001–2010) average performance statistics for the simulated meteorological, aerosol, cloud, radiation variables, and

chemical species against surface observational networks and satellite retrieval products.

Database and variable Mean obs Mean sim R MB NMB (%) NME (%)

NCDC T2 (◦C) 12.5 12.2 1.0 −0.3 −2.6 7.9

NCDC RH2 (%) 68.4 70.8 0.8 2.4 3.5 6.8

NCDC WS10 (m s−1) 3.54 3.84 0.3 0.3 8.6 28.4

NCDC WD10 (deg) 151.4 180.0 0.2 28.6 18.9 22.0

NADP Precip (mm day−1) 18.0 26.3 0.5 8.3 45.9 65.1

CERES SWDOWN (W m−2) 184.1 184.6 0.8 0.5 0.3 8.4

CERES GSW (W m−2) 157.5 151.8 0.8 −5.7 −3.6 9.6

CERES GLW (W m−2) 323.3 325.7 1.0 2.4 0.7 1.8

CERES OLR (W m−2) 240.0 224.8 0.6 −15.0 −6.3 6.3

MODIS AOD 0.14 0.10 0.1 −0.03 −24.0 38.5

MODIS CLDFRA 58.3 62.0 0.7 3.7 6.4 11.9

MODIS-derived CDNC (cm−3) 169.8 130.0 0.4 −39.9 −23.5 38.0

MODIS CWP (g m−2) 179.5 170.0 0.3 −9.6 −5.3 61.2

MODIS COT 16.5 9.2 0.2 −7.3 −44.3 54.0

CERES SWCF (W m−2) −41.8 −49.6 0.5 7.8 18.6 31.4

CERES LWCF (W m−2) 24.8 31.8 0.6 6.9 28.0 34.7

AQS Hourly O3 (ppb) 29.3 32.1 0.6 2.8 9.7 22.4

AQS Max 1 h O3 (ppb) 48.9 49.7 0.6 0.8 1.7 7.9

AQS Max 8 h O3 (ppb) 43.7 45.9 0.6 2.2 5.0 9.3

CASTNET Hourly O3 (ppb) 35.0 31.9 0.7 −3.1 −8.8 19.8

CASTNET Max-1 h O3 (ppb) 47.4 38.5 0.4 −8.9 −18.8 31.4

CASTNET Max 8 h O3 (ppb) 43.3 37.9 0.5 −5.4 −12.5 29.6

AQS 24 h PM10 (µg m−3) 22.5 11.0 0.1 −11.5 −51.2 57.1

IMPROVE PM2.5 (µg m−3) 5.33 6.57 0.4 1.2 23.3 53.4

STN PM2.5 (µg m−3) 12.0 10.7 0.2 −1.3 −10.8 38.3

IMPROVE SO2−
4

(µg m−3) 1.45 1.86 0.8 0.4 28.0 41.8

STN SO2−
4

(µg m−3) 3.10 3.74 0.7 0.6 20.7 36.8

IMPROVE1NO−
3

(µg m−3) 0.54 0.44 0.7 −0.1 −17.9 64.6

STN NO−
3

(µg m−3) 1.62 0.70 0.4 −0.9 −56.9 65.3

IMPROVE NH+
4
∗ (µg m−3) 1.02 0.72 0.4 −0.3 −29.6 45.5

STN NH+
4

(µg m−3) 1.34 1.05 0.5 −0.3 −21.5 38.7

IMPROVE EC (µg m−3) 0.23 0.16 0.6 −0.1 −30.7 48.3

STN EC (µg m−3) 0.65 0.38 0.2 −0.3 −42.0 52.8

IMPROVE OC (µg m−3) 1.10 1.88 0.2 0.8 71.7 134.6

IMPROVE TC (µg m−3) 1.33 2.05 0.2 0.7 53.9 116.3

STN TC (µg m−3) 4.42 2.42 0.1 −2.0 −45.3 69.7

∗ NH+
4

IMPROVE data only available up to 2005.

cloud forcing (SWCF and LWCF). While uncertainties ex-

ist in all the observational data used, systematic uncertainty

analysis/quantification is beyond the scope of this work. In

this work, all observational data are considered to be the true

values in calculating the performance statistics. The informa-

tion on the accuracy of most data used in the model evalua-

tion has been provided in Table 2 of Zhang et al. (2012a).

Uncertainties associated with some of the observational data

are discussed in Sect. 3.

3 Model performance evaluation

3.1 Meteorological predictions

Table 2 summarizes the statistics for T2, RH2, WS10, WD10,

and precipitation. The model performs very well for a 10-

year average T2 with a slight underprediction (an MB of

−0.3 ◦C). This is better than or consistent with other studies

that tend to report underpredictions in simulated T2. Brun-

ner et al. (2014) reported a range of monthly MBs for T2

of −2 to 1 ◦C for simulations using a number of CTMs over

individual years for 2006 and 2010 with reanalysis meteo-
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rological ICs/BCs. Seasonal temperature biases of −1.8 to

−2.3 ◦C were reported from an ensemble of regional climate

models (RCMs) for a simulation period of 1971 to 2000 over

the northeastern US (Rawlins et al., 2012). He et al. (2015)

also showed biases of −3 to 0 ◦C over CONUS when com-

pared against NCEP reanalysis data. Kim et al. (2013) com-

pared the results of a number of RCMs over CONUS over a

climatological period of 1980 to 2003 against Climatic Re-

search Unit (CRU) surface analysis data at a 0.5◦ resolution

and reported T2 biases of −5 to 5 ◦C. Figure 9.2 from Flato

et al. (2013) shows that the Coupled Model Intercomparison

Project Phase 5 (CMIP5) models tend to underpredict T2 for

the period of 1980 to 2005 over the western US by up to

−3 ◦C. The slight bias in T2 can be attributed to errors in soil

temperature and soil moisture (Pleim and Gilliam, 2009) or

errors in the green vegetation fraction in the National Cen-

ter for Environmental Prediction, Oregon State University,

Air Force and Hydrologic Research Lab (NOAH) land sur-

face model (LSM) (Refslund et al., 2014). RH2 and WS10

are slightly overpredicted. Precipitation is largely overpre-

dicted, consistent with overpredictions in precipitation from

WRF and WRF/Chem simulations reported in the literature.

