Articles | Volume 9, issue 11
https://doi.org/10.5194/gmd-9-4273-2016
https://doi.org/10.5194/gmd-9-4273-2016
Model description paper
 | 
25 Nov 2016
Model description paper |  | 25 Nov 2016

Parameterizing microphysical effects on variances and covariances of moisture and heat content using a multivariate probability density function: a study with CLUBB (tag MVCS)

Brian M. Griffin and Vincent E. Larson

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Brian Griffin on behalf of the Authors (29 Aug 2016)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (29 Aug 2016) by Simon Unterstrasser
RR by Anonymous Referee #3 (08 Sep 2016)
RR by Anonymous Referee #1 (20 Sep 2016)
ED: Publish as is (07 Oct 2016) by Simon Unterstrasser
AR by Brian Griffin on behalf of the Authors (17 Oct 2016)  Manuscript 
Download
Short summary
Microphysical process rates, such as the formation, growth, and evaporation of precipitation, affect the variances, covariances, and fluxes of moisture and heat content. These effects appear as covariance terms within the Reynolds-averaged predictive equations for the scalar (co)variances and fluxes. Using a multivariate probability density function (PDF) and a simple warm-rain microphysics scheme, these microphysical covariance terms can be obtained by analytic integration over the PDF.