Articles | Volume 9, issue 10
https://doi.org/10.5194/gmd-9-3685-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-9-3685-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6
Nathan P. Gillett
CORRESPONDING AUTHOR
Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria, V8W 2Y2, Canada
Hideo Shiogama
Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
Bernd Funke
Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
Gabriele Hegerl
School of GeoSciences, University of Edinburgh, James Hutton Rd, Edinburgh, EH9 3FE, UK
Reto Knutti
Institute for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
Katja Matthes
Ocean Circulation and Climate Dynamics, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
Benjamin D. Santer
Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
Daithi Stone
Computational Chemistry, Materials and Climate, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Claudia Tebaldi
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80305, USA
Related authors
Robin D. Lamboll, Chris D. Jones, Ragnhild B. Skeie, Stephanie Fiedler, Bjørn H. Samset, Nathan P. Gillett, Joeri Rogelj, and Piers M. Forster
Geosci. Model Dev., 14, 3683–3695, https://doi.org/10.5194/gmd-14-3683-2021, https://doi.org/10.5194/gmd-14-3683-2021, 2021
Short summary
Short summary
Lockdowns to avoid the spread of COVID-19 have created an unprecedented reduction in human emissions. We can estimate the changes in emissions at a country level, but to make predictions about how this will affect our climate, we need more precise information about where the emissions happen. Here we combine older estimates of where emissions normally occur with very recent estimates of sector activity levels to enable different groups to make simulations of the climatic effects of lockdown.
Landon A. Rieger, Jason N. S. Cole, John C. Fyfe, Stephen Po-Chedley, Philip J. Cameron-Smith, Paul J. Durack, Nathan P. Gillett, and Qi Tang
Geosci. Model Dev., 13, 4831–4843, https://doi.org/10.5194/gmd-13-4831-2020, https://doi.org/10.5194/gmd-13-4831-2020, 2020
Short summary
Short summary
Recently, the stratospheric aerosol forcing dataset used as an input to the Coupled Model Intercomparison Project phase 6 was updated. This work explores the impact of those changes on the modelled historical climates in the CanESM5 and EAMv1 models. Temperature differences in the stratosphere shortly after the Pinatubo eruption are found to be significant, but surface temperatures and precipitation do not show a significant change.
Neil C. Swart, Jason N. S. Cole, Viatcheslav V. Kharin, Mike Lazare, John F. Scinocca, Nathan P. Gillett, James Anstey, Vivek Arora, James R. Christian, Sarah Hanna, Yanjun Jiao, Warren G. Lee, Fouad Majaess, Oleg A. Saenko, Christian Seiler, Clint Seinen, Andrew Shao, Michael Sigmond, Larry Solheim, Knut von Salzen, Duo Yang, and Barbara Winter
Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, https://doi.org/10.5194/gmd-12-4823-2019, 2019
Short summary
Short summary
The Canadian Earth System Model version 5 (CanESM5) is a global model developed to simulate historical climate change and variability, to make centennial-scale projections of future climate, and to produce initialized seasonal and decadal predictions. This paper describes the model components and quantifies the model performance. CanESM5 simulations contribute to the Coupled Model Intercomparison Project phase 6 (CMIP6) and will be employed for climate science applications in Canada.
Chris D. Jones, Thomas L. Frölicher, Charles Koven, Andrew H. MacDougall, H. Damon Matthews, Kirsten Zickfeld, Joeri Rogelj, Katarzyna B. Tokarska, Nathan P. Gillett, Tatiana Ilyina, Malte Meinshausen, Nadine Mengis, Roland Séférian, Michael Eby, and Friedrich A. Burger
Geosci. Model Dev., 12, 4375–4385, https://doi.org/10.5194/gmd-12-4375-2019, https://doi.org/10.5194/gmd-12-4375-2019, 2019
Short summary
Short summary
Global warming is simply related to the total emission of CO2 allowing us to define a carbon budget. However, information on the Zero Emissions Commitment is a key missing link to assess remaining carbon budgets to achieve the climate targets of the Paris Agreement. It was therefore decided that a small targeted MIP activity to fill this knowledge gap would be extremely valuable. This article formalises the experimental design alongside the other CMIP6 documentation papers.
Daniel Mitchell, Krishna AchutaRao, Myles Allen, Ingo Bethke, Urs Beyerle, Andrew Ciavarella, Piers M. Forster, Jan Fuglestvedt, Nathan Gillett, Karsten Haustein, William Ingram, Trond Iversen, Viatcheslav Kharin, Nicholas Klingaman, Neil Massey, Erich Fischer, Carl-Friedrich Schleussner, John Scinocca, Øyvind Seland, Hideo Shiogama, Emily Shuckburgh, Sarah Sparrow, Dáithí Stone, Peter Uhe, David Wallom, Michael Wehner, and Rashyd Zaaboul
Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, https://doi.org/10.5194/gmd-10-571-2017, 2017
Short summary
Short summary
This paper provides an experimental design to assess impacts of a world that is 1.5 °C warmer than at pre-industrial levels. The design is a new way to approach impacts from the climate community, and aims to answer questions related to the recent Paris Agreement. In particular the paper provides a method for studying extreme events under relatively high mitigation scenarios.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Abigail Snyder, Noah Prime, Claudia Tebaldi, and Kalyn Dorheim
Earth Syst. Dynam., 15, 1301–1318, https://doi.org/10.5194/esd-15-1301-2024, https://doi.org/10.5194/esd-15-1301-2024, 2024
Short summary
Short summary
From running climate models to using their outputs to identify impacts, modeling the integrated human–Earth system is expensive. This work presents a method to identify a smaller subset of models from the full set that preserves the uncertainty characteristics of the full set. This results in a smaller number of runs that an impact modeler can use to assess how uncertainty propagates from the Earth to the human system, while still capturing the range of outcomes provided by climate models.
Florian Voet, Felix Plöger, Johannes Laube, Peter Preusse, Paul Konopka, Jens-Uwe Grooß, Jörn Ungermann, Björn-Martin Sinnhuber, Michael Hoepfner, Bernd Funke, Gerald Wetzel, Sören Johansson, Gabriele Stiller, Eric Ray, and Michaela Imelda Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2624, https://doi.org/10.5194/egusphere-2024-2624, 2024
Short summary
Short summary
This study refines estimates of the stratospheric “age of air,” a measure of how long air circulates in the stratosphere. By analyzing correlations between trace gases measurable by satellites, the research introduces a method that reduces uncertainties and detects small-scale atmospheric features. This improved understanding of stratospheric circulation is crucial for better climate models and predictions, enhancing our ability to assess the impacts of climate change on the atmosphere.
Mathew Williams, David T. Milodowski, Thomas Luke Smallman, Kyle G. Dexter, Gabi C. Hegerl, Iain M. McNicol, Michael O'Sullivan, Carla M. Roesch, Casey M. Ryan, Stephen Sitch, and Aude Valade
EGUsphere, https://doi.org/10.5194/egusphere-2024-2497, https://doi.org/10.5194/egusphere-2024-2497, 2024
Short summary
Short summary
Southern African woodlands are important in both regional and global carbon cycles. A new carbon analysis created by combining satellite data with ecosystem modelling shows that the region has a neutral C balance overall, but with important spatial variations. Patterns of biomass and C balance across the region are the outcome of climate controls on production, vegetation-fire interactions, which determine mortality of vegetation, and spatial variations in vegetation function.
Miriam Sinnhuber, Christina Arras, Stefan Bender, Bernd Funke, Hanli Liu, Daniel R. Marsh, Thomas Reddmann, Eugene Rozanov, Timofei Sukhodolov, Monika E. Szelag, and Jan Maik Wissing
EGUsphere, https://doi.org/10.5194/egusphere-2024-2256, https://doi.org/10.5194/egusphere-2024-2256, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Formation of nitric oxide NO in the upper atmosphere varies with solar activity. Observations show that it starts a chain of processes in the entire atmosphere affecting the ozone layer and climate system. This is often underestimated in models. We compare five models which show large differences in simulated NO. Analysis of results point out problems related to the oxygen balance, and to the impact of atmospheric waves on dynamics. Both must be modeled well to reproduce the downward coupling.
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
Norbert Glatthor, Gabriele P. Stiller, Thomas von Clarmann, Bernd Funke, Sylvia Kellmann, and Andrea Linden
EGUsphere, https://doi.org/10.5194/egusphere-2024-1793, https://doi.org/10.5194/egusphere-2024-1793, 2024
Short summary
Short summary
We present global upper tropospheric distributions of the pollutants HCN, CO, C2H2, C2H6, PAN and HCOOH, observed by MIPAS/Envisat between 2002 and 2012. This common view allows conclusions on the sources of the different pollutants, like, e.g., biomass burning, anthropogenic sources or biogenic release. For this purpose we compare their VMR distributions and additionally perform global correlation and regression analyses.
Irina Melnikova, Philippe Ciais, Katsumasa Tanaka, Hideo Shiogama, Kaoru Tachiiri, Tokuta Yokohata, and Olivier Boucher
EGUsphere, https://doi.org/10.5194/egusphere-2024-1553, https://doi.org/10.5194/egusphere-2024-1553, 2024
Short summary
Short summary
Reducing non-CO2 greenhouse gases helps limit global warming alongside CO2 reduction. We compared the effects using an Earth System Model. We show that the carbon cycle feedback differ between CO2 and non-CO2 gases, with the presence or absence of CO2 change in the atmosphere influencing their effects. The study underscores the need to consider interactions between CO2 and non-CO2 impacts on the carbon cycle in climate models and emission reduction strategies.
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin Anchukaitis, Gabriele Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-1322, https://doi.org/10.5194/egusphere-2024-1322, 2024
Short summary
Short summary
Large volcanic eruptions have caused temperature deviations over the past 1000 years, however climate model results and reconstructions of surface cooling using tree-rings do not match. We explore this mismatch using the latest models and find a better match to tree-ring reconstructions for some eruptions. Our results show that the way in which eruptions are simulated in models matters for the comparison to tree-rings, particularly regarding the spatial spread of volcanic aerosol.
Wenjuan Huo, Tobias Spiegl, Sebastian Wahl, Katja Matthes, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
EGUsphere, https://doi.org/10.5194/egusphere-2024-1288, https://doi.org/10.5194/egusphere-2024-1288, 2024
Short summary
Short summary
Uncertainties of the solar signals in the middle atmosphere are assessed based on large ensemble simulations with multiple climate models. Our results demonstrate the 11-year solar signals in the short wave heating rate, temperature, and ozone anomalies are significant and robust. the simulated dynamical responses are model-dependent, and solar imprints in the polar night jet are influenced by biases in the model used.
Manuel López-Puertas, Federico Fabiano, Victor Fomichev, Bernd Funke, and Daniel R. Marsh
Geosci. Model Dev., 17, 4401–4432, https://doi.org/10.5194/gmd-17-4401-2024, https://doi.org/10.5194/gmd-17-4401-2024, 2024
Short summary
Short summary
The radiative infrared cooling of CO2 in the middle atmosphere is crucial for computing its thermal structure. It requires one however to include non-local thermodynamic equilibrium processes which are computationally very expensive, which cannot be afforded by climate models. In this work, we present an updated, efficient, accurate and very fast (~50 µs) parameterization of that cooling able to cope with CO2 abundances from half the pre-industrial values to 10 times the current abundance.
Kanishka B. Narayan, Brian C. O'Neill, Stephanie Waldhoff, and Claudia Tebaldi
Earth Syst. Sci. Data, 16, 2333–2349, https://doi.org/10.5194/essd-16-2333-2024, https://doi.org/10.5194/essd-16-2333-2024, 2024
Short summary
Short summary
Here, we present a consistent dataset of income distributions across 190 countries from 1958 to 2015 measured in terms of net income. We complement the observed values in this dataset with values imputed from a summary measure of the income distribution, specifically the Gini coefficient. We also present another version of this dataset aggregated from the country level to 32 geographical regions.
Norbert Glatthor, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 17, 2849–2871, https://doi.org/10.5194/amt-17-2849-2024, https://doi.org/10.5194/amt-17-2849-2024, 2024
Short summary
Short summary
We present global atmospheric methane (CH4) and nitrous oxide (N2O) distributions retrieved from measurements of the MIPAS instrument on board the Environmental Satellite (Envisat) during 2002 to 2012. Monitoring of these gases is of scientific interest because both of them are strong greenhouse gases. We analyze the latest, improved version of calibrated MIPAS measurements. Further, we apply a new retrieval scheme leading to an improved CH4 and N2O data product .