For example, Caldwell et al. (2009) attributed the overpre-

diction in precipitation to overprediction in precipitation in-

tensity but underprediction in precipitation frequency. Otte

et al. (2012) also reported that the precipitation predicted by

WRF is too high compared to the North American Regional

Reanalyses (NARR) data throughout the whole CONUS do-

main over a period of 1988–2007. Nudging and reinitializa-

tion have been the most commonly used methods to control

such errors. Three sensitivity simulations are conducted for

a summer month (July 2005) to pinpoint likely causes of the

precipitation biases. The baseline simulation (Base) uses a

monthly reinitialization frequency, CESM_NCSU ICs/BCs,

and the Grell 3-D cumulus parameterization. The sensitivity

simulations include (1) Sen1, which is similar to the Base

case except with a 5-day reinitialization period; (2) Sen2,

which is similar to Base except for using NCEP for the me-

teorological ICs/BCs; and (3) Sen3, which is similar to Base

except for using WRF/Chem v3.7 with the multi-scale Kain–

Fritsch (MSKF) cumulus parameterization instead of Grell 3-

D. The differences in configuration setup in those sensitivity

simulations are given in Table S4. The evaluation and com-

parison of the baseline and sensitivity results in July 2005

are summarized in Tables S5 and S6, and Fig. S1 in the Sup-

plement. As shown in Tables S5–S6 and Fig. S1, the pre-

cipitation bias can be attributed to several factors including

the use of a Grell 3-D cumulus parameterization scheme, the

use of bias-corrected CESM_NCSU data (instead of NCEP

reanalysis data), and the use of an reinitialization frequency

of 1 month, among which the first factor dominates the bi-

ases in precipitation predictions. The simulated precipita-

tion is very sensitivity to different cumulus parameteriza-

tions. Compared to scale-aware parameterizations such as the

multi-scale Kain–Fritsch (MSKF) cumulus scheme, the Grell

3-D parameterization has a tendency to overpredict precipi-

tation, particularly over the ocean.

Figure 1 shows the spatial distributions of MB for 10-

year average predictions of T2, RH2, WS10, and precipi-

tation. Figure 2 shows the time series of 10-year average

monthly and annual average T2, WS10, RH2, precipitation,

O3, and PM2.5 against observational data and IOA statistics.

T2 (Fig. 1a) tends to be underpredicted over the eastern and

western US and overpredicted over the central US. The bias

correction method itself may also contribute to the slight bi-

ases in T2. A single temporally averaged (2001–2010) NCEP

reanalysis file is applied to the 6-hourly BCs for each individ-

ual year, which would in some cases contribute to the biases

in the climatological 10-year evaluation. T2 also tends to be

overpredicted during the cooler months but underpredicted

during the warmer months (Fig. 2a). While the bar charts in

Fig. 2 show domain-average mean observed and mean simu-

lated T2, IOA performance takes into account the proportion

of differences between mean observed and mean simulated

values at different sites.

The model performance in terms of IOA for T2 is slightly

worse during the warmer months as compared to the cooler

months; however, IOA values for all months are ≥ 0.9. The

poorer IOA statistics for the warmer months are possibly in-

fluenced to a certain extent by the fact that the IOA tends

to be more sensitive towards extreme values (when temper-

atures are maximum) due to the squared differences used in

calculating IOA (Legates and McCabe, 1999). As shown in

Figs. 1b and 2b, the spatial distributions of MBs for RH2 fol-

low closely the spatial distributions of MBs for T2, where

T2 is underpredicted, RH2 is overpredicted, and vice versa.

Unlike T2, the IOA for RH2 is highest during the warmer

months and lowest during the winter months, but IOA for

RH2 is generally high (> 0.7) for all months. WS10 is also

generally overpredicted along the coast, over the eastern US,

and some portions over the western US (Fig. 1c), consis-

tent with overpredictions of T2 over the coast, and partially

due to unresolved topographical features. In this case the

topographic correction for surface winds used to represent

extra drag from sub-grid topography (Jimenez and Dudhia,

2012) is used as an option in the 10-year WRF/Chem sim-

ulations; however, WS10 is still overpredicted, except for

the areas of flat undulating land in the central US. Jimenez

and Dudhia (2012) also suggested that the grid points nearest

to the observational data might not be the most appropriate

or most representative, and that the selection of nearby grid

points can help to reduce errors in surface wind speed esti-

mations. In this study, as the evaluation is conducted over the

whole CONUS, the nearest grid points are used for evalua-

tion, which could also result in errors in wind speed evalu-

ation. The positive T2 and WS10 bias along the coast could

be due to the fact that the model grids for temperatures and

wind speeds are located over the ocean; however, the obser-

vation points are located slightly inland. As shown in Fig. 2,

WS10 performs well on average for the months of April,
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Figure 1. Spatial distribution of MBs for (a) 2 m temperature (T2), (b) 2 m relative humidity (RH2), (c) 10 m wind speed (WS10) from

NCDC, and (d) weekly precipitation from NADP. Each marker represents the MB of each variable at each observational site.

May, and June, and is overpredicted for the other months.

Nonetheless the climatological NMB for WS10 overall is

low at 7.7 % (Table 2). WS10 has higher IOA values dur-

ing the spring months and the lowest IOA during the sum-

mer months and in November. The model performs relatively

well in predicting WD10 variability with a correlation coeffi-

cient (Corr) of 0.6, indicating overall a more southerly direc-

tion domain-wide predicted by the model compared to ob-

servations. Precipitation is overpredicted for all months ex-

cept for June, especially during the summer months of July

to August. Even with the inclusion of radiative feedback ef-

fects from the subgrid-scale clouds in the radiation calcula-

tions, precipitation is still overpredicted with the Grell 3-D

scheme, which is consistent with the results shown by Ala-

paty et al. (2012). Precipitation mainly has lower IOAs dur-

ing the summer compared to other months, except in June,

which actually exhibits the largest IOA of all months. Even

though June is considered a summer month, it does not show

overprediction in precipitation compared to the other summer

months. It is possible that in June, the overall atmospheric

moisture content is low. This is consistent with simulated

RH2 as June is the only month where RH2 is underpredicted

compared to observations.

In general the model is able to reproduce the monthly

trends in meteorological variables; for example, the predicted

trend in T2 closely follows the observed trends by NCDC.

The observed RH2 decreases from January to a minimum in

April, and then increases from April to December. Although

the model predicts a similar pattern in RH2, there is a lag in

the RH2 minimum occurring 2 months later in June (Fig. 2b).

