Articles | Volume 9, issue 11
https://doi.org/10.5194/gmd-9-4257-2016
https://doi.org/10.5194/gmd-9-4257-2016
Model evaluation paper
 | 
25 Nov 2016
Model evaluation paper |  | 25 Nov 2016

Comparison of PMCAMx aerosol optical depth predictions over Europe with AERONET and MODIS measurements

Antigoni Panagiotopoulou, Panagiotis Charalampidis, Christos Fountoukis, Christodoulos Pilinis, and Spyros N. Pandis

Related authors

Diurnal aging of biomass burning emissions: Impacts on secondary organic aerosol formation and oxidative potential
Maria P. Georgopoulou, Kalliopi Florou, Angeliki Matrali, Georgia Starida, Christos Kaltsonoudis, Athanasios Nenes, and Spyros N. Pandis
EGUsphere, https://doi.org/10.5194/egusphere-2025-2728,https://doi.org/10.5194/egusphere-2025-2728, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Continuous chemical characterization of ultrafine particulate matter (PM0.1)
Georgia A. Argyropoulou, Kalliopi Florou, and Spyros N. Pandis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1147,https://doi.org/10.5194/egusphere-2025-1147, 2025
Short summary
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025,https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024,https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Significant spatial and temporal variation of the concentrations and chemical composition of ultrafine particulate matter over Europe
Konstantinos Mataras, Evangelia Siouti, David Patoulias, and Spyros Pandis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3357,https://doi.org/10.5194/egusphere-2024-3357, 2024
Short summary

Related subject area

Atmospheric sciences
The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2
Mijie Pang, Jianbing Jin, Ting Yang, Xi Chen, Arjo Segers, Batjargal Buyantogtokh, Yixuan Gu, Jiandong Li, Hai Xiang Lin, Hong Liao, and Wei Han
Geosci. Model Dev., 18, 3781–3798, https://doi.org/10.5194/gmd-18-3781-2025,https://doi.org/10.5194/gmd-18-3781-2025, 2025
Short summary
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025,https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary

Cited articles

Anderson, J. C., Wang, J., Zeng, J., Leptoukh, G., Petrenko, M., Ichoku, C., and Hu, C.: Long-term statistical assessment of Aqua-MODIS aerosol optical depth over coastal regions: bias characteristics and uncertainty sources, Tellus B, 65, 1–22, 2013.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001.
Barnaba, F. and Gobbi, G. P.: Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001, Atmos. Chem. Phys., 4, 2367–2391, https://doi.org/10.5194/acp-4-2367-2004, 2004.
Bond, T. C. and Bergstrom, W.: Light absorption by carbonaceous particles: An investigative review, Aerosol. Sci. Tech., 40, 27–67, 2005.
Carnevale, C., Finzi, G., Mannarini, G., Pisoni, E., and Volta, M.: Comparing mesoscale chemistry-transport model and remote-sensed Aerosol Optical Depth, Atmos. Environ., 45, 289–295, 2011.
Download
Short summary
The ability of chemical transport model PMCAMx to reproduce ground and satellite aerosol optical depth (AOD) measurements over Europe is evaluated. PMCAMx reproduces AOD values over Spain, the UK, central Europe, and Russia with a fractional bias of less than 15 % and a fractional error of less than 30 %. The model overestimates the AOD over northern Europe probably due to an overestimation of organic aerosol and sulfates, and underestimates over the Balkans due to an underestimation of sulfates.
Share