Gabriele P. Stiller, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Bernd Funke, Maya García-Comas, and Manuel López-Puertas
Atmos. Meas. Tech., 17, 1759–1789, https://doi.org/10.5194/amt-17-1759-2024, https://doi.org/10.5194/amt-17-1759-2024, 2024
Short summary
Short summary
CFC-11, CFC-12, and HCFC-22 contribute to the depletion of ozone and are potent greenhouse gases. They have been banned by the Montreal protocol. With MIPAS on Envisat the atmospheric composition could be observed between 2002 and 2012. We present here the retrieval of their atmospheric distributions for the final data version 8. We characterise the derived data by their error budget and their spatial resolution. An additional representation for direct comparison to models is also provided.
Tabea Rahm, Robin Pilch Kedzierski, Martje Hänsch, and Katja Matthes
EGUsphere, https://doi.org/10.5194/egusphere-2024-667, https://doi.org/10.5194/egusphere-2024-667, 2024
Preprint archived
Short summary
Short summary
Sudden Stratospheric Warmings (SSWs) are extreme wintertime events that can impact surface weather. However, a distinct surface response is not observed for every SSW. Here, we classify SSWs that do and do not impact the troposphere in ERA5 reanalysis data. In addition, we evaluate the effects of two kinds of waves: planetary and synoptic-scale. Our findings emphasize that the lower stratosphere and synoptic-scale waves play crucial roles in coupling the SSW signal to the surface.
Bernd Funke, Thierry Dudok de Wit, Ilaria Ermolli, Margit Haberreiter, Doug Kinnison, Daniel Marsh, Hilde Nesse, Annika Seppälä, Miriam Sinnhuber, and Ilya Usoskin
Geosci. Model Dev., 17, 1217–1227, https://doi.org/10.5194/gmd-17-1217-2024, https://doi.org/10.5194/gmd-17-1217-2024, 2024
Short summary
Short summary
We outline a road map for the preparation of a solar forcing dataset for the upcoming Phase 7 of the Coupled Model Intercomparison Project (CMIP7), considering the latest scientific advances made in the reconstruction of solar forcing and in the understanding of climate response while also addressing the issues that were raised during CMIP6.
Manuel López-Puertas, Maya García-Comas, Bernd Funke, Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 5609–5645, https://doi.org/10.5194/amt-16-5609-2023, https://doi.org/10.5194/amt-16-5609-2023, 2023
Short summary
Short summary
This paper describes a new version (V8) of ozone data from MIPAS middle-atmosphere spectra. The dataset comprises high-quality ozone profiles from 20 to 100 km, with pole-to-pole latitude coverage for the day- and nighttime, spanning 2005 until 2012. An exhaustive treatment of errors has been performed. Compared to other satellite instruments, MIPAS ozone shows a positive bias of 5 %–8 % below 70 km. In the upper mesosphere, this new version agrees much better than previous ones (within 10 %).
Maya García-Comas, Bernd Funke, Manuel López-Puertas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Belén Martínez-Mondéjar, Gabriele P. Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 16, 5357–5386, https://doi.org/10.5194/amt-16-5357-2023, https://doi.org/10.5194/amt-16-5357-2023, 2023
Short summary
Short summary
We have released version 8 of MIPAS IMK–IAA temperatures and pointing information retrieved from MIPAS Middle and Upper Atmosphere mode version 8.03 calibrated spectra, covering 20–115 km altitude. We considered non-local thermodynamic equilibrium emission explicitly for each limb scan, essential to retrieve accurate temperatures above the mid-mesosphere. Comparisons of this temperature dataset with SABER measurements show excellent agreement, improving those of previous MIPAS versions.
Hideo Shiogama, Hiroaki Tatebe, Michiya Hayashi, Manabu Abe, Miki Arai, Hiroshi Koyama, Yukiko Imada, Yu Kosaka, Tomoo Ogura, and Masahiro Watanabe
Earth Syst. Dynam., 14, 1107–1124, https://doi.org/10.5194/esd-14-1107-2023, https://doi.org/10.5194/esd-14-1107-2023, 2023
Short summary
Short summary
We produced one of the largest single model initial-condition ensembles thus far using the MIROC6 coupled atmosphere–ocean global climate model (MIROC6-LE). MIROC6-LE includes historical simulations, eight single forcing historical experiments, five future scenario experiments and three single forcing future experiments with 10- or 50-ensemble members. We describe the experimental design and show initial analyses. This dataset would be useful to a wide range of research communities.
Monali Borthakur, Miriam Sinnhuber, Alexandra Laeng, Thomas Reddmann, Peter Braesicke, Gabriele Stiller, Thomas von Clarmann, Bernd Funke, Ilya Usoskin, Jan Maik Wissing, and Olesya Yakovchuk
Atmos. Chem. Phys., 23, 12985–13013, https://doi.org/10.5194/acp-23-12985-2023, https://doi.org/10.5194/acp-23-12985-2023, 2023
Short summary
Short summary
Reduced ozone levels resulting from ozone depletion mean more exposure to UV radiation, which has various effects on human health. We analysed solar events to see what influence it has on the chemistry of Earth's atmosphere and how this atmospheric chemistry change can affect the ozone. To do this, we used an atmospheric model considering only chemistry and compared it with satellite data. The focus was mainly on the contribution of chlorine, and we found about 10 %–20 % ozone loss due to that.
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023, https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
Graeme Auld, Gabriele C. Hegerl, and Ioannis Papastathopoulos
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 45–66, https://doi.org/10.5194/ascmo-9-45-2023, https://doi.org/10.5194/ascmo-9-45-2023, 2023
Short summary
Short summary
In this paper we consider the problem of detecting changes in the distribution of the annual maximum temperature, during the years 1950–2018, across Europe.
We find that, on average, the temperature that would be expected to be exceeded
approximately once every 100 years in the 1950 climate is expected to be exceeded once every 6 years in the 2018 climate. This is of concern due to the devastating effects on humans and natural systems that are caused by extreme temperatures.
Lucie J. Lücke, Andrew P. Schurer, Matthew Toohey, Lauren R. Marshall, and Gabriele C. Hegerl
Clim. Past, 19, 959–978, https://doi.org/10.5194/cp-19-959-2023, https://doi.org/10.5194/cp-19-959-2023, 2023
Short summary
Short summary
Evidence from tree rings and ice cores provides incomplete information about past volcanic eruptions and the Sun's activity. We model past climate with varying solar and volcanic scenarios and compare it to reconstructed temperature. We confirm that the Sun's influence was small and that uncertain volcanic activity can strongly influence temperature shortly after the eruption. On long timescales, independent data sources closely agree, increasing our confidence in understanding of past climate.
Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Manuel López-Puertas, Gabriele P. Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 16, 2167–2196, https://doi.org/10.5194/amt-16-2167-2023, https://doi.org/10.5194/amt-16-2167-2023, 2023
Short summary
Short summary
New global nitric oxide (NO) volume-mixing-ratio and lower-thermospheric temperature data products, retrieved from Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) spectra with the IMK-IAA MIPAS data processor, have been released. The dataset covers the entire Envisat mission lifetime and includes retrieval results from all MIPAS observation modes. The data are based on ESA version 8 calibration and were processed using an improved retrieval approach.
Michael Kiefer, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 1443–1460, https://doi.org/10.5194/amt-16-1443-2023, https://doi.org/10.5194/amt-16-1443-2023, 2023
Short summary
Short summary
A new ozone data set, derived from radiation measurements of the space-borne instrument MIPAS, is presented. It consists of more than 2 million single ozone profiles from 2002–2012, covering virtually all latitudes and altitudes between 5 and 70 km. Progress in data calibration and processing methods allowed for significant improvement of the data quality, compared to previous data versions. Hence, the data set will help to better understand e.g. the time evolution of ozone in the stratosphere.
Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti
Earth Syst. Dynam., 14, 81–100, https://doi.org/10.5194/esd-14-81-2023, https://doi.org/10.5194/esd-14-81-2023, 2023
Short summary
Short summary
Precipitation change is an important consequence of climate change, but it is hard to detect and quantify. Our intuitive method yields robust and interpretable detection of forced precipitation change in three observational datasets for global mean and extreme precipitation, but the different observational datasets show different magnitudes of forced change. Assessment and reduction of uncertainties surrounding forced precipitation change are important for future projections and adaptation.
Jörg Franke, Michael N. Evans, Andrew Schurer, and Gabriele C. Hegerl
Clim. Past, 18, 2583–2597, https://doi.org/10.5194/cp-18-2583-2022, https://doi.org/10.5194/cp-18-2583-2022, 2022
Short summary
Short summary
Detection and attribution is a statistical method to evaluate if external factors or random variability have caused climatic changes. We use for the first time a comparison of simulated and observed tree-ring width that circumvents many limitations of previous studies relying on climate reconstructions. We attribute variability in temperature-limited trees to strong volcanic eruptions and for the first time detect a spatial pattern in the growth of moisture-sensitive trees after eruptions.
Thomas von Clarmann, Norbert Glatthor, Udo Grabowski, Bernd Funke, Michael Kiefer, Anne Kleinert, Gabriele P. Stiller, Andrea Linden, and Sylvia Kellmann
Atmos. Meas. Tech., 15, 6991–7018, https://doi.org/10.5194/amt-15-6991-2022, https://doi.org/10.5194/amt-15-6991-2022, 2022
Short summary
Short summary
Errors of profiles of temperature and mixing ratios retrieved from spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding are estimated. All known and quantified sources of uncertainty are considered. Some ongoing uncertaities contribute to both the random and to the systematic errors. In some cases, one source of uncertainty propagates onto the error budget via multiple pathways. Problems arise when the correlations of errors to be propagated are unknown.
Claudia Tebaldi, Abigail Snyder, and Kalyn Dorheim
Earth Syst. Dynam., 13, 1557–1609, https://doi.org/10.5194/esd-13-1557-2022, https://doi.org/10.5194/esd-13-1557-2022, 2022
Short summary
Short summary
Impact modelers need many future scenarios to characterize the consequences of climate change. The climate modeling community cannot fully meet this need because of the computational cost of climate models. Emulators have fallen short of providing the entire range of inputs that modern impact models require. Our proposal, STITCHES, meets these demands in a comprehensive way and may thus support a fully integrated impact research effort and save resources for the climate modeling enterprise.
Mari R. Tye, Katherine Dagon, Maria J. Molina, Jadwiga H. Richter, Daniele Visioni, Ben Kravitz, and Simone Tilmes
Earth Syst. Dynam., 13, 1233–1257, https://doi.org/10.5194/esd-13-1233-2022, https://doi.org/10.5194/esd-13-1233-2022, 2022
Short summary
Short summary
We examined the potential effect of stratospheric aerosol injection (SAI) on extreme temperature and precipitation. SAI may cause daytime temperatures to cool but nighttime to warm. Daytime cooling may occur in all seasons across the globe, with the largest decreases in summer. In contrast, nighttime warming may be greatest at high latitudes in winter. SAI may reduce the frequency and intensity of extreme rainfall. The combined changes may exacerbate drying over parts of the global south.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Fei Luo, Frank Selten, Kathrin Wehrli, Kai Kornhuber, Philippe Le Sager, Wilhelm May, Thomas Reerink, Sonia I. Seneviratne, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, and Dim Coumou
Weather Clim. Dynam., 3, 905–935, https://doi.org/10.5194/wcd-3-905-2022, https://doi.org/10.5194/wcd-3-905-2022, 2022
Short summary
Short summary
Recent studies have identified the weather systems in observational data, where wave patterns with high-magnitude values that circle around the whole globe in either wavenumber 5 or wavenumber 7 are responsible for the extreme events. In conclusion, we find that the climate models are able to reproduce the large-scale atmospheric circulation patterns as well as their associated surface variables such as temperature, precipitation, and sea level pressure.