For WS10, the observation peaks in April, as compared to the

simulated peak in March. The model correctly predicts the

observed WS10 minimum occurring in August. The model

trend in precipitation is similar to observations, except dur-

ing the summer months of July through September, where

a large overprediction leads to a sharp increase in July, fol-

lowed by a gradual decrease through December.

Figure 2e–h show the annual time series trends for T2,

RH2, WS10, and precipitation. The model performs rela-

tively well in predicting the annual mean T2 for most years

(with MBs of < 0.5 ◦C; Fig. 2e). T2 also does not show an

obvious decreasing or increasing T2 trend between 2001 and

2010. The IOAs for annual T2 for all years are > 0.95. How-

ever, for 2002, mean simulated T2 is∼ 0.7 ◦C higher than the

observational data. IOA is still high for 2002, which indicates

probably good performance of T2 at most sites, however with

large overpredictions at a few sites, which could skew the

mean observed and mean simulated value but not influence

IOA significantly. RH2 is consistently overpredicted by the

model, with the largest overprediction in 2009. With the ex-

ception of 2009, observed RH2 is rather steady (65–70 %)

from 2001 to 2010. IOA is also steady for RH2, except for

2009. As mentioned earlier, WRF tends to overpredict WS10

in general. Figure 2g shows that observations indicate weaker

wind speeds from 2001 to 2007. Model performance is bet-

ter from 2007 to 2010, with higher IOAs compared to previ-
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Figure 2. Time series of 10-year averaged monthly observations (blue) vs. simulations (red) for (a) T2, (b) RH2, and (c) WS10 against

NCDC data, and (d) precipitation against NADP data, and annual averages for (e) T2, (f) RH2, and (g) WS10 against NCDC data, and

(h) precipitation against NADP. IOA statistics (black diamonds) are also provided on the secondary y axes in panels (a)–(h).

ous years. WRF has worse performance especially at weaker

wind speeds, as is the case from 2001 to 2007. Model perfor-

mance for precipitation is more variable year-to-year, with

IOAs ranging from 0.4 to 0.7; however, there is a systematic

positive bias during the 10-year period.

Figure 3 shows the probability distribution functions

(PDFs) of T2, RH2, WS10, and precipitation against NCDC

and NADP for 10 years. The observed and simulated vari-

ables are averaged at each site for the 10-year period, and

the pairs are then distributed into a PDF over 30 bins of ob-
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Figure 3. Probability distribution functions (PDFs) of (a) T2, (b) RH2, (c) WS10 against NCDC, and (d) precipitation against NADP for

2001 to 2010 over 30 bins in the respective ranges for all variables.

served and simulated values of T2. For T2, the simulated and

observed PDFs are very similar (Fig. 3a), consistent with the

statistics for T2, which shows only a small cold bias. The

model overpredicts T2 at sites where temperatures are very

low. The PDF for simulated RH2 is also shifted to the right of

the observed RH2 (Fig. 3b), with an observed and modeled

peak of 74 and 78 %, respectively. The PDF of the bulk of the

simulated WS10 is narrower (between 2 and 6 m s−1) com-

pared to that of observed WS10 (between 1 and 7 m s−1). The

model thus overpredicts when near-surface wind speeds are

low but underpredicts when wind speeds are very high. This

suggests that the surface drag parameterization is still insuf-

ficient to help predict low wind speeds; however, it might

have contributed to the reduction in the simulated moder-

ately high wind speeds (Mass, 2012) (in this case, between

4 and 6 m s−1). There are also instances where the model

predicts extremely high wind speeds (> 8 m s−1), which are

also not found in the observed data. The PDF for simulated

precipitation against NADP also shows a shift to the right

(which extends beyond 60 mm), consistent with the statis-

tics for overpredicted precipitation and also with the PDF of

RH2. Nasrollahi et al. (2012) examined 20 combinations of

microphysics and cumulus parameterization schemes avail-

able in WRF and found that most parameterization schemes

overestimate the amount of rainfall and the extent of high

rainfall values. In this study, while Grell 3-D ensemble cu-

mulus parameterization contributes in part to the overpre-

dictions of precipitation, most overpredictions occur at high

thresholds as shown in Fig. 3d, and they are attributed to pos-

sible errors in the Morrison two-moment scheme because the

overpredictions of non-convective precipitation dominate the

overpredictions of total precipitation.
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Figure 4. Time series of 10-year averaged monthly mean observations (blue) vs. simulations (red) for (a) O3 against AQS data, (b) O3

against CASTNET data, (c) PM2.5 against IMPROVE, and (d) PM2.5 against STN, and annual averages for (e) O3 against AQS data, (f) O3

against CASTNET data, (g) PM2.5 against IMPROVE, and (h) PM2.5 against STN. IOA statistics (black diamonds) are also provided on the

secondary y axes in panels (a)–(h).
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3.2 Chemical predictions

3.2.1 Ozone

Table 2 summarizes the statistics for major chemical species.

The model overpredicts hourly O3 mixing ratios on aver-

age against the Aerometric Information Retrieval System

(AIRS)–Air Quality System (AQS) with an NMB of 9.7 %

and an NME of 22.4 %, but underpredicts O3 mixing ratios

against the Clean Air Status and Trends Network (CAST-

NET) with an NMB of −8.8 % and an NME of 19.8 %. The

O3 mixing ratios are overpredicted at AIRS-AQS sites for

all climatological months except for April and May (Fig. 4a)

but underpredicted at CASTNET sites for all months except

for October, with the largest underpredictions occurring in

April and May where IOA statistics are the lowest (Fig. 4b).

