Articles | Volume 9, issue 10
Geosci. Model Dev., 9, 3817–3857, 2016
https://doi.org/10.5194/gmd-9-3817-2016
Geosci. Model Dev., 9, 3817–3857, 2016
https://doi.org/10.5194/gmd-9-3817-2016

Model description paper 28 Oct 2016

Model description paper | 28 Oct 2016

PALADYN v1.0, a comprehensive land surface–vegetation–carbon cycle model of intermediate complexity

Matteo Willeit and Andrey Ganopolski

Related authors

Modeling the response of Greenland outlet glaciers to global warming using a coupled flow line–plume model
Johanna Beckmann, Mahé Perrette, Sebastian Beyer, Reinhard Calov, Matteo Willeit, and Andrey Ganopolski
The Cryosphere, 13, 2281–2301, https://doi.org/10.5194/tc-13-2281-2019,https://doi.org/10.5194/tc-13-2281-2019, 2019
Short summary
Simulation of the future sea level contribution of Greenland with a new glacial system model
Reinhard Calov, Sebastian Beyer, Ralf Greve, Johanna Beckmann, Matteo Willeit, Thomas Kleiner, Martin Rückamp, Angelika Humbert, and Andrey Ganopolski
The Cryosphere, 12, 3097–3121, https://doi.org/10.5194/tc-12-3097-2018,https://doi.org/10.5194/tc-12-3097-2018, 2018
Short summary
The importance of snow albedo for ice sheet evolution over the last glacial cycle
Matteo Willeit and Andrey Ganopolski
Clim. Past, 14, 697–707, https://doi.org/10.5194/cp-14-697-2018,https://doi.org/10.5194/cp-14-697-2018, 2018
Short summary
Coupled Northern Hemisphere permafrost–ice-sheet evolution over the last glacial cycle
M. Willeit and A. Ganopolski
Clim. Past, 11, 1165–1180, https://doi.org/10.5194/cp-11-1165-2015,https://doi.org/10.5194/cp-11-1165-2015, 2015
Short summary
Challenges and opportunities to reduce uncertainty in projections of future atmospheric CO2: a combined marine and terrestrial biosphere perspective
D. Dalmonech, A. M. Foley, A. Anav, P. Friedlingstein, A. D. Friend, M. Kidston, M. Willeit, and S. Zaehle
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-2083-2014,https://doi.org/10.5194/bgd-11-2083-2014, 2014
Revised manuscript has not been submitted

Related subject area

Biogeosciences
SolveSAPHE-r2 (v2.0.1): revisiting and extending the Solver Suite for Alkalinity-PH Equations for usage with CO2, HCO3 or CO32− input data
Guy Munhoven
Geosci. Model Dev., 14, 4225–4240, https://doi.org/10.5194/gmd-14-4225-2021,https://doi.org/10.5194/gmd-14-4225-2021, 2021
Short summary
Modeling gas exchange and biomass production in West African Sahelian and Sudanian ecological zones
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812, https://doi.org/10.5194/gmd-14-3789-2021,https://doi.org/10.5194/gmd-14-3789-2021, 2021
Short summary
Partitioning soil organic carbon into its centennially stable and active fractions with machine-learning models based on Rock-Eval® thermal analysis (PARTYSOCv2.0 and PARTYSOCv2.0EU)
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021,https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Addressing biases in Arctic–boreal carbon cycling in the Community Land Model Version 5
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021,https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance
Alexey N. Shiklomanov, Michael C. Dietze, Istem Fer, Toni Viskari, and Shawn P. Serbin
Geosci. Model Dev., 14, 2603–2633, https://doi.org/10.5194/gmd-14-2603-2021,https://doi.org/10.5194/gmd-14-2603-2021, 2021
Short summary

Cited articles

Anderson, E.: A point energy and mass balance model of a snow cover, NOAA Technical Report NWS 19, 1976.
Arora, V. K. and Boer, G. J.: Fire as an interactive component of dynamic vegetation models, J. Geophys. Res., 110, 1–20, https://doi.org/10.1029/2005JG000042, 2005.
Arora, V. K. and Boer, G. J.: Simulating competition and coexistence between plant functional types in a dynamic vegetation model, Earth Interact., 10, 1–30, https://doi.org/10.1175/EI170.1, 2006.
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions, in: Progress in Photosynthesis Research, Springer Netherlands, 221–224, https://doi.org/10.1007/978-94-017-0519-6_48, 1987.
Baumgartner, A. and Reichel, E.: Die Weltwasserbilanz: Niederschlag, Verdunstung u. Abfluss über Land u. Meer sowie auf d. Erde im Jahresdurchschnitt, München, Wien, Oldenbourg, ISBN-10: 3-486-34751-9, 1975.
Download
Short summary
PALADYN is presented; it is a new comprehensive and computationally efficient land surface–vegetation–carbon cycle model designed to be used in Earth system models of intermediate complexity for long-term simulations and paleoclimate studies.