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys., 22, 7893–7904, https://doi.org/10.5194/acp-22-7893-2022, https://doi.org/10.5194/acp-22-7893-2022, 2022
Short summary
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry–climate model dataset, we investigate the solar surface signal in the North Atlantic and European region and find that it changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
Irina Melnikova, Olivier Boucher, Patricia Cadule, Katsumasa Tanaka, Thomas Gasser, Tomohiro Hajima, Yann Quilcaille, Hideo Shiogama, Roland Séférian, Kaoru Tachiiri, Nicolas Vuichard, Tokuta Yokohata, and Philippe Ciais
Earth Syst. Dynam., 13, 779–794, https://doi.org/10.5194/esd-13-779-2022, https://doi.org/10.5194/esd-13-779-2022, 2022
Short summary
Short summary
The deployment of bioenergy crops for capturing carbon from the atmosphere facilitates global warming mitigation via generating negative CO2 emissions. Here, we explored the consequences of large-scale energy crops deployment on the land carbon cycle. The land-use change for energy crops leads to carbon emissions and loss of future potential increase in carbon uptake by natural ecosystems. This impact should be taken into account by the modeling teams and accounted for in mitigation policies.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022, https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Short summary
Greenhouse gas concentrations continue to increase, while the Antarctic ozone hole is expected to recover during the twenty-first century. We separate the effects of ozone recovery and of greenhouse gases on the Southern Hemisphere atmospheric and oceanic circulation, and we find that ozone recovery is generally reducing the impact of greenhouse gases, with the exception of certain regions of the stratosphere during spring, where the two effects reinforce each other.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Claudia Tebaldi, Kalyn Dorheim, Michael Wehner, and Ruby Leung
Earth Syst. Dynam., 12, 1427–1501, https://doi.org/10.5194/esd-12-1427-2021, https://doi.org/10.5194/esd-12-1427-2021, 2021
Short summary
Short summary
We address the question of how large an initial condition ensemble of climate model simulations should be if we are concerned with accurately projecting future changes in temperature and precipitation extremes. We find that for most cases (and both models considered), an ensemble of 20–25 members is sufficient for many extreme metrics, spatial scales and time horizons. This may leave computational resources to tackle other uncertainties in climate model simulations with our ensembles.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Robin D. Lamboll, Chris D. Jones, Ragnhild B. Skeie, Stephanie Fiedler, Bjørn H. Samset, Nathan P. Gillett, Joeri Rogelj, and Piers M. Forster
Geosci. Model Dev., 14, 3683–3695, https://doi.org/10.5194/gmd-14-3683-2021, https://doi.org/10.5194/gmd-14-3683-2021, 2021
Short summary
Short summary
Lockdowns to avoid the spread of COVID-19 have created an unprecedented reduction in human emissions. We can estimate the changes in emissions at a country level, but to make predictions about how this will affect our climate, we need more precise information about where the emissions happen. Here we combine older estimates of where emissions normally occur with very recent estimates of sector activity levels to enable different groups to make simulations of the climatic effects of lockdown.
Michael Kiefer, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Anne Kleinert, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, Daniel R. Marsh, and Gabriele P. Stiller
Atmos. Meas. Tech., 14, 4111–4138, https://doi.org/10.5194/amt-14-4111-2021, https://doi.org/10.5194/amt-14-4111-2021, 2021
Short summary
Short summary
An improved dataset of vertical temperature profiles of the Earth's atmosphere in the altitude range 5–70 km is presented. These profiles are derived from measurements of the MIPAS instrument onboard ESA's Envisat satellite. The overall improvements are based on upgrades in the input data and several improvements in the data processing approach. Both of these are discussed, and an extensive error discussion is included. Enhancements of the new dataset are demonstrated by means of examples.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806, https://doi.org/10.5194/acp-21-5777-2021, https://doi.org/10.5194/acp-21-5777-2021, 2021
Short summary
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Emily M. Gordon, Annika Seppälä, Bernd Funke, Johanna Tamminen, and Kaley A. Walker
Atmos. Chem. Phys., 21, 2819–2836, https://doi.org/10.5194/acp-21-2819-2021, https://doi.org/10.5194/acp-21-2819-2021, 2021
Short summary
Short summary
Energetic particle precipitation (EPP) is the rain of solar energetic particles into the Earth's atmosphere. EPP is known to deplete O3 in the polar mesosphere–upper stratosphere via the formation of NOx. NOx also causes chlorine deactivation in the lower stratosphere and has, thus, been proposed to potentially result in reduced ozone depletion in the spring. We provide the first evidence to show that NOx formed by EPP is able to remove active chlorine, resulting in enhanced total ozone column.
Sabine Haase, Jaika Fricke, Tim Kruschke, Sebastian Wahl, and Katja Matthes
Atmos. Chem. Phys., 20, 14043–14061, https://doi.org/10.5194/acp-20-14043-2020, https://doi.org/10.5194/acp-20-14043-2020, 2020
Short summary
Short summary
Ozone depletion over Antarctica was shown to influence the tropospheric jet in the Southern Hemisphere. We investigate the atmospheric response to ozone depletion comparing climate model ensembles with interactive and prescribed ozone fields. We show that allowing feedbacks between ozone chemistry and model physics as well as including asymmetries in ozone leads to a strengthened ozone depletion signature in the stratosphere but does not significantly affect the tropospheric jet position.
Lukas Brunner, Angeline G. Pendergrass, Flavio Lehner, Anna L. Merrifield, Ruth Lorenz, and Reto Knutti
Earth Syst. Dynam., 11, 995–1012, https://doi.org/10.5194/esd-11-995-2020, https://doi.org/10.5194/esd-11-995-2020, 2020
Short summary
Short summary
In this study, we weight climate models by their performance with respect to simulating aspects of historical climate and their degree of interdependence. Our method is found to increase projection skill and to correct for structurally similar models. The weighted end-of-century mean warming (2081–2100 relative to 1995–2014) is 3.7 °C with a likely (66 %) range of 3.1 to 4.6 °C for the strong climate change scenario SSP5-8.5; this is a reduction of 0.4 °C compared with the unweighted mean.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 20, 11569–11592, https://doi.org/10.5194/acp-20-11569-2020, https://doi.org/10.5194/acp-20-11569-2020, 2020
Short summary
Short summary
Rossby wave packet (RWP) dynamics are crucial for weather forecasting, climate change projections and stratosphere–troposphere interactions. Our study is a first attempt to describe RWP behavior in the UTLS with global coverage directly from observations, using GNSS-RO data. Our novel results show an interesting relation of RWP vertical propagation with sudden stratospheric warmings and provide very useful information to improve RWP diagnostics in models and reanalysis.
Landon A. Rieger, Jason N. S. Cole, John C. Fyfe, Stephen Po-Chedley, Philip J. Cameron-Smith, Paul J. Durack, Nathan P. Gillett, and Qi Tang
Geosci. Model Dev., 13, 4831–4843, https://doi.org/10.5194/gmd-13-4831-2020, https://doi.org/10.5194/gmd-13-4831-2020, 2020
Short summary
Short summary
Recently, the stratospheric aerosol forcing dataset used as an input to the Coupled Model Intercomparison Project phase 6 was updated. This work explores the impact of those changes on the modelled historical climates in the CanESM5 and EAMv1 models. Temperature differences in the stratosphere shortly after the Pinatubo eruption are found to be significant, but surface temperatures and precipitation do not show a significant change.
Francesco Grieco, Kristell Pérot, Donal Murtagh, Patrick Eriksson, Peter Forkman, Bengt Rydberg, Bernd Funke, Kaley A. Walker, and Hugh C. Pumphrey
Atmos. Meas. Tech., 13, 5013–5031, https://doi.org/10.5194/amt-13-5013-2020, https://doi.org/10.5194/amt-13-5013-2020, 2020
Short summary
Short summary
We present a unique – by time extension and geographical coverage – dataset of satellite observations of carbon monoxide (CO) in the mesosphere which will allow us to study dynamical processes, since CO is a very good tracer of circulation in the mesosphere. Previously, the dataset was unusable due to instrumental artefacts that affected the measurements. We identify the cause of the artefacts, eliminate them and prove the quality of the results by comparing with other instrument measurements.
Anna Louise Merrifield, Lukas Brunner, Ruth Lorenz, Iselin Medhaug, and Reto Knutti
Earth Syst. Dynam., 11, 807–834, https://doi.org/10.5194/esd-11-807-2020, https://doi.org/10.5194/esd-11-807-2020, 2020
Short summary
Short summary
Justifiable uncertainty estimates of future change in northern European winter and Mediterranean summer temperature can be obtained by weighting a multi-model ensemble comprised of projections from different climate models and multiple projections from the same climate model. Weights reduce the influence of model biases and handle dependence by identifying a projection's model of origin from historical characteristics; contributions from the same model are scaled by the number of members.
Thomas von Clarmann, Douglas A. Degenstein, Nathaniel J. Livesey, Stefan Bender, Amy Braverman, André Butz, Steven Compernolle, Robert Damadeo, Seth Dueck, Patrick Eriksson, Bernd Funke, Margaret C. Johnson, Yasuko Kasai, Arno Keppens, Anne Kleinert, Natalya A. Kramarova, Alexandra Laeng, Bavo Langerock, Vivienne H. Payne, Alexei Rozanov, Tomohiro O. Sato, Matthias Schneider, Patrick Sheese, Viktoria Sofieva, Gabriele P. Stiller, Christian von Savigny, and Daniel Zawada
Atmos. Meas. Tech., 13, 4393–4436, https://doi.org/10.5194/amt-13-4393-2020, https://doi.org/10.5194/amt-13-4393-2020, 2020
Short summary
Short summary
Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equation. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as on how any constraint or a priori assumption affects the estimate. This paper summarizes related techniques and provides recommendations for unified error reporting.
Christopher J. Smith, Ryan J. Kramer, Gunnar Myhre, Kari Alterskjær, William Collins, Adriana Sima, Olivier Boucher, Jean-Louis Dufresne, Pierre Nabat, Martine Michou, Seiji Yukimoto, Jason Cole, David Paynter, Hideo Shiogama, Fiona M. O'Connor, Eddy Robertson, Andy Wiltshire, Timothy Andrews, Cécile Hannay, Ron Miller, Larissa Nazarenko, Alf Kirkevåg, Dirk Olivié, Stephanie Fiedler, Anna Lewinschal, Chloe Mackallah, Martin Dix, Robert Pincus, and Piers M. Forster
Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020, https://doi.org/10.5194/acp-20-9591-2020, 2020
Short summary
Short summary
The spread in effective radiative forcing for both CO2 and aerosols is narrower in the latest CMIP6 (Coupled Model Intercomparison Project) generation than in CMIP5. For the case of CO2 it is likely that model radiation parameterisations have improved. Tropospheric and stratospheric radiative adjustments to the forcing behave differently for different forcing agents, and there is still significant diversity in how clouds respond to forcings, particularly for total anthropogenic forcing.
Julian Krüger, Robin Pilch Kedzierski, Karl Bumke, and Katja Matthes
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2020-32, https://doi.org/10.5194/wcd-2020-32, 2020
Revised manuscript not accepted
Short summary
Short summary
Motivated by the European heat wave occurrences of 2015 and 2018, this study evaluates the influence of cold North Atlantic SST anomalies on European heat waves by using the ERA-5 reanalysis product. Our findings show that widespread cold North Atlantic SST anomalies may be a precursor for a persistent jet stream pattern and are thus important for the onset of high European temperatures.
Markus Kunze, Tim Kruschke, Ulrike Langematz, Miriam Sinnhuber, Thomas Reddmann, and Katja Matthes
Atmos. Chem. Phys., 20, 6991–7019, https://doi.org/10.5194/acp-20-6991-2020, https://doi.org/10.5194/acp-20-6991-2020, 2020
Short summary
Short summary
Modelling the response of the atmosphere and its constituents to 11-year solar variations is subject to a certain uncertainty arising from the solar irradiance data set used in the chemistry–climate model (CCM) and the applied CCM itself.
This study reveals significant influences from both sources on the variations in the solar response in the stratosphere and mesosphere.
However, there are also regions where the random, unexplained part of the variations in the solar response is largest.
Haiyan Li, Robin Pilch Kedzierski, and Katja Matthes
Atmos. Chem. Phys., 20, 6541–6561, https://doi.org/10.5194/acp-20-6541-2020, https://doi.org/10.5194/acp-20-6541-2020, 2020
Short summary
Short summary
The QBO westerly phase was reversed by an unexpected easterly jet near 40 hPa and the westerly zonal wind lasted an unusually long time at 20 hPa during winter 2015/16. We find that quasi-stationary Rossby wave W1 and faster Rossby wave W2 propagating from the northern extratropics and a locally generated Rossby wave W3 were important contributors to the easterly jet at 40 hPa. Our results suggest that the unusual zonal wind structure at 20 hPa could be caused by enhanced Kelvin wave activity.
Katja Matthes, Arne Biastoch, Sebastian Wahl, Jan Harlaß, Torge Martin, Tim Brücher, Annika Drews, Dana Ehlert, Klaus Getzlaff, Fritz Krüger, Willi Rath, Markus Scheinert, Franziska U. Schwarzkopf, Tobias Bayr, Hauke Schmidt, and Wonsun Park
Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, https://doi.org/10.5194/gmd-13-2533-2020, 2020
Short summary
Short summary
A new Earth system model, the Flexible Ocean and Climate Infrastructure (FOCI), is introduced, consisting of a high-top atmosphere, an ocean model, sea-ice and land surface model components. A unique feature of FOCI is the ability to explicitly resolve small-scale oceanic features, for example, the Agulhas Current and the Gulf Stream. It allows to study the evolution of the climate system on regional and seasonal to (multi)decadal scales and bridges the gap to coarse-resolution climate models.