IOA statistics for all climatological months range from 0.5

to 0.6 for AIRS-AQS and from 0.4 to 0.9 for CASTNET. In

general, IOA values tend to be higher for CASTNET com-

pared to AIRS-AQS during the fall and winter months of

October to March. The IOA values for AIRS-AQS are rather

steady on average over the 12 months compared to CAST-

NET. This can be attributed to the larger data set of AIRS-

AQS (> 1000 stations) compared to CASTNET (< 100 sta-

tions); the high and low undulations in O3 averages at the

CASTNET sites tend to be smoothed or averaged out in O3

averages at the AIRS-AQS sites given the larger AIRS-AQS

data set. The observed data from AIRS-AQS and CASTNET

also show the highest monthly O3 mixing ratios over April

and May. This result is consistent with the findings of Cooper

et al. (2014), who reported the highest mass of tropospheric

O3 for the Northern Hemisphere in April and May based on

the Ozone Monitoring Instrument (OMI) measurements in

2004, which suggested that the column mass of O3 is not nec-

essarily proportional to nitrogen oxide (NOx) emissions that

peak during the summer. In addition, Cooper et al. (2014)

attributed a shift in the seasonal O3 cycle observed at many

rural mid-latitude monitoring sites to emissions reductions

in the US. The same study also reported that the summertime

O3 mixing ratios were lower in the eastern US between 2005

and 2010 when compared to previous years, while remaining

relatively constant in spring. Thus the summer O3 maximum

during 2001–2004 was replaced by a broad spring/summer

peak in 2005–2010. Both the observed and simulated O3

mixing ratios do not decrease for AIRS-AQS and CASTNET

from 2001 to 2010 (Fig 4e and f). This is somewhat consis-

tent with Cooper et al. (2014), who showed that surface and

lower tropospheric O3 has a decreasing trend over the eastern

US but an increasing trend over the western US from 1990–

1999 to 2010. The predicted annual average O3 mixing ratios

are consistent from 2001 to 2010, with overpredictions and

IOAs of ∼ 0.6 at the AIRS-AQS sites, and underpredictions

and IOAs of ∼ 0.6 to 0.8 at the CASTNET sites.

Figure 5 shows the PDFs of maximum 1 and 8 h O3 mix-

ing ratios against CASTNET and AIRS-AQS. The PDFs of

the observed and simulated O3 mixing ratios are very simi-

lar. The model is able to simulate the range and probabilities

of O3 mixing ratios relatively well at both CASTNET and

AIRS-AQS sites. At the CASTNET sites as shown in Fig. 5a

and b, the model accurately predicts the peak maximum 1 h

O3 mixing ratio centered at∼ 45 to 50 ppb and the peak max-

imum 8 h O3 mixing ratio at ∼ 42.5 ppb. At the AIRS-AQS

sites as shown in Fig. 5c and d, the predicted PDF is slightly

shifted to the right of the observations for both maximum 1

and 8 h O3 mixing ratios. It is also interesting to note that

the PDFs for CASTNET and AIRS-AQS are quite different.

CASTNET has a more uniform and normal distribution com-

pared to AIRS-AQS. The distribution for CASTNET data is

also shifted towards lower O3 mixing ratios. The differences

are attributed to the nature of the sites’ locations, where the

AIRS-AQS network includes a mixture of urban, suburban,

and rural sites, leading to a less-uniform normal distribution

of O3 mixing ratios centered at relatively higher O3 mixing

ratios, while the CASTNET network includes mostly rural

sites that exhibit a low maximum 1 and 8 h O3 mixing ra-

tios, thus leading to a more uniform normal distribution that

is heavier towards the lower O3 mixing ratios.

Figure 6 shows the diurnal variation of O3 concentra-

tions and IOA statistics for the four climatological seasons

against CASTNET (panel a to d) and AIRS-AQS (panel e to

h): winter – January, February, and December (JFD); spring

– March, April, and May (MAM); summer – June, July,

and August (JJA); fall – September, October, and November

(SON). Figure 6a shows that in more rural sites (CASTNET)

in winter O3 tends to be underpredicted during the morning

(01:00–09:00 LST – local standard time) and evening hours

(18:00–24:00 LST). However, Fig. 6b shows that in general

for all AIRS-AQS sites including urban sites, O3 is system-

atically overpredicted for all hours of the day. The diurnal

trends for CASTNET and AIRS-AQS are completely oppo-

site for winter. As CASTNET sites are located in areas where

urban influences are minimal, most of these sites are likely

to be NOx-limited sites (Campbell et al., 2014). Underpre-

dicted NOx emissions in rural areas can lead to underpredic-

tions in O3 concentrations in NOx-limited areas. As shown

in Fig. 2a, T2 is generally overpredicted during the winter

months, which explains the overpredictions in O3 for most

sites against AIRS-AQS. As shown in Fig. 6a, b and c, for

CASTNET, the diurnal variations of O3 in MAM and JJA

are similar to that in JFD. As shown in Fig. 6d, slight over-

predictions during the daylight hours of 10:00 to 17:00 LST

occur in SON at the CASTNET sites; however, the trends

are similar for morning and evening hours as compared to

the other seasons. Similar to SON at the CASTNET sites,

for AIRS-AQS sites, overpredictions during daylight hours

occur in JJA and SON (Fig. 6g and h), and also to a much

lesser extent in MAM (Fig. 6f). This is probably due to the

overpredictions of T2, which are smallest during MAM com-

pared to other months, as shown in Fig. 2a.
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Figure 5. Probability distribution functions (PDFs) of (a) maximum 1 h O3 against CASTNET, (b) maximum 8 h O3 against CASTNET,

(c) maximum 1 h O3 against AIRS-AQS, and (d) maximum 8 h O3 against AIRS-AQS for 2001 to 2010 over 30 bins in the respective ranges

for all variables.

Figure 7 compares the spatial distributions of 10-year av-

erages of the predicted and observed hourly O3 mixing ratios.

The O3 mixing ratios tend to be underpredicted in the eastern

and northeastern US, where most of the CASTNET sites are

located (Fig. 7a). This is consistent with the diurnal trends

from Figures 6a to d, which also show underpredictions for

CASTNET sites. From Fig. 1a, T2 is underpredicted on aver-

age over the northeastern US, which results in underpredic-

tions in biogenic emissions in the rural areas from MEGAN2.

This would in turn reduce O3 mixing ratios in VOC-limited

areas. O3 photochemical reactivities would also be reduced

due to reduced T2. O3 mixing ratios are, however, overpre-

dicted over the northwestern US, and also near the coastline

of the western US. The overprediction of O3 mixing ratios

in the northwestern US can be attributed to an overprediction

in the chemical BCs from CESM, as indicated by the high

O3 mixing ratios near the northwestern region of the domain

boundary.