Flavio Lehner, Clara Deser, Nicola Maher, Jochem Marotzke, Erich M. Fischer, Lukas Brunner, Reto Knutti, and Ed Hawkins
Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, https://doi.org/10.5194/esd-11-491-2020, 2020
Short summary
Short summary
Projections of climate change are uncertain because climate models are imperfect, future greenhouse gases emissions are unknown and climate is to some extent chaotic. To partition and understand these sources of uncertainty and make the best use of climate projections, large ensembles with multiple climate models are needed. Such ensembles now exist in a public data archive. We provide several novel applications focused on global and regional temperature and precipitation projections.
Hideo Shiogama, Ryuichi Hirata, Tomoko Hasegawa, Shinichiro Fujimori, Noriko N. Ishizaki, Satoru Chatani, Masahiro Watanabe, Daniel Mitchell, and Y. T. Eunice Lo
Earth Syst. Dynam., 11, 435–445, https://doi.org/10.5194/esd-11-435-2020, https://doi.org/10.5194/esd-11-435-2020, 2020
Short summary
Short summary
Based on climate simulations, we suggested that historical warming increased chances of drought exceeding the severe 2015 event in equatorial Asia due to El Niño. The fire and fire emissions of CO2/PM2.5 will largely increase at 1.5 and 2 °C warming. If global warming reaches 3 °C, as is expected from the current mitigation policies, chances of fire and CO2/PM2.5 emissions exceeding the 2015 event become approximately 100 %. Future climate policy has to consider these climate change effects.
Rui Ito, Hideo Shiogama, Tosiyuki Nakaegawa, and Izuru Takayabu
Geosci. Model Dev., 13, 859–872, https://doi.org/10.5194/gmd-13-859-2020, https://doi.org/10.5194/gmd-13-859-2020, 2020
Short summary
Short summary
The model performance and the coverage of the uncertainty in the climate changes were investigated for the ensembles of CMIP5 models used in ISIMIP2b and CORDEX programs. We found both programs selected models that acceptably reproduced the historical climate. Also, the global common ensemble (ISIMIP2b) has difficulty in capturing the uncertainty in two variables at the regional scale, whereas the region-specific ensemble (CORDEX) overcomes the difficulty by applying a properly large ensemble.
Neil C. Swart, Jason N. S. Cole, Viatcheslav V. Kharin, Mike Lazare, John F. Scinocca, Nathan P. Gillett, James Anstey, Vivek Arora, James R. Christian, Sarah Hanna, Yanjun Jiao, Warren G. Lee, Fouad Majaess, Oleg A. Saenko, Christian Seiler, Clint Seinen, Andrew Shao, Michael Sigmond, Larry Solheim, Knut von Salzen, Duo Yang, and Barbara Winter
Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, https://doi.org/10.5194/gmd-12-4823-2019, 2019
Short summary
Short summary
The Canadian Earth System Model version 5 (CanESM5) is a global model developed to simulate historical climate change and variability, to make centennial-scale projections of future climate, and to produce initialized seasonal and decadal predictions. This paper describes the model components and quantifies the model performance. CanESM5 simulations contribute to the Coupled Model Intercomparison Project phase 6 (CMIP6) and will be employed for climate science applications in Canada.
Chris D. Jones, Thomas L. Frölicher, Charles Koven, Andrew H. MacDougall, H. Damon Matthews, Kirsten Zickfeld, Joeri Rogelj, Katarzyna B. Tokarska, Nathan P. Gillett, Tatiana Ilyina, Malte Meinshausen, Nadine Mengis, Roland Séférian, Michael Eby, and Friedrich A. Burger
Geosci. Model Dev., 12, 4375–4385, https://doi.org/10.5194/gmd-12-4375-2019, https://doi.org/10.5194/gmd-12-4375-2019, 2019
Short summary
Short summary
Global warming is simply related to the total emission of CO2 allowing us to define a carbon budget. However, information on the Zero Emissions Commitment is a key missing link to assess remaining carbon budgets to achieve the climate targets of the Paris Agreement. It was therefore decided that a small targeted MIP activity to fill this knowledge gap would be extremely valuable. This article formalises the experimental design alongside the other CMIP6 documentation papers.
Pavle Arsenovic, Alessandro Damiani, Eugene Rozanov, Bernd Funke, Andrea Stenke, and Thomas Peter
Atmos. Chem. Phys., 19, 9485–9494, https://doi.org/10.5194/acp-19-9485-2019, https://doi.org/10.5194/acp-19-9485-2019, 2019
Short summary
Short summary
Low-energy electrons (LEE) are the dominant source of odd nitrogen, which destroys ozone, in the mesosphere and stratosphere in polar winter in the geomagnetically active periods. However, the observed stratospheric ozone anomalies can be reproduced only when accounting for both low- and middle-range energy electrons (MEE) in the chemistry-climate model. Ozone changes may induce further dynamical and thermal changes in the atmosphere. We recommend including both LEE and MEE in climate models.
Christoph Heinze, Veronika Eyring, Pierre Friedlingstein, Colin Jones, Yves Balkanski, William Collins, Thierry Fichefet, Shuang Gao, Alex Hall, Detelina Ivanova, Wolfgang Knorr, Reto Knutti, Alexander Löw, Michael Ponater, Martin G. Schultz, Michael Schulz, Pier Siebesma, Joao Teixeira, George Tselioudis, and Martin Vancoppenolle
Earth Syst. Dynam., 10, 379–452, https://doi.org/10.5194/esd-10-379-2019, https://doi.org/10.5194/esd-10-379-2019, 2019
Short summary
Short summary
Earth system models for producing climate projections under given forcings include additional processes and feedbacks that traditional physical climate models do not consider. We present an overview of climate feedbacks for key Earth system components and discuss the evaluation of these feedbacks. The target group for this article includes generalists with a background in natural sciences and an interest in climate change as well as experts working in interdisciplinary climate research.
Mark E. Hervig, Benjamin T. Marshall, Scott M. Bailey, David E. Siskind, James M. Russell III, Charles G. Bardeen, Kaley A. Walker, and Bernd Funke
Atmos. Meas. Tech., 12, 3111–3121, https://doi.org/10.5194/amt-12-3111-2019, https://doi.org/10.5194/amt-12-3111-2019, 2019
Short summary
Short summary
The Solar Occultation for Ice Experiment (SOFIE) has measured nitric oxide (NO) from satellite since 2007. The observations are validated through error analysis and comparisons with other satellite observations. Calculated SOFIE NO uncertainties are less than 50 % for altitudes from 40 to 140 km. SOFIE agrees with other measurements to within 50 % for altitudes from roughly 50 to 105 km for spacecraft sunrise and 50 to 140 km for sunsets.
Robert Vautard, Geert Jan van Oldenborgh, Friederike E. L. Otto, Pascal Yiou, Hylke de Vries, Erik van Meijgaard, Andrew Stepek, Jean-Michel Soubeyroux, Sjoukje Philip, Sarah F. Kew, Cecilia Costella, Roop Singh, and Claudia Tebaldi
Earth Syst. Dynam., 10, 271–286, https://doi.org/10.5194/esd-10-271-2019, https://doi.org/10.5194/esd-10-271-2019, 2019
Short summary
Short summary
The effect of human activities on the probability of winter wind storms like the ones that occurred in Western Europe in January 2018 is analysed using multiple model ensembles. Despite a significant probability decline in observations, we find no significant change in probabilities due to human influence on climate so far. However, such extreme events are likely to be slightly more frequent in the future. The observed decrease in storminess is likely to be due to increasing roughness.
Sabine Haase and Katja Matthes
Atmos. Chem. Phys., 19, 3417–3432, https://doi.org/10.5194/acp-19-3417-2019, https://doi.org/10.5194/acp-19-3417-2019, 2019
Short summary
Short summary
The Antarctic ozone hole influences surface climate in the Southern Hemisphere. Recent studies have shown that stratospheric ozone depletion in the Arctic can also affect the surface. We evaluate the importance of the direct and indirect representation of ozone variability in a climate model for this surface response. We show that allowing feedbacks between ozone chemistry, radiation, and dynamics enhances and prolongs the surface response to Northern Hemisphere spring ozone depletion.
Gab Abramowitz, Nadja Herger, Ethan Gutmann, Dorit Hammerling, Reto Knutti, Martin Leduc, Ruth Lorenz, Robert Pincus, and Gavin A. Schmidt
Earth Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, https://doi.org/10.5194/esd-10-91-2019, 2019
Short summary
Short summary
Best estimates of future climate projections typically rely on a range of climate models from different international research institutions. However, it is unclear how independent these different estimates are, and, for example, the degree to which their agreement implies robustness. This work presents a review of the varied and disparate attempts to quantify and address model dependence within multi-model climate projection ensembles.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018, https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
Alexandra Laeng, Ellen Eckert, Thomas von Clarmann, Michael Kiefer, Daan Hubert, Gabriele Stiller, Norbert Glatthor, Manuel López-Puertas, Bernd Funke, Udo Grabowski, Johannes Plieninger, Sylvia Kellmann, Andrea Linden, Stefan Lossow, Arne Babenhauserheide, Lucien Froidevaux, and Kaley Walker
Atmos. Meas. Tech., 11, 4693–4705, https://doi.org/10.5194/amt-11-4693-2018, https://doi.org/10.5194/amt-11-4693-2018, 2018
Short summary
Short summary
MIPAS was an IR limb emission spectrometer on the Envisat platform. From 2002 to 2012, it performed pole-to-pole measurements of ozone during day and night. ESA recently released the new version 7 of Level 1 MIPAS spectra, which is expected to reduce the long-term drift of the MIPAS Level 2 data. We evaluate the long-term stability of ozone Level 2 data from the KIT IMK processor. Our results indicate that MIPAS data are now even more suited for trend studies, alone or as part of merged data.
Fahad Saeed, Ingo Bethke, Stefan Lange, Ludwig Lierhammer, Hideo Shiogama, Dáithí A. Stone, Tim Trautmann, and Carl-Friedrich Schleussner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-107, https://doi.org/10.5194/gmd-2018-107, 2018
Revised manuscript has not been submitted
Monika J. Barcikowska, Scott J. Weaver, Frauke Feser, Simone Russo, Frederik Schenk, Dáithí A. Stone, Michael F. Wehner, and Matthias Zahn
Earth Syst. Dynam., 9, 679–699, https://doi.org/10.5194/esd-9-679-2018, https://doi.org/10.5194/esd-9-679-2018, 2018
Vered Silverman, Nili Harnik, Katja Matthes, Sandro W. Lubis, and Sebastian Wahl
Atmos. Chem. Phys., 18, 6637–6659, https://doi.org/10.5194/acp-18-6637-2018, https://doi.org/10.5194/acp-18-6637-2018, 2018
Short summary
Short summary
This study provides a quantified and mechanistic understanding of the radiative effects of ozone waves on the NH stratosphere. In particular, we find these effects to influence the seasonal evolution of the midlatitude QBO signal (Holton–Tan effect), which is important for getting realistic dynamical interactions in climate models. We also provide a synoptic view on the evolution of the seasonal development of the Holton–Tan effect by looking at the life cycle of upward-propagating waves.
Manuel López-Puertas, Maya García-Comas, Bernd Funke, Angela Gardini, Gabriele P. Stiller, Thomas von Clarmann, Norbert Glatthor, Alexandra Laeng, Martin Kaufmann, Viktoria F. Sofieva, Lucien Froidevaux, Kaley A. Walker, and Masato Shiotani
Atmos. Meas. Tech., 11, 2187–2212, https://doi.org/10.5194/amt-11-2187-2018, https://doi.org/10.5194/amt-11-2187-2018, 2018
Short summary
Short summary
This paper describes the inversion of O3 data from MIPAS middle atmosphere spectra which requires non-LTE. The O3 dataset comprises from 20 to 100 km, has a pole-to-pole latitude coverage, day and nighttime, and span from 2005 until 2012. A validation of the data against other satellite measurements and an overall description of O3 is also presented. This is an important dataset for the community and describes the major characteristics of stratospheric and mesospheric O3.
Camille Li, Clio Michel, Lise Seland Graff, Ingo Bethke, Giuseppe Zappa, Thomas J. Bracegirdle, Erich Fischer, Ben J. Harvey, Trond Iversen, Martin P. King, Harinarayan Krishnan, Ludwig Lierhammer, Daniel Mitchell, John Scinocca, Hideo Shiogama, Dáithí A. Stone, and Justin J. Wettstein
Earth Syst. Dynam., 9, 359–382, https://doi.org/10.5194/esd-9-359-2018, https://doi.org/10.5194/esd-9-359-2018, 2018
Short summary
Short summary
This study investigates the midlatitude atmospheric circulation response to 1.5°C and 2.0°C of warming using modelling experiments run for the HAPPI project (Half a degree Additional warming, Prognosis & Projected Impacts). While the chaotic nature of the atmospheric flow dominates in these low-end warming scenarios, some local changes emerge. Case studies explore precipitation impacts both for regions that dry (Mediterranean) and regions that get wetter (Europe, North American west coast).