3.2.2 Particulate matter

The 10-year average PM2.5 concentrations are overpredicted

with an NMB of 23.3 % against IMPROVE, and underpre-

dicted with an NMB of −10.8 % against the Speciated

Trends Network (STN) (Table 2). In addition, the IOA trend

in Fig. 4c shows very good performance for PM2.5 against

the Interagency Monitoring of Protected Visual Environ-

ments (IMPROVE), with IOA values > 0.8. IOA values for

PM2.5 against STN are high (∼ 0.6–0.8) during the spring

and summer months, but lower (∼ 0.4) during the winter

months (Fig. 4d). The IMPROVE surface network generally

covers rural areas and national parks, while the STN sur-

face network covers urban sites. The horizontal resolution

of 36× 36 km2 used in this study may be too coarse to re-

solve the locally high PM2.5 concentrations at urban sites in

STN, which are in the vicinity of significant point sources,

especially during the fall and winter. During these colder sea-

www.geosci-model-dev.net/9/671/2016/ Geosci. Model Dev., 9, 671–695, 2016



684 K. Yahya et al.: Decadal evaluation of regional climate and air quality

 Against CASTNET Against AIRS-AQS 

JFD 

(a) 

 

(e) 

 

MAM
 

(b) 

 

(f) 

 

JJA 

(c) 

 

(g) 

 

SON 

(d) 

 

(h) 

 

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

O
zo

n
e

 c
o

n
ce

n
tr

at
io

n
 (

p
p

b
)

Hour

Obs

Sim

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

O
zo

n
e

 c
o

n
ce

n
tr

at
io

n
 (

p
p

b
)

Hour

Obs

Sim

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

O
zo

n
e

 c
o

n
ce

n
tr

at
io

n
 (

p
p

b
)

Hour

Obs

Sim

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

O
zo

n
e 

co
n

ce
n

tr
at

io
n

 (
p

p
b

)

Hour

Obs

Sim

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

O
zo

n
e

 c
o

n
ce

n
tr

at
io

n
 (

p
p

b
)

Hour

Obs

Sim

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

O
zo

n
e

 c
o

n
ce

n
tr

at
io

n
 (

p
p

b
)

Hour

Obs

Sim

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

O
zo

n
e

 c
o

n
ce

n
tr

at
io

n
 (

p
p

b
)

Hour

Obs

Sim

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

O
zo

n
e

 c
o

n
ce

n
tr

at
io

n
 (

p
p

b
)

Hour

Obs

Sim

Figure 6. Diurnal variation of observed vs. simulated hourly O3 concentrations against CASTNET (left column from a to d) and AIRS-AQS

(right column from e to h) for all climatological seasons. The x axes refer to hours in local standard time.
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Figure 7. Spatial distribution of 10-year averaged hourly observed vs. simulated (a) O3 for CASTNET and AIRS-AQS, (b) PM10 from AIRS-

AQS, (c) PM2.5, and (d) PM2.5 sulfate from STN and IMPROVE. The background plots represent the simulated data, while observations are

represented by the markers.

sons, PM2.5 concentrations over the US in general tend to be

higher due to an extensive use of wood-stove and cold tem-

perature inversions, which trap particulates near the ground

(EPA, 2011). As shown in Table 2, the concentrations of

PM2.5 species such as SO2−
4 , OC, and TC are overpredicted

at the IMPROVE sites, while the concentrations of the other

main PM2.5 species NO−3 , NH+4 , and EC are underpredicted

at both IMPROVE and STN sites. TC concentrations, which

are the sum of OC and EC, are overpredicted due to larger

overpredictions of OC compared to the underpredictions of

EC. The model also simulates both primary organic aerosol

(POA) and secondary organic aerosol (SOA). OC is calcu-

lated as the sum of POA and SOA divided by the ratio of

OA / OC, which is assumed to be a constant of 1.4 (Aitken

et al., 2008). This calculation of OC using a constant of 1.4

is an approximation, which is subject to uncertainties when

comparing simulated OC against observational data, as the

ratio of OA / OC can be different in different environments

(Aitken et al., 2008).

As shown in Table 2, at the STN sites, the model slightly

overpredicts the concentrations of SO2−
4 while underpredict-

ing those of NO−3 , NH+4 , and EC. The overpredictions of

SO2−
4 are likely due to the uncertainties that arise from pro-

cessing of the RCP SO2 emissions. The RCP SO2 emissions

are only available as a total emission flux, and they are not

vertically distributed to the important point sources such as

furnaces and stacks. In this work, two steps are taken to

resolve the RCP elevated SO2 emissions in each emission

layer. First, a set of factors are derived from the fraction of

the elevated emissions in each layer to the vertical sum of

emissions for NEI used by default in the SMOKE model

with the NEI data. Second, these factors are applied to the

total RCP emissions to obtain SO2 emissions in each emis-

sion layer. The total RCP SO2 emissions were higher than

the total NEI emissions, resulting in higher surface and ele-

vated SO2 emissions. Figure 4g and h compare the modeled

annual average time series for PM2.5 against IMPROVE and

STN observations, respectively. In general, the model per-

forms well for PM2.5 at the IMPROVE (IOA > 0.8) and STN

(IOA∼ 0.5–0.7) sites. A declining trend in PM2.5 observed

and simulated concentrations is also observed over the years.

For the later years (2007 to 2010), the model performs signif-

icantly better against IMPROVE compared to STN. As 2010

NEI emissions are used for the years 2007 to 2010, there are

not many variations in the simulated PM2.5 concentrations

over these 4 years.
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Figure 8. Spatial distribution of 10-year averaged hourly observed vs. simulated (a) ammonium, (b) nitrate, (c) EC, and (d) TC from STN

and IMPROVE. The background plots represent the simulated data, while observations are represented by the markers.

Figures 7 and 8 show the spatial plots of 10-year averages

of simulated 24 h average, PM10, PM2.5,, and PM2.5 species

concentrations, overlaid with observations from both STN

and IMPROVE. The underpredictions of PM10 are domi-

nated by an underprediction in the wind-blown dust emis-

sions, especially in the western US (Fig. 7b). This is con-

firmed in Table 2, which shows an MB of −11.5 µg m−3 and

an NMB of −51.2 % against PM10 observations at AIRS-

AQS sites. The observational data indicate the elevated con-

centrations of dust over portions of Arizona and California

(> 50 µg m−3), which are not reproduced by the simulations

(the simulated concentrations are much lower: < 20 µg m−3).

The AER/AFWA dust module (Table 1) does not produce

sufficient dust in this case, even though WS10 is overpre-

dicted and is proportional to the dust emissions. The sea-

salt emission module by Gong et al. (1997), however, seems

to produce a reasonable amount of sea salt, as shown by

the similar concentrations between simulated and observa-

tional data for PM10 near the coastlines. In addition, the

MADE/VBS module in WRF/Chem does not explicitly sim-

ulate the formation/volatilization of coarse inorganic species.