Michael Wehner, Dáithí Stone, Dann Mitchell, Hideo Shiogama, Erich Fischer, Lise S. Graff, Viatcheslav V. Kharin, Ludwig Lierhammer, Benjamin Sanderson, and Harinarayan Krishnan
Earth Syst. Dynam., 9, 299–311, https://doi.org/10.5194/esd-9-299-2018, https://doi.org/10.5194/esd-9-299-2018, 2018
Short summary
Short summary
The United Nations Framework Convention on Climate Change challenged the scientific community to describe the impacts of stabilizing the global temperature at its 21st Conference of Parties. A specific target of 1.5 °C above preindustrial levels had not been seriously considered by the climate modeling community prior to the Paris Agreement. This paper analyzes heat waves in simulations designed for this target. We find there are reductions in extreme temperature compared to a 2 °C target.
Michael F. Wehner, Kevin A. Reed, Burlen Loring, Dáithí Stone, and Harinarayan Krishnan
Earth Syst. Dynam., 9, 187–195, https://doi.org/10.5194/esd-9-187-2018, https://doi.org/10.5194/esd-9-187-2018, 2018
Short summary
Short summary
The United Nations Framework Convention on Climate Change invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios using a high-resolution global climate model. We find more frequent and intense tropical cyclones, but a reduction in weaker storms.
Nadja Herger, Gab Abramowitz, Reto Knutti, Oliver Angélil, Karsten Lehmann, and Benjamin M. Sanderson
Earth Syst. Dynam., 9, 135–151, https://doi.org/10.5194/esd-9-135-2018, https://doi.org/10.5194/esd-9-135-2018, 2018
Short summary
Short summary
Users presented with large multi-model ensembles commonly use the equally weighted model mean as a best estimate, ignoring the issue of near replication of some climate models. We present an efficient and flexible tool that finds a subset of models with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments.
Miriam Sinnhuber, Uwe Berger, Bernd Funke, Holger Nieder, Thomas Reddmann, Gabriele Stiller, Stefan Versick, Thomas von Clarmann, and Jan Maik Wissing
Atmos. Chem. Phys., 18, 1115–1147, https://doi.org/10.5194/acp-18-1115-2018, https://doi.org/10.5194/acp-18-1115-2018, 2018
Short summary
Short summary
Results from global models are used to analyze the impact of energetic particle precipitation on the middle atmosphere (10–80 km). Model results agree well with observations, and show strong enhancements of NOy, long-lasting ozone loss, and a net heating in the uppermost stratosphere (~35–45 km) during polar winter which changes sign in spring. Energetic particle precipitation therefore has the potential to impact atmospheric dynamics, starting from a warmer winter-time upper stratosphere.
Justin Bandoro, Susan Solomon, Benjamin D. Santer, Douglas E. Kinnison, and Michael J. Mills
Atmos. Chem. Phys., 18, 143–166, https://doi.org/10.5194/acp-18-143-2018, https://doi.org/10.5194/acp-18-143-2018, 2018
Short summary
Short summary
We studied the attribution of stratospheric ozone changes and identified similarities between observations and human fingerprints from both emissions of ozone-depleting substances (ODSs) and greenhouse gases (GHGs). We developed an improvement on the traditional pattern correlation method that accounts for nonlinearities in the climate forcing time evolution. Use of the latter resulted in increased S / N ratios for the ODS fingerprint. The GHG fingerprint was not identifiable.
Tomoo Ogura, Hideo Shiogama, Masahiro Watanabe, Masakazu Yoshimori, Tokuta Yokohata, James D. Annan, Julia C. Hargreaves, Naoto Ushigami, Kazuya Hirota, Yu Someya, Youichi Kamae, Hiroaki Tatebe, and Masahide Kimoto
Geosci. Model Dev., 10, 4647–4664, https://doi.org/10.5194/gmd-10-4647-2017, https://doi.org/10.5194/gmd-10-4647-2017, 2017
Short summary
Short summary
Present-day climate simulated by coupled ocean atmosphere models exhibits significant biases in top-of-atmosphere radiation and clouds. This study shows that only limited part of the biases can be removed by parameter tuning in a climate model. The results underline the importance of improving parameterizations in climate models based on cloud process studies. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases.
Margarita Yela, Manuel Gil-Ojeda, Mónica Navarro-Comas, David Gonzalez-Bartolomé, Olga Puentedura, Bernd Funke, Javier Iglesias, Santiago Rodríguez, Omaira García, Héctor Ochoa, and Guillermo Deferrari
Atmos. Chem. Phys., 17, 13373–13389, https://doi.org/10.5194/acp-17-13373-2017, https://doi.org/10.5194/acp-17-13373-2017, 2017
Short summary
Short summary
The paper focuses on stratospheric trends of NO2, a species involved in the ozone equilibrium, using data from four NDACC stations. The global stratospheric NO2 trend has not yet been established conclusively. We analyse DOAS data from stations in the Northern Hemisphere and Southern Hemisphere during 1993–2014. The most relevant finding is the hemispheric asymmetry found in the sign of the NO2 trend, providing further evidence of changes in the stratosphere dynamics on the global scale.
Gabriele P. Stiller, Federico Fierli, Felix Ploeger, Chiara Cagnazzo, Bernd Funke, Florian J. Haenel, Thomas Reddmann, Martin Riese, and Thomas von Clarmann
Atmos. Chem. Phys., 17, 11177–11192, https://doi.org/10.5194/acp-17-11177-2017, https://doi.org/10.5194/acp-17-11177-2017, 2017
Short summary
Short summary
The discrepancy between modelled and observed 25-year trends of the strength of the stratospheric Brewer–Dobson circulation (BDC) is still not resolved. With our paper we trace the observed hemispheric dipole structure of age of air trends back to natural variability in shorter-term (decadal) time frames. Beyond this we demonstrate that after correction for the decadal natural variability the remaining trend for the first decade of the 21st century is consistent with model simulations.
Benjamin M. Sanderson, Yangyang Xu, Claudia Tebaldi, Michael Wehner, Brian O'Neill, Alexandra Jahn, Angeline G. Pendergrass, Flavio Lehner, Warren G. Strand, Lei Lin, Reto Knutti, and Jean Francois Lamarque
Earth Syst. Dynam., 8, 827–847, https://doi.org/10.5194/esd-8-827-2017, https://doi.org/10.5194/esd-8-827-2017, 2017
Short summary
Short summary
We present the results of a set of climate simulations designed to simulate futures in which the Earth's temperature is stabilized at the levels referred to in the 2015 Paris Agreement. We consider the necessary future emissions reductions and the aspects of extreme weather which differ significantly between the 2 and 1.5 °C climate in the simulations.
Hendrik Andersen, Jan Cermak, Julia Fuchs, Reto Knutti, and Ulrike Lohmann
Atmos. Chem. Phys., 17, 9535–9546, https://doi.org/10.5194/acp-17-9535-2017, https://doi.org/10.5194/acp-17-9535-2017, 2017
Short summary
Short summary
Aerosol-cloud interactions continue to contribute large uncertainties to our climate system understanding. In this study, we use near-global satellite and reanalysis data sets to predict marine liquid-water clouds by means of artificial neural networks. We show that on the system scale, lower-tropospheric stability and boundary layer height are the main determinants of liquid-water clouds. Aerosols show the expected impact on clouds but are less relevant than some meteorological factors.
Ellen Eckert, Thomas von Clarmann, Alexandra Laeng, Gabriele P. Stiller, Bernd Funke, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Arne Babenhauserheide, Gerald Wetzel, Christopher Boone, Andreas Engel, Jeremy J. Harrison, Patrick E. Sheese, Kaley A. Walker, and Peter F. Bernath
Atmos. Meas. Tech., 10, 2727–2743, https://doi.org/10.5194/amt-10-2727-2017, https://doi.org/10.5194/amt-10-2727-2017, 2017
Short summary
Short summary
We retrieved vertical profiles of CCl4 from MIPAS Envisat IMK/IAA data. A detailed description of all characteristics is included in the paper as well as comparisons with historical measurements and comparisons with collocated measurements of instruments covering the same time span as MIPAS Envisat. A particular focus also lies on the usage of a new CCl4 spectroscopic dataset introduced recently, which leads to more realistic CCl4 volume mixing ratios.
Cristen Adams, Adam E. Bourassa, Chris A. McLinden, Chris E. Sioris, Thomas von Clarmann, Bernd Funke, Landon A. Rieger, and Douglas A. Degenstein
Atmos. Chem. Phys., 17, 8063–8080, https://doi.org/10.5194/acp-17-8063-2017, https://doi.org/10.5194/acp-17-8063-2017, 2017
Short summary
Short summary
We measured the relationship between volcanic aerosol and trace gases in the stratosphere using the OSIRIS and MIPAS satellite instruments between 2002 and 2014. We found that levels of stratospheric NO2 and N2O5 both decreased significantly in the presence of volcanic aerosol. These decreases were consistent with the modeling results.
Benjamin M. Sanderson, Michael Wehner, and Reto Knutti
Geosci. Model Dev., 10, 2379–2395, https://doi.org/10.5194/gmd-10-2379-2017, https://doi.org/10.5194/gmd-10-2379-2017, 2017
Short summary
Short summary
How should climate model simulations be combined to produce an overall assessment that reflects both their performance and their interdependencies? This paper presents a strategy for weighting climate model output such that models that are replicated or models that perform poorly in a chosen set of metrics are appropriately weighted. We perform sensitivity tests to show how the method results depend on variables and parameter values.
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary
Short summary
The solar forcing dataset for climate model experiments performed for the upcoming IPCC report is described. This dataset provides the radiative and particle input of solar variability on a daily basis from 1850 through to 2300. With this dataset a better representation of natural climate variability with respect to the output of the Sun is provided which provides the most sophisticated and comprehensive respresentation of solar variability that has been used in climate model simulations so far.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 17, 4093–4114, https://doi.org/10.5194/acp-17-4093-2017, https://doi.org/10.5194/acp-17-4093-2017, 2017
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Sandro W. Lubis, Vered Silverman, Katja Matthes, Nili Harnik, Nour-Eddine Omrani, and Sebastian Wahl
Atmos. Chem. Phys., 17, 2437–2458, https://doi.org/10.5194/acp-17-2437-2017, https://doi.org/10.5194/acp-17-2437-2017, 2017
Short summary
Short summary
Downward wave coupling (DWC) events impact high-latitude stratospheric ozone in two ways: (1) reduced dynamical transport of ozone from low to high latitudes during individual events and (2) enhanced springtime chemical destruction of ozone via the cumulative impact of DWC events on polar stratospheric temperatures. The results presented here broaden the scope of the impact of wave–mean flow interaction on stratospheric ozone by highlighting the key role of wave reflection.
Daniel Mitchell, Krishna AchutaRao, Myles Allen, Ingo Bethke, Urs Beyerle, Andrew Ciavarella, Piers M. Forster, Jan Fuglestvedt, Nathan Gillett, Karsten Haustein, William Ingram, Trond Iversen, Viatcheslav Kharin, Nicholas Klingaman, Neil Massey, Erich Fischer, Carl-Friedrich Schleussner, John Scinocca, Øyvind Seland, Hideo Shiogama, Emily Shuckburgh, Sarah Sparrow, Dáithí Stone, Peter Uhe, David Wallom, Michael Wehner, and Rashyd Zaaboul
Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, https://doi.org/10.5194/gmd-10-571-2017, 2017
Short summary
Short summary
This paper provides an experimental design to assess impacts of a world that is 1.5 °C warmer than at pre-industrial levels. The design is a new way to approach impacts from the climate community, and aims to answer questions related to the recent Paris Agreement. In particular the paper provides a method for studying extreme events under relatively high mitigation scenarios.