The coarse inorganic species are available, however, in the

emissions, and are transported and deposited in a manner that

is similar to non-reactive tracers.

The model performs well for PM2.5 over the eastern US

(Fig. 7c), where modeled concentrations are close to the ob-

servations; however, over the western US there are under-

predictions in PM2.5, especially in central to southern Cal-

ifornia. Even though Table 2 shows in general an overpre-

diction of SO2−
4 against STN sites, the model underpredicts

SO2−
4 in regions of elevated SO2−

4 concentrations, in partic-

ular, where concentrations are above 10 µg m−3 in the vicin-

ity of significant point sources of SO2 and SO2−
4 over the

eastern US (Fig. 7d). This is likely due to the coarse reso-

lution (0.5◦× 0.5◦) of RCP emissions, which probably re-

sults in a general overprediction of SO2 emissions over a

grid but which cannot resolve point sources smaller than the

grid resolution. A similar pattern is found for NH+4 over the

eastern US due to underpredictions of high concentrations

of SO2−
4 (Fig. 8a). There are also large underpredictions in

NH+4 over the western US. The underpredictions in NH+4 are

likely due to underpredictions of NH3 emissions from the

RCP. The NH3 emissions from the RCP are much lower than

those of NEI emissions over the western US, by more than a

factor of 5, especially over portions of California. Large un-

derpredictions occur over both the eastern and western US

for NO−3 , EC, and TC (Fig.8b, c, and d). The underpredic-

tions in NO−3 are more likely influenced by the underpre-
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dictions of NH+4 rather than NOx emissions. NOx emissions

for NEI are higher than those of the RCP for a number of

point sources; however, in general, the RCP has higher NOx

emissions. Other possible reasons for the underpredictions

of NO−3 concentrations include both prediction and measure-

ment errors associated with SO2−
4 and TNH4 that can greatly

affect the performance of NO−3 , inaccuracies in the assump-

tions used in the thermodynamic model (e.g., the assumption

that inorganic ions are internally mixed and the equilibrium

assumption might not be representative, especially for par-

ticles with larger diameters), as well as inaccuracies in T2

and RH predictions (Yu et al., 2005). The statistics for IM-

PROVE TC indicate overpredictions; however, the statistics

for STN TC indicate larger underpredictions with an MB

of −2.0 µg m−3, which would explain the large underpre-

dictions in PM2.5 concentrations over the western US. The

large underpredictions are in part impacted by uncertainties

in emissions as well as due to uncertainties in the precur-

sor gas emissions for these species, especially for TC. The

RCP emissions of EC and POA are lower when compared to

those of NEI. NEI emissions have a higher spatial resolution,

and thus more adequately represent the emissions from point

sources compared to RCP. The underpredictions of TC are

also more likely due to underpredictions in EC as compared

to OC, as shown in underpredictions of EC by Fig. 8c. As T2

is slightly underpredicted, these could have resulted in un-

derpredictions in isoprene and terpene, which are major gas

precursors of biogenic SOA, resulting in lower SOA and OC

concentrations. In addition, the emissions of anthropogenic

VOC species from the RCP, which are also of a lower spa-

tial resolution compared to their emissions in the NEI, tend

to also be lower than NEI levels, especially at point sources.

The underpredictions for these particulate species, especially

for water-soluble species including NH+4 and NO−3 , are also

likely impacted by overpredictions in precipitation (Fig. 2d),

which leads to an overprediction in their wet deposition rates

and thus a reduction in their ambient concentrations. The

overpredictions in WS10 also help contribute to the deposi-

tion of PM2.5 and PM2.5 species onto the ground (Sievering

et al., 1987).

3.3 Aerosol, cloud, and radiation predictions

There are uncertainties in the satellite retrievals of various

aerosol–cloud–radiation variables from the Clouds and the

Earth’s Radiant Energy System (CERES) and the Moder-

ate Resolution Imaging Spectroradiometer (MODIS). Loeb

et al. (2009) reported that the major uncertainties in the top

of atmosphere radiative fluxes from CERES are derived from

instrument calibration (with a net error of 4.2 W m−2) and

the assumed value of 1 W m−2 for total solar irradiance.

However, there is good correlation (R> 0.8) between the

model and CERES for the radiation variables SWDOWN,

GSW, and GLW, which are all measured at the surface (Ta-

ble 2). Modeled OLR at the top of the atmosphere also has

relatively good correlation (R ∼ 0.6). SWDOWN and GLW

are both slightly overpredicted due to influences from biases

in PM concentrations and clouds, but GSW and OLR are

slightly underpredicted.

The overpredictions of the surface radiation variables are

also impacted by the underpredictions in AOD and COT.

AOD is underpredicted with an NMB of −24.0 %, and COT

is underpredicted with an NMB of −44.3 %. These under-

predictions indicate that less radiation is attenuated (i.e.,

absorbed or scattered) or reflected while traversing through

the atmospheric column and clouds, thus allowing more

radiation to reach the ground. Using the CESM model, He et

al. (2015) also showed underpredictions in AOD and COT

over CONUS against MODIS satellite retrievals. Figure 9

compares the spatial distributions of the 10-year average pre-

dictions of AOD (a and b) against the satellite retrieval data

from MODIS. The simulated AODs show relatively large

values over the eastern US, due to the relatively higher PM

concentrations in this region of the US. The MODIS AOD,

however, shows slightly elevated values over the eastern US,

but the magnitudes are not as high as the simulated AOD

over the eastern US. MODIS-derived AOD is also higher

over the western US compared to the eastern US, and this

trend is not found in the simulated AOD. The differences

between the MODIS AOD and the simulated AOD are likely

due to the differences in the algorithms used to retrieve

AOD based on MODIS measurements and calculate AOD in

WRF/Chem. For MODIS, AOD is calculated by matching

the spectral reflectance observations with a lookup table

based on a set of aerosol parameters including the aerosol

size distributions from a variety of aerosol models, which

differ based on seasons and locations (Levy et al., 2007).

There are also different algorithms for dark land, bright

land, and over oceans (Levy et al., 2013). The MODIS

data are aggregated into a global 1◦ gridded (Level-3)

data set with monthly (MOD08_M3) temporal resolu-

tion (https://www.earthsystemcog.org/site_media/projects/

obs4mips/TechNote_MODIS_L3_C5_Aerosols.pdf). The

inaccuracies for the calculation of AOD in WRF/Chem

include biases in aerosol size distribution, aerosol composi-

tion, aerosol water content, and reflectances. They can also

arise from parameterizations in the calculations including

the assumption of an internally mixed aerosol composition.

Therefore, caution should also be taken when comparing

simulated AOD with the satellite-derived AOD products.

Toth et al. (2013) compared Aqua MODIS AOD products

over the mid- to high-latitude Southern Ocean where a band

of enhanced AOD is observed, to cloud and aerosol products

produced by the Cloud-Aerosol Lidar with Orthogonal

Polarization (CALIOP) project, and AOD data from the

Aerosol Robotic Network (AERONET) and the Maritime

Aerosol Network (MAN). They concluded that the band of

enhanced AOD is not detected in the CALIOP, AERONET,

or MAN products. The enhanced AOD band is attributed to

stratocumulus and low broken cumulus cloud contamination,
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Figure 9. The 10-year averaged MODIS (left) vs. simulated (right) AOD (a and b), CDNC (c and d), CWP (e and f), and COT (f and g).

as well as the misidentification of relatively warm cloud tops

compared with surrounding open seas.

Figure 9 also shows spatial distributions of the 10-year av-

erage predictions of CDNC (c and d), CWP (e and f), and

COT (g and h), compared against the satellite retrieval data

from MODIS. The cloud variables CDNC, CWP, and COT

tend to be underpredicted for most of the regions over the

US. However, CWP is largely overpredicted over the Atlantic
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Ocean. This is also likely due to the build-up of moisture over

the Atlantic Ocean, also influencing precipitation as men-

tioned previously. CDNC is overpredicted over some regions

in the eastern US, but there are also relatively large areas of

underpredictions over both the land and ocean. This leads

to an average domain-wide underprediction for CDNC (Ta-

ble 2). This is likely due to the differences in deriving CDNC

in the model and in the satellite retrievals. CDNC in the

model is calculated based on the activation parameterization

by Abdul-Razzak and Ghan (2000) based on the aerosol size

distribution, aerosol composition, and the updraft velocity.

The MODIS-derived CDNC from Bennartz (2007) is calcu-

lated based on cloud effective radius and COT, which would

explain the differences in spatial patterns between model and

observed data. As indicated by Bennartz (2007), the errors

in CDNC can be up to 260 %, especially for regions with

low CF (< 0.1). The model and MODIS spatial patterns are

similar for CWP and COT over land, although the model val-

ues are underpredicted. King et al. (2013) reported that the

MODIS retrieval of cloud effective radius when compared

to in situ observations is overestimated by 13 % on average.

Combined with overestimations in COT, this leads to overes-

timation of liquid water path. In addition, there can also be

differences in satellite-derived cloud products from different

satellites. For example, Shan et al. (2011) showed that the de-

rived CLDFRA from MODIS and another satellite, the Polar-

ization and Directionality of Earth Reflectances (POLDER),

can differ with a global average of 10 %.

Figure 10 shows similar spatial plots for modeled vs.

CERES-derived SWDOWN, OLR, SWCF, and LWCF. We

note that modeled SWCF is calculated based on the differ-

ences between the net cloudy-sky and net clear-sky short-

wave radiation at the top of atmosphere, which in turn are

dependent on cloud properties including the CLDFRA, COT,

cloud asymmetry parameter, and cloud albedo. It is possi-

ble that due to the overprediction of CLDFRA, the magni-

tudes of the simulated SWCF are greater than those from

CERES (Fig. 10c and g), even though the other cloud vari-

ables are underpredicted. LWCF is calculated based on the

differences in clear-sky OLR and cloudy-sky OLR, which in

turn are dependent on CLDFRA, COT, and absorbance and

radiance due to atmospheric gases. The underprediction of

total-sky OLR (Table 2 and Fig. 10b and f) leads to an over-

prediction in LWCF. SWCF is largely overpredicted over the

eastern US and especially over the Atlantic Ocean (Fig. 10c

and g). LWCF is also overpredicted by the model in simi-

lar locations to SWCF, such as in the southeastern US, and

over the ocean in the eastern portion of the domain (Fig. 10d

and h). This is further confirmed by the underpredictions in

SWDOWN over the Atlantic Ocean and in general over the

eastern portion of the domain, as increased clouds (as a con-

sequence of overpredicted AOD, CWP, and COT) and SWCF

lead to less SWDOWN reaching the ground (Fig. 10a and e),

which also eventually leads to a reduction in the OLR over

the eastern portion of the domain. The larger negative SWCF

and positive LWCF in the model compared to CERES, how-

ever, lead to an overall good agreement with CERES for the

net cloud forcing (SWCF+LWCF; not shown). The mean

bias for SWCF against CERES of 7.8 W m−2 and that for

LWCF against CERES of 6.9 W m−2 are comparable to the

results from the CMIP5 models of−10 to 10 W m−2 over the

CONUS region (Fig. 9.5 in Flato et al., 2013). The evaluation

of 10-year averaged predictions of aerosol–cloud–radiation

variables is similar to the results from the WRF/Chem sim-

ulations in 2006 and 2010 by Yahya et al. (2015a, b). For

example, WRF/Chem generally performs well for cloud frac-

tion, but AOD, CDNC, CWP, and COT are underpredicted in

both studies, which possibly indicates consistent biases for

every year contributing to climatological biases.

4 Summary and conclusions

Overall, the model slightly underpredicts T2 with a mean

bias of ∼−0.3 ◦C, which is consistent with or better than

other studies based on chemical transport models and re-

gional climate models. The underpredictions in T2 correlate

with the overpredictions in RH2. WS10 biases are likely due

to issues with unresolved topography or due to inaccuracies

in the selection of representative grid points. There are sea-

sonal biases in precipitation, where overpredictions tend to

occur largely over the summer months; however, precipi-

tation is overpredicted every year between 2001 and 2010,

likely due mainly to uncertainties in WRF cumulus and mi-

crophysics parameterizations. In particular, the use of a dif-

ferent cumulus parameterization scheme, e.g., based on the

MSKF available in WRF/Chem version 3.7 or newer, has

been shown in the sensitivity study to significantly reduce

precipitation biases. Other factors contributing to the precip-

itation bias include the use of bias-corrected CESM_NCSU

data (instead of NCEP reanalysis data) and the use of a reini-

tialization frequency of 1 month. A satisfactory model per-

formance for meteorological variables is important and nec-

essary when simulating future years, as data evaluation is not

possible. Meteorological variables such as temperature, hu-

midity, wind speed and direction, PBL height, and radiation

have a strong impact on chemical predictions, and thus are

critical to the satisfactory model performance when predict-

ing chemical variables such as O3 and PM2.5. Biases in O3

and PM2.5 concentrations can be attributed to biases in any of

the meteorological and chemical variables. The model per-

forms generally well for radiation variables, as well as for

the main chemical species such as O3 and PM2.5, which in-

dicates that the processed RCP 8.5 emissions are reasonably

accurate to produce acceptable results for the concentrations

of chemical species.