Á. Aythami Jurado-Navarro, Manuel López-Puertas, Bernd Funke, Maya García-Comas, Angela Gardini, Francisco González-Galindo, Gabriele P. Stiller, Thomas von Clarmann, Udo Grabowski, and Andrea Linden
Atmos. Meas. Tech., 9, 6081–6100, https://doi.org/10.5194/amt-9-6081-2016, https://doi.org/10.5194/amt-9-6081-2016, 2016
Short summary
Short summary
We present global distributions of CO2 concentrations in the upper atmosphere (70–140 km) derived from high-resolution 4.3 µm MIPAS spectra from 2005 to 2012. CO2 relative abundances have been measured at 120–140 km for the first time. The data have an unprecedented accuracy. CO2 shows a strong seasonal behaviour. CO2 largely controls the temperature of the upper atmosphere and its measurement is very important for understanding the impact of climate change in this region.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Chris A. McLinden, Peter F. Bernath, Adam E. Bourassa, John P. Burrows, Doug A. Degenstein, Bernd Funke, Didier Fussen, Gloria L. Manney, C. Thomas McElroy, Donal Murtagh, Cora E. Randall, Piera Raspollini, Alexei Rozanov, James M. Russell III, Makoto Suzuki, Masato Shiotani, Joachim Urban, Thomas von Clarmann, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 5781–5810, https://doi.org/10.5194/amt-9-5781-2016, https://doi.org/10.5194/amt-9-5781-2016, 2016
Short summary
Short summary
This study validates version 3.5 of the ACE-FTS NOy species data sets by comparing diurnally scaled ACE-FTS data to correlative data from 11 other satellite limb sounders. For all five species examined (NO, NO2, HNO3, N2O5, and ClONO2), there is good agreement between ACE-FTS and the other data sets in various regions of the atmosphere. In these validated regions, these NOy data products can be used for further investigation into the composition, dynamics, and climate of the stratosphere.
Kunihiko Kodera, Rémi Thiéblemont, Seiji Yukimoto, and Katja Matthes
Atmos. Chem. Phys., 16, 12925–12944, https://doi.org/10.5194/acp-16-12925-2016, https://doi.org/10.5194/acp-16-12925-2016, 2016
Short summary
Short summary
The spatial structure of the solar cycle signals on the Earth's surface is analysed to identify the mechanisms. Both tropical and extratropical solar surface signals can result from circulation changes in the upper stratosphere through (i) a downward migration of wave zonal mean flow interactions and (ii) changes in the stratospheric mean meridional circulation. Amplification of the solar signal also occurs through interaction with the ocean.
Brian C. O'Neill, Claudia Tebaldi, Detlef P. van Vuuren, Veronika Eyring, Pierre Friedlingstein, George Hurtt, Reto Knutti, Elmar Kriegler, Jean-Francois Lamarque, Jason Lowe, Gerald A. Meehl, Richard Moss, Keywan Riahi, and Benjamin M. Sanderson
Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, https://doi.org/10.5194/gmd-9-3461-2016, 2016
Short summary
Short summary
The Scenario Model Intercomparison Project (ScenarioMIP) will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. The design consists of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions. Climate model projections will facilitate integrated studies of climate change as well as address targeted scientific questions.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 16, 11617–11633, https://doi.org/10.5194/acp-16-11617-2016, https://doi.org/10.5194/acp-16-11617-2016, 2016
Short summary
Short summary
This study provides a detailed overview of the daily variability of the tropopause inversion layer (TIL) in the tropics, where TIL research had focused little. The vertical and horizontal structures of this atmospheric layer are described and linked to near-tropopause horizontal wind divergence, the QBO and especially to equatorial waves. Our results increase the knowledge about the observed properties of the tropical TIL, mainly using satellite GPS radio-occultation measurements.
Maya García-Comas, Francisco González-Galindo, Bernd Funke, Angela Gardini, Aythami Jurado-Navarro, Manuel López-Puertas, and William E. Ward
Atmos. Chem. Phys., 16, 11019–11041, https://doi.org/10.5194/acp-16-11019-2016, https://doi.org/10.5194/acp-16-11019-2016, 2016
Short summary
Short summary
In this paper, for the first time, temperature longitudinal oscillations are derived from 20 to 150 km from a single instrument. A climatology of amplitudes and phases of zonal waves with odd daily frequencies is presented on a global scale. The interannual variability in amplitudes of the migrating modes shows a QBO in the MLT, which is probably originated in the stratosphere. The results are useful for testing general circulation models considering tidal effects in the MLT region.
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Rémi Thiéblemont, and Lon Hood
Atmos. Chem. Phys., 16, 10021–10043, https://doi.org/10.5194/acp-16-10021-2016, https://doi.org/10.5194/acp-16-10021-2016, 2016
Short summary
Short summary
The impact of changes in incoming solar radiation on stratospheric ozone has important impacts on the atmosphere. Understanding this ozone response is crucial for constraining how solar activity affects climate. This study analyses the solar ozone response (SOR) in satellite datasets and shows that there are substantial differences in the magnitude and spatial structure across different records. In particular, the SOR in the new SAGE v7.0 mixing ratio data is smaller than in the previous v6.2.
E. Eckert, A. Laeng, S. Lossow, S. Kellmann, G. Stiller, T. von Clarmann, N. Glatthor, M. Höpfner, M. Kiefer, H. Oelhaf, J. Orphal, B. Funke, U. Grabowski, F. Haenel, A. Linden, G. Wetzel, W. Woiwode, P. F. Bernath, C. Boone, G. S. Dutton, J. W. Elkins, A. Engel, J. C. Gille, F. Kolonjari, T. Sugita, G. C. Toon, and K. A. Walker
Atmos. Meas. Tech., 9, 3355–3389, https://doi.org/10.5194/amt-9-3355-2016, https://doi.org/10.5194/amt-9-3355-2016, 2016
Short summary
Short summary
We investigate the accuracy, precision and long-term stability of the MIPAS Envisat IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) products.
For comparisons we use several data products from satellite, airplane and balloon-borne instruments as well as ground-based data.
MIPAS Envisat CFC-11 has a slight high bias at the lower end of the profile.
CFC-12 agrees well with other data products.
The temporal stability is good up to ~ 30 km, but still leaves room for improvement.
Ming Shangguan, Katja Matthes, Wuke Wang, and Tae-Kwon Wee
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-248, https://doi.org/10.5194/amt-2016-248, 2016
Revised manuscript has not been submitted
Short summary
Short summary
A first validation of the COSMIC Radio Occultation (RO) water vapor data in the upper troposphere and lower stratosphere (UTLS) are presented in this paper. The COSMIC water vapor shows a good agreement with the Microwave limb Sounder (MLS) in both the spatial distribution and the seasonal to interannual variations. It is very valuable for studying the water vapor in the UTLS, thanks to its global coverage, all- weather aptitude and high vertical resolution.
Bernd Funke, Manuel López-Puertas, Gabriele P. Stiller, Stefan Versick, and Thomas von Clarmann
Atmos. Chem. Phys., 16, 8667–8693, https://doi.org/10.5194/acp-16-8667-2016, https://doi.org/10.5194/acp-16-8667-2016, 2016
Short summary
Short summary
We present a semi-empirical model for the reconstruction of polar winter descent of reactive nitrogen (NOy) produced by energetic particle precipitation (EPP) into the stratosphere. It can be used to prescribe NOy in chemistry climate models with an upper lid below the EPP source region. We also found a significant reduction of the EPP-generated NOy during the last 30 years, likely affecting the long-term NOy trend by counteracting the expected increase caused by growing N2O emission.
Maya García-Comas, Manuel López-Puertas, Bernd Funke, Á. Aythami Jurado-Navarro, Angela Gardini, Gabriele P. Stiller, Thomas von Clarmann, and Michael Höpfner
Atmos. Chem. Phys., 16, 6701–6719, https://doi.org/10.5194/acp-16-6701-2016, https://doi.org/10.5194/acp-16-6701-2016, 2016
Short summary
Short summary
We have analysed IR measurements of PMCs in the NH and SH from 2005 to 2012. This technique is sensitive to the total ice volume independent of particle size. For the first time, we have measured the total ice volume from the midlatitudes to the poles. The data indicate a layer of ice from 81 to 89 km and from the poles to 50–60º in each hemisphere, increasing near the poles. The ice density is larger in the NH than in the SH and located 1 km lower. PMCs also show a diurnal variation.
Andrew H. MacDougall and Reto Knutti
Biogeosciences, 13, 2123–2136, https://doi.org/10.5194/bg-13-2123-2016, https://doi.org/10.5194/bg-13-2123-2016, 2016
Short summary
Short summary
The soils of the permafrost region are estimated to hold 1100 to 1500 billion tonnes of carbon. As climate change progresses much of this permafrost is expected to thaw and the carbon within it decay. Here we conduct numerical experiments with a climate model to estimate with formal uncertainty bounds the release of carbon from permafrost soils. Our simulations suggest that the permafrost carbon will make a significant but not cataclysmic contribution to climate change over the next centuries.
S. Tegtmeier, M. I. Hegglin, J. Anderson, B. Funke, J. Gille, A. Jones, L. Smith, T. von Clarmann, and K. A. Walker
Earth Syst. Sci. Data, 8, 61–78, https://doi.org/10.5194/essd-8-61-2016, https://doi.org/10.5194/essd-8-61-2016, 2016
Short summary
Short summary
The first comprehensive intercomparison of CFC-11, CFC-12, HF, and SF6 satellite data was performed as part of the SPARC Data Initiative following a new "top-down" concept of satellite measurement validation and thus providing a global picture of the data characteristics. The comparisons will provide basic information on quality and consistency of the various data sets and will serve as a guide for their use in empirical studies of climate and variability, and in model-measurement comparisons.
F. J. Haenel, G. P. Stiller, T. von Clarmann, B. Funke, E. Eckert, N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, and T. Reddmann
Atmos. Chem. Phys., 15, 13161–13176, https://doi.org/10.5194/acp-15-13161-2015, https://doi.org/10.5194/acp-15-13161-2015, 2015
Short summary
Short summary
Stratospheric circulation is thought to change as a consequence of climate change. Empirical evidence, however, is sparse. In this paper we present latitude- and altitude-resolved trends of the mean age of stratospheric air as derived from SF6 measurements performed by the MIPAS satellite instrument. The mean of the age of stratospheric air is a measure of the intensity of the Brewer-Dobson circulation. In this paper we discuss differences with respect to a preceding analysis by Stiller et al.
S. Bender, M. Sinnhuber, T. von Clarmann, G. Stiller, B. Funke, M. López-Puertas, J. Urban, K. Pérot, K. A. Walker, and J. P. Burrows
Atmos. Meas. Tech., 8, 4171–4195, https://doi.org/10.5194/amt-8-4171-2015, https://doi.org/10.5194/amt-8-4171-2015, 2015
Short summary
Short summary
We compare the nitric oxide (NO) daily zonal mean number density data sets in the mesosphere and lower thermosphere (MLT, 60km to 150km) from four instruments: ACE-FTS (2004--2010), MIPAS (2005--2012), SCIAMACHY (2008--2012), and SMR (2003--2012). We find that these data sets from different instruments consistently constrain NO in the MLT. Thus, they offer reliable forcing inputs for climate and chemistry climate models as an initial step to include solar and geomagnetic activity.
C. McLandress, T. G. Shepherd, A. I. Jonsson, T. von Clarmann, and B. Funke
Atmos. Chem. Phys., 15, 9271–9284, https://doi.org/10.5194/acp-15-9271-2015, https://doi.org/10.5194/acp-15-9271-2015, 2015
Short summary
Short summary
This is the first paper of its kind describing a method for merging the long-term satellite records of global stratospheric temperature from SSU and AMSU to yield a continuous data set from 1979 to present (and beyond). Since global-mean stratospheric temperature is close to radiative equilibrium, our "extended" SSU data set is an important climate record for the detection and attribution of anthropogenic influence.
M. Höpfner, C. D. Boone, B. Funke, N. Glatthor, U. Grabowski, A. Günther, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, H. C. Pumphrey, W. G. Read, A. Roiger, G. Stiller, H. Schlager, T. von Clarmann, and K. Wissmüller
Atmos. Chem. Phys., 15, 7017–7037, https://doi.org/10.5194/acp-15-7017-2015, https://doi.org/10.5194/acp-15-7017-2015, 2015
W. Wang, K. Matthes, and T. Schmidt
Atmos. Chem. Phys., 15, 5815–5826, https://doi.org/10.5194/acp-15-5815-2015, https://doi.org/10.5194/acp-15-5815-2015, 2015
D. E. Keller, A. M. Fischer, C. Frei, M. A. Liniger, C. Appenzeller, and R. Knutti
Hydrol. Earth Syst. Sci., 19, 2163–2177, https://doi.org/10.5194/hess-19-2163-2015, https://doi.org/10.5194/hess-19-2163-2015, 2015
N. Glatthor, M. Höpfner, G. P. Stiller, T. von Clarmann, B. Funke, S. Lossow, E. Eckert, U. Grabowski, S. Kellmann, A. Linden, K. A. Walker, and A. Wiegele
Atmos. Chem. Phys., 15, 563–582, https://doi.org/10.5194/acp-15-563-2015, https://doi.org/10.5194/acp-15-563-2015, 2015
M. García-Comas, B. Funke, A. Gardini, M. López-Puertas, A. Jurado-Navarro, T. von Clarmann, G. Stiller, M. Kiefer, C. D. Boone, T. Leblanc, B. T. Marshall, M. J. Schwartz, and P. E. Sheese
Atmos. Meas. Tech., 7, 3633–3651, https://doi.org/10.5194/amt-7-3633-2014, https://doi.org/10.5194/amt-7-3633-2014, 2014
Short summary
Short summary
We present the new vM21 MIPAS temperatures from 20 to 102km for all of its 2005-2012 MA, UA and NLC measurements. The main upgrades are the update of ESA L1b spectra, spectroscopic database and O and CO2 climatologies, and improvement in Tk-gradient and offset regularizations and apodization accuracy. The vM21 Tk's correct the main systematic errors of previous versions and lead to remarkable improvement in their comparisons with ACE-FTS, MLS, OSIRIS, SABER and SOFIE and the MLO and TMF lidars.