Modeled O3 mixing ratios at the CASTNET sites are

slightly underpredicted, but are slightly overpredicted at

AIRS-AQS sites, in part due to the fact that the CAST-

NET sites are classified as rural, while the AIRS-AQS sites

www.geosci-model-dev.net/9/671/2016/ Geosci. Model Dev., 9, 671–695, 2016
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Figure 10. The 10-year averaged CERES (left) vs. simulated (right) SWDOWN (a and b), OLR (c and d), SWCF (e and f), and LWCF (f

and g).

are classified as both urban and rural. O3 mixing ratios at

the AIRS-AQS sites tend to be overpredicted during the

colder fall and winter seasons, and annually, O3 mixing ra-

tios are overpredicted every year from 2001 to 2010. O3

mixing ratios at the CASTNET sites are underpredicted for

all climatological months, while the largest underpredictions

are observed from January to May. However, on a decadal

timescale, WRF/Chem adequately represents the different O3

PDFs at the AIRS-AQS and CASTNET sites. This study also

showed that peak O3 mixing ratios are observed over April

Geosci. Model Dev., 9, 671–695, 2016 www.geosci-model-dev.net/9/671/2016/
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and May rather than June to August, which is consistent with

Cooper et al. (2014), who attributed this to emission reduc-

tions and opposite trends in O3 mixing ratios over the eastern

and western US over the last 20 years. Modeled PM2.5 con-

centrations tend to be overpredicted at the IMPROVE sites

but underpredicted at the STN sites. PM2.5 at the IMPROVE

sites tends to be underpredicted in spring and summer but

overpredicted in fall and winter, while PM2.5 concentrations

against STN are persistently underpredicted for all climato-

logical months. The IMPROVE and STN sites are classified

as rural and urban, respectively. Due to the relatively coarse

horizontal resolution of the model (36× 36 km), the model is

unable to capture the locally higher PM2.5 concentrations at

the STN sites. In general, however, the model performs rel-

atively well for total PM2.5 concentrations at the IMPROVE

and STN sites, with NMBs of within ±25 %, although larger

biases exist for PM2.5 species. Model performance for PM10

should be improved, as PM10 also has important impacts on

climate by influencing the radiative budget both directly and

indirectly due to its larger size and higher concentrations.

The choices of observational networks for model evaluation

are therefore important as both networks can show positive

and negative biases depending on the type and location of

the sites (e.g., O3 against AIRS-AQS and CASTNET, and

PM2.5 against STN and IMPROVE). The major uncertainties

lie in the predictions of cloud-aerosol variables. As demon-

strated in this study, large biases and error in simulating cloud

variables exist even in the most advanced models such as

WRF/Chem, indicating a need for future improvement in rel-

evant model treatments such as cloud dynamics and thermo-

dynamics, as well as aerosol–cloud interactions. In addition,

there are large uncertainties in satellite retrievals of cloud

variables for evaluation. In this study, most of the cloud-

aerosol variables including AOD, COT, CWP, and CDNC are

on average underpredicted across the domain; however, the

overpredictions of cloud variables including COT and CWP

over the Atlantic Ocean and the eastern US lead to under-

predictions in radiation and overpredictions in cloud forcing,

which are important parameters when simulating future cli-

mate change.

In summary, the model is able to predict O3 mixing ra-

tios and PM2.5 concentrations relatively well with regards

to decadal-scale air quality and climate applications. The

model is able to predict meteorological variables satisfac-

torily and with results comparable to RCM and GCM ap-

plications from the literature. Possible reasons behind the

chemical and meteorological biases identified through this

work should be taken into account when simulating longer

climatological periods and/or future years. Aerosol–cloud–

radiation variables are important for climate simulations; the

performances of these variables are not as good as that of the

chemical and meteorological variables. They contain consis-

tent biases in single-year evaluations of WRF/Chem. How-

ever, magnitudes of biases for SWCF and LWCF are compa-

rable to those from the literature, which suggests that model

improvements should be made in terms of bias correction of

downscaled ICs/BCs as well as aerosol–cloud–radiation pa-

rameterizations in the model. In addition, having consistent

physical and chemical mechanisms between the GCM and

RCMs could help to reduce uncertainties in the results (Ma

et al., 2014). Although CESM and WRF/Chem use similar

chemistry and aerosol treatments in this work, they use some-

what different physics schemes that may contribute to such

uncertainties. The development of scale-aware parameteriza-

tions that can be applied at both global and regional scales

would help reduce uncertainties associated with the use of

different schemes for global simulations and downscaled re-

gional simulations.

Code and data availability

The WRF/Chem v3.6.1 code used in this paper will be avail-

able upon request. However, we highly encourage users to

download the latest available version of the WRF/Chem

code from NOAA’s web site at http://www2.mmm.ucar.edu/

wrf/users/download/get_source.html. The updates in our in-

house version of WRF/Chem v3.6.1 have been implemented

in WRF/Chem v3.7 and WRF/Chem v3.7.1 for scientific

community release. The WRF/Chem v3.7 and WRF/Chem

v3.7.1 codes are now publicly available at http://www2.

mmm.ucar.edu/wrf/users/download/get_source.html. These

latest versions of the source codes contain all major changes

in the standard version of WRF/Chem v3.6.1 used in this

study. In addition, they have been rigorously tested for com-

patibility and compiling issues on various platforms. The in-

puts including the meteorological files, meteorological ini-

tial and boundary conditions, chemical initial and boundary

conditions, model setup and configuration, and the namelist

setup and instructions on how to run the simulations for a 1-

day test case, as well as a sample output for a 1-day test, can

be provided upon request.

The Supplement related to this article is available online

at doi:10.5194/gmd-9-671-2016-supplement.
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