M. Sinnhuber, B. Funke, T. von Clarmann, M. Lopez-Puertas, G. P. Stiller, and A. Seppälä
Atmos. Chem. Phys., 14, 7681–7692, https://doi.org/10.5194/acp-14-7681-2014, https://doi.org/10.5194/acp-14-7681-2014, 2014
F. Friederich, M. Sinnhuber, B. Funke, T. von Clarmann, and J. Orphal
Atmos. Chem. Phys., 14, 4055–4064, https://doi.org/10.5194/acp-14-4055-2014, https://doi.org/10.5194/acp-14-4055-2014, 2014
C. H. Jackman, C. E. Randall, V. L. Harvey, S. Wang, E. L. Fleming, M. López-Puertas, B. Funke, and P. F. Bernath
Atmos. Chem. Phys., 14, 1025–1038, https://doi.org/10.5194/acp-14-1025-2014, https://doi.org/10.5194/acp-14-1025-2014, 2014
M. Höpfner, N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, J. Orphal, G. Stiller, T. von Clarmann, B. Funke, and C. D. Boone
Atmos. Chem. Phys., 13, 10405–10423, https://doi.org/10.5194/acp-13-10405-2013, https://doi.org/10.5194/acp-13-10405-2013, 2013
S. Bender, M. Sinnhuber, J. P. Burrows, M. Langowski, B. Funke, and M. López-Puertas
Atmos. Meas. Tech., 6, 2521–2531, https://doi.org/10.5194/amt-6-2521-2013, https://doi.org/10.5194/amt-6-2521-2013, 2013
N. Schaller, J. Cermak, M. Wild, and R. Knutti
Earth Syst. Dynam., 4, 253–266, https://doi.org/10.5194/esd-4-253-2013, https://doi.org/10.5194/esd-4-253-2013, 2013
T. Russon, A. W. Tudhope, G. C. Hegerl, M. Collins, and J. Tindall
Clim. Past, 9, 1543–1557, https://doi.org/10.5194/cp-9-1543-2013, https://doi.org/10.5194/cp-9-1543-2013, 2013
I. Ermolli, K. Matthes, T. Dudok de Wit, N. A. Krivova, K. Tourpali, M. Weber, Y. C. Unruh, L. Gray, U. Langematz, P. Pilewskie, E. Rozanov, W. Schmutz, A. Shapiro, S. K. Solanki, and T. N. Woods
Atmos. Chem. Phys., 13, 3945–3977, https://doi.org/10.5194/acp-13-3945-2013, https://doi.org/10.5194/acp-13-3945-2013, 2013
F. Friederich, T. von Clarmann, B. Funke, H. Nieder, J. Orphal, M. Sinnhuber, G. P. Stiller, and J. M. Wissing
Atmos. Chem. Phys., 13, 2531–2539, https://doi.org/10.5194/acp-13-2531-2013, https://doi.org/10.5194/acp-13-2531-2013, 2013
S. Kellmann, T. von Clarmann, G. P. Stiller, E. Eckert, N. Glatthor, M. Höpfner, M. Kiefer, J. Orphal, B. Funke, U. Grabowski, A. Linden, G. S. Dutton, and J. W. Elkins
Atmos. Chem. Phys., 12, 11857–11875, https://doi.org/10.5194/acp-12-11857-2012, https://doi.org/10.5194/acp-12-11857-2012, 2012
Related subject area
Climate and Earth system modeling
The need for carbon-emissions-driven climate projections in CMIP7
Robust handling of extremes in quantile mapping – “Murder your darlings”
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
An urban module coupled with the Variable Infiltration Capacity model to improve hydrothermal simulations in urban systems
Bayesian hierarchical model for bias-correcting climate models
Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
TorchClim v1.0: a deep-learning plugin for climate model physics
Linking global terrestrial and ocean biogeochemistry with process-based, coupled freshwater algae–nutrient–solid dynamics in LM3-FANSY v1.0
Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption
Architectural Insights and Training Methodology Optimization of Pangu-Weather
Implementing detailed nucleation predictions in the Earth system model EC-Earth3.3.4: sulfuric acid–ammonia nucleation
Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)
Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0
A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
Short-term effects of hurricanes on nitrate-nitrogen runoff loading: a case study of Hurricane Ida using E3SM land model (v2.1)
CARIB12: A Regional Community Earth System Model / Modular Ocean Model 6 Configuration of the Caribbean Sea
Parallel SnowModel (v1.0): a parallel implementation of a distributed snow-evolution modeling system (SnowModel)
GOSI9: UK Global Ocean and Sea Ice configurations
LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Quantifying the impact of SST feedback frequency on Madden–Julian oscillation simulations
Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024, https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary
Short summary
Irrigated agriculture in the North China Plain (NCP) has a significant impact on the local climate. To better understand this impact, we developed a specialized model specifically for the NCP region. This model allows us to simulate the double-cropping vegetation and the dynamic irrigation practices that are commonly employed in the NCP. This model shows improved performance in capturing the general crop growth, such as crop stages, biomass, crop yield, and vegetation greenness.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024, https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
Short summary
We present the latest version of the CICE model. It solves equations that describe the dynamics and the growth and melt of sea ice. To do so, the domain is divided into grid cells and variables are positioned at specific locations in the cells. A new implementation (C-grid) is presented, with the velocity located on cell edges. Compared to the previous B-grid, the C-grid allows for a natural coupling with some oceanic and atmospheric models. It also allows for ice transport in narrow channels.
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024, https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024, https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Short summary
The CICERO-SCM has existed as a Fortran model since 1999 that calculates the radiative forcing and concentrations from emissions and is an upwelling diffusion energy balance model of the ocean that calculates temperature change. In this paper, we describe an updated version ported to Python and publicly available at https://github.com/ciceroOslo/ciceroscm (https://doi.org/10.5281/zenodo.10548720). This version contains functionality for parallel runs and automatic calibration.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024, https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
Short summary
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024, https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary
Short summary
Vertical atmospheric motions play a vital role in convective-scale precipitation forecasts by connecting atmospheric dynamics with cloud development. A three-dimensional variational vertical velocity assimilation scheme is developed within the high-resolution CMA-MESO model, utilizing the adiabatic Richardson equation as the observation operator. A 10 d continuous run and an individual case study demonstrate improved forecasts, confirming the scheme's effectiveness.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Yibing Wang, Xianhong Xie, Bowen Zhu, Arken Tursun, Fuxiao Jiang, Yao Liu, Dawei Peng, and Buyun Zheng
Geosci. Model Dev., 17, 5803–5819, https://doi.org/10.5194/gmd-17-5803-2024, https://doi.org/10.5194/gmd-17-5803-2024, 2024
Short summary
Short summary
Urban expansion intensifies challenges like urban heat and urban dry islands. To address this, we developed an urban module, VIC-urban, in the Variable Infiltration Capacity (VIC) model. Tested in Beijing, VIC-urban accurately simulated turbulent heat fluxes, runoff, and land surface temperature. We provide a reliable tool for large-scale simulations considering urban environment and a systematic urban modelling framework within VIC, offering crucial insights for urban planners and designers.
Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson
Geosci. Model Dev., 17, 5733–5757, https://doi.org/10.5194/gmd-17-5733-2024, https://doi.org/10.5194/gmd-17-5733-2024, 2024
Short summary
Short summary
Climate models are essential tools in the study of climate change and its wide-ranging impacts on life on Earth. However, the output is often afflicted with some bias. In this paper, a novel model is developed to predict and correct bias in the output of climate models. The model captures uncertainty in the correction and explicitly models underlying spatial correlation between points. These features are of key importance for climate change impact assessments and resulting decision-making.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
David Fuchs, Steven C. Sherwood, Abhnil Prasad, Kirill Trapeznikov, and Jim Gimlett
Geosci. Model Dev., 17, 5459–5475, https://doi.org/10.5194/gmd-17-5459-2024, https://doi.org/10.5194/gmd-17-5459-2024, 2024
Short summary
Short summary
Machine learning (ML) of unresolved processes offers many new possibilities for improving weather and climate models, but integrating ML into the models has been an engineering challenge, and there are performance issues. We present a new software plugin for this integration, TorchClim, that is scalable and flexible and thereby allows a new level of experimentation with the ML approach. We also provide guidance on ML training and demonstrate a skillful hybrid ML atmosphere model.
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024, https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input, and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
Hunter York Brown, Benjamin Wagman, Diana Bull, Kara Peterson, Benjamin Hillman, Xiaohong Liu, Ziming Ke, and Lin Lin
Geosci. Model Dev., 17, 5087–5121, https://doi.org/10.5194/gmd-17-5087-2024, https://doi.org/10.5194/gmd-17-5087-2024, 2024
Short summary
Short summary
Explosive volcanic eruptions lead to long-lived, microscopic particles in the upper atmosphere which act to cool the Earth's surface by reflecting the Sun's light back to space. We include and test this process in a global climate model, E3SM. E3SM is tested against satellite and balloon observations of the 1991 eruption of Mt. Pinatubo, showing that with these particles in the model we reasonably recreate Pinatubo and its global effects. We also explore how particle size leads to these effects.
Deifilia Aurora To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
EGUsphere, https://doi.org/10.5194/egusphere-2024-1714, https://doi.org/10.5194/egusphere-2024-1714, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers three-dimensional atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20–30%. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases accessibility of training and working with the model.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
Maria Rosa Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-73, https://doi.org/10.5194/gmd-2024-73, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Observational data and modelling capabilities are expanding in recent years, but there are still barriers preventing these two data sources to be used in synergy. Proper comparison requires generating, storing and handling a large amount of data. This manuscript describes the first step in the development of a new set of software tools, the ‘VISION toolkit’, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024, https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary
Short summary
This study focuses on the important issue of the drizzle bias effect in regional climate models, described by an over-prediction of the number of rainy days while underestimating associated precipitation amounts. For this purpose, two distinct methodologies are applied and rigorously evaluated. These results are encouraging for using the multivariate machine learning method random forest to increase the accuracy of climate models concerning the projection of the number of wet days.
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024, https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
Short summary
We develop the interactive Model for Air Pollution and Land Ecosystems (iMAPLE). The model considers the full coupling between carbon and water cycles, dynamic fire emissions, wetland methane emissions, biogenic volatile organic compound emissions, and trait-based ozone vegetation damage. Evaluations show that iMAPLE is a useful tool for the study of the interactions among climate, chemistry, and ecosystems.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-1456, https://doi.org/10.5194/egusphere-2024-1456, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant covariances during convective and frontal precipitation events. Common statistical downscaling techniques preserve expected covariances during convective precipitation. However, they dampen future intensification of frontal precipitation captured in global climate models and dynamical downscaling. This suggests statistical downscaling may not fully resolve non-stationary hydrologic processes as compared to dynamical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-97, https://doi.org/10.5194/gmd-2024-97, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Research software is crucial for scientific progress but is often developed by scientists with limited training, time, and funding, leading to software that is hard to understand, (re)use, modify, and maintain. Our study across 10 research sectors highlights strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. Recommendations include workshops, code quality metrics, funding, and adherence to FAIR standards.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-70, https://doi.org/10.5194/gmd-2024-70, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Hurricanes may worsen the water quality in the lower Mississippi River Basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate-nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in LMRB during Hurricane Ida in 2021, but less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Giovanni G. Seijo-Ellis, Donata Giglio, Gustavo M. Marques, and Frank O. Bryan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1378, https://doi.org/10.5194/egusphere-2024-1378, 2024
Short summary
Short summary
A CESM/MOM6 regional configuration of the Caribbean Sea was developed as a response to the rising need of high-resolution models for climate impact studies. The configuration is validated for the period of 2000–2020 and improves significant errors in a low resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon river are well captured and the mean flows across the multiple passages in the Caribbean Sea agree with observations.
Ross Mower, Ethan D. Gutmann, Glen E. Liston, Jessica Lundquist, and Soren Rasmussen
Geosci. Model Dev., 17, 4135–4154, https://doi.org/10.5194/gmd-17-4135-2024, https://doi.org/10.5194/gmd-17-4135-2024, 2024
Short summary
Short summary
Higher-resolution model simulations are better at capturing winter snowpack changes across space and time. However, increasing resolution also increases the computational requirements. This work provides an overview of changes made to a distributed snow-evolution modeling system (SnowModel) to allow it to leverage high-performance computing resources. Continental simulations that were previously estimated to take 120 d can now be performed in 5 h.
Catherine Guiavarc'h, Dave Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene T. Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
EGUsphere, https://doi.org/10.5194/egusphere-2024-805, https://doi.org/10.5194/egusphere-2024-805, 2024
Short summary
Short summary
GOSI9 is the new UK’s hierarchy of global ocean and sea ice models. Developed as part of a collaboration between several UK research institutes it will be used for various applications such as weather forecast and climate prediction. The models, based on NEMO, are available at three resolutions 1°, ¼° and 1/12°. GOSI9 improves upon previous version by reducing global temperature and salinity biases and enhancing the representation of the Arctic sea ice and of the Antarctic Circumpolar Current.
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024, https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
Short summary
To enhance the efficiency of experiments using SCAM, we train a learning-based surrogate model to facilitate large-scale sensitivity analysis and tuning of combinations of multiple parameters. Employing a hybrid method, we investigate the joint sensitivity of multi-parameter combinations across typical cases, identifying the most sensitive three-parameter combination out of 11. Subsequently, we conduct a tuning process aimed at reducing output errors in these cases.
Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng
Geosci. Model Dev., 17, 3897–3918, https://doi.org/10.5194/gmd-17-3897-2024, https://doi.org/10.5194/gmd-17-3897-2024, 2024
Short summary
Short summary
This study uses the CAM5–SIT coupled model to investigate the effects of SST feedback frequency on the MJO simulations with intervals at 30 min, 1, 3, 6, 12, 18, 24, and 30 d. The simulations become increasingly unrealistic as the frequency of the SST feedback decreases. Our results suggest that more spontaneous air--sea interaction (e.g., ocean response within 3 d in this study) with high vertical resolution in the ocean model is key to the realistic simulation of the MJO.
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024, https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary
Short summary
We introduce an open-source software, the PCMDI Metrics Package (PMP), developed for a comprehensive comparison of Earth system models (ESMs) with real-world observations. Using diverse metrics evaluating climatology, variability, and extremes simulated in thousands of simulations from the Coupled Model Intercomparison Project (CMIP), PMP aids in benchmarking model improvements across generations. PMP also enables efficient tracking of performance evolutions during ESM developments.
Cited articles
Allen, M. R., Stott, P. A., Mitchell, J. F. B., Schnur, R., and Delworth, T. L.: Quantifying the uncertainty in forecasts of anthropogenic climate change, Nature, 407, 617–620, https://doi.org/10.1038/35036559, 2000.
Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A., Meinshausen, M., and Meinshausen, N.: Warming caused by cumulative carbon emissions towards the trillionth tonne, Nature, 458, 1163–1166, https://doi.org/10.1038/nature08019, 2009.
Barnett, T., Zwiers, F., Hegerl, G., Allen, M., Crowley, T., Gillett, N., Hasselmann, K., Jones, P., Santer, B., Schnur, R., Stott, P., Taylor, K., and Tett, S.: Detecting and attributing external influences on the climate system: A review of recent advances, J. Climate, 18, 1291–1314, 2005.
Bindoff, N. L., Stott, P. A., AchutaRao, K. M., Allen, M. R., Gillett, N. P., Gutzler, D., Hansingo, K., Hegerl, G., Hu,Y., Jain, S., Mokhov, I. I., Overland, J., Perlwitz, J., Sebbari, R., and Zhang, X.: Detection and Attribution of Climate Change: from Global to Regional, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y., Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W. A., Taylor, K., and Zwiers, F.: The Decadal Climate Prediction Project, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-78, in review, 2016.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Collins, W. J., Lamarque, J.-F., Schulz, M., Boucher, O., Eyring, V., Hegglin, M. I., Maycock, A., Myhre, G., Prather, M., Shindell, D., and Smith, S. J.: AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-139, in review, 2016.
Crook, J. A., Gillett, N. P., and Keeley, S. P. E.: Sensitivity of Southern Hemisphere climate to zonal asymmetry in ozone, Geophys. Res. Lett., 35, L07806, https://doi.org/10.1029/2007GL032698, 2008.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.: Evaluation of Climate Models, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Gagné, M. È., Gillett, N. P., and Fyfe, J. C.: Impact of aerosol emission controls on future Arctic sea ice cover, Geophys. Res. Lett., 42, 8481–8488, https://doi.org/10.1002/2015gl065504, 2015.
Gillett, N. P. and Von Salzen, K.: The role of reduced aerosol precursor emissions in driving near-term warming, Environ. Res. Lett., 8, 034008, https://doi.org/10.1088/1748-9326/8/3/034008, 2013.
Gillett, N. P., Wehner, M. F., Tett, S. F. B., and Weaver, A. J.: Testing the linearity of the response to combined greenhouse gas and sulfate aerosol forcing, Geophys. Res. Lett., 31, L14201, https://doi.org/10.1029/2004gl020111, 2004.
Gillett, N. P., Arora, V. K., Flato, G. M., Scinocca, J. F., and von Salzen, K.: Improved constraints on 21st-century warming derived using 160 years of temperature observations, Geophys. Res. Lett., 39, L01704, https://doi.org/10.1029/2011gl050226, 2012.
Gillett, N. P., Arora, V. K., Matthews, D., and Allen, M. R.: Constraining the Ratio of Global Warming to Cumulative CO2 Emissions Using CMIP5 Simulations, J. Climate, 26, 6844–6858, https://doi.org/10.1175/jcli-d-12-00476.1, 2013a.
Gillett, N. P., Fyfe, J. C., and Parker, D. E.: Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes, Geophys. Res. Lett., 40, 2302–2306, https://doi.org/10.1002/grl.50500, 2013b.
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A., Shindell, D., van Geel, B., and White, W.: Solar Influences on Climate, Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282, 2010.
Gray, L. J., Scaife, A. A., Mitchell, D. M., Osprey, S., Ineson, S., Hardiman, S., Butchart, N., Knight, J., Sutton, R., and Kodera, K.: A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns, J. Geophys. Res., 118, 13405–13420, https://doi.org/10.1002/2013JD020062, 2013.
Gregory, J. M., Andrews, T., and Good, P.: The inconstancy of the transient climate response parameter under increasing CO2, Philos. T. R. Soc. A, 373, 20140417, https://doi.org/10.1098/rsta.2014.0417, 2015.
Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, Ja., Perlwitz, Ju., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and Zhang, S.: Efficacy of climate forcings, J. Geophys. Res.-Atmos., 110, D18104, https://doi.org/10.1029/2005jd005776, 2005.
Hegerl, G. C., Zwiers, F. W., Braconnot, P., Gillett, N. P., Luo, Y., Marengo Orsini, J. A., Nicholls, N., Penner, J. E., and Stott, P. A.: Understanding and Attributing Climate Change, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.
Hood, L. L., Misios, S., Mitchell, D. M., Gray, L. J., Tourpali, K., Matthes, K., Schmidt, H., Chiodo, G., Thiéblemont, R., Rozanov, E., Shindell, D., and Krivolutsky, A.: Solar signals in CMIP-5 simulations: the ozone response, Q. J. Roy. Meteor. Soc., 141, 2670–2689, https://doi.org/10.1002/qj.2553, 2015.
Huber, M. and Knutti, R.: Natural variability, radiative forcing and climate response in the recent hiatus reconciled, Nat. Geosci., 7, 651–656, https://doi.org/10.1038/ngeo2228, 2014.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., 2014.
Jones, G. S., Stott, P. A., and Christidis, N.: Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations, J. Geophys. Res.-Atmos., 118, 4001–4024, https://doi.org/10.1002/jgrd.50239, 2013.
Kettleborough, J. A., Booth, B. B. B., Stott, P. A., and Allen, M. R.: Estimates of uncertainty in predictions of global mean surface temperature, J. Climate, 20, 843–855, https://doi.org/10.1175/jcli4012.1, 2007.
Knutti, R. and Hegerl, G. C.: The equilibrium sensitivity of the Earth's temperature to radiation changes, Nat. Geosci. 1, 735–743, 2008.
Knutti, R. and Rugenstein, M. A. A.: Feedbacks, climate sensitivity and the limits of linear models, Philos. T. R. Soc. A, 373, 20150146, https://doi.org/10.1098/rsta.2015.0146, 2015.
Kosaka, Y. and Xie, S.-P.: Recent global-warming hiatus tied to equatorial Pacific surface cooling, Nature, 501, 403–407, 2013.
Kravitz, B., Caldeira, K., Boucher, O., Robock, A., Rasch, P. J., Alterskjær, K., Karam, D. B., Cole, J. N. S., Curry, C. L., Haywood, J. M., Irvine, P. J., Ji, D., Jones, A., Kristjánsson, J. E., Lunt, D. J., Moore, J. C., Niemeier, U., Schmidt, H., Schulz, M., Singh, B., Tilmes, S., Watanabe, S., Yang, S., and Yoon, J.-H.: Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP), J. Geophys. Res.-Atmos., 118, 8320–8332, https://doi.org/10.1002/jgrd.50646, 2013.
Kravitz, B., Robock, A., Tilmes, S., Boucher, O., English, J. M., Irvine, P. J., Jones, A., Lawrence, M. G., MacCracken, M., Muri, H., Moore, J. C., Niemeier, U., Phipps, S. J., Sillmann, J., Storelvmo, T., Wang, H., and Watanabe, S.: The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results, Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, 2015.
Kummer, J. R. and Dessler, A. E.: The impact of forcing efficacy on the equilibrium climate sensitivity, Geophys. Res. Lett., 41, 3565–3568, https://doi.org/10.1002/2014gl060046, 2014.
Lawrence, D. M., Hurtt, G. C., Arneth, A., Brovkin, V., Calvin, K. V., Jones, A. D., Jones, C. D., Lawrence, P. J., de Noblet-Ducoudré, N., Pongratz, J., Seneviratne, S. I., and Shevliakova, E.: The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design, Geosci. Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016, 2016.
Lott, F. C., Stott, P. A., Mitchell, D. M., Christidis, N., Gillett, N. P., Haimberger, L., Perlwitz, J., and Thorne, P. W.: Models versus radiosondes in the free atmosphere: A new detection and attribution analysis of temperature, J. Geophys. Res.-Atmos., 118, 2609–2619, https://doi.org/10.1002/jgrd.50255, 2013.
Marvel, K., Schmidt, G. A., Miller, R. L., and Nazarenko, L. S.: Implications for climate sensitivity from the response to individual forcings, Nature Clim. Change, 6, 386–389, https://doi.org/10.1038/nclimate2888, 2015a.
Marvel, K., Schmidt, G. A., Shindell, D., Bonfils, C., LeGrande, A. N., Nazarenko, L., and Tsigaridis, K.: Do responses to different anthropogenic forcings add linearly in climate models?, Environ. Res. Lett., 10, 104010, https://doi.org/10.1088/1748-9326/10/10/104010, 2015b.
Matthes, K., Funke, B., Anderson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar Forcing for CMIP6 (v3.1), Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-91, in review, 2016.
Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., Stouffer, R. J., and Taylor, K. E.: The WCRP CMIP3 multimodel dataset: A new era in climate change research, B. Am. Meteorol. Soc., 88, 1383–1394, https://doi.org/10.1175/BAMS-88-9-1383, 2007.
Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A., and Trenberth, K. E.: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods, Nature Clim. Change, 1, 360–364, https://doi.org/10.1038/nclimate1229, 2011.
Misios, S., Mitchell, D. M., Gray, L. J., Tourpali, K., Matthes, K., Hood, L., Schmidt, H., Chiodo, G., Thiéblemont, R., Rozanov, E., and Krivolutsky, A.: Solar signals in CMIP-5 simulations: effects of atmosphere–ocean coupling, Q. J. Roy. Meteor. Soc., 142, 928–941, https://doi.org/10.1002/qj.2695, 2016.
Mitchell, D., Misios, S., Gray, L. J., Tourpali, K., Matthes, K., Hood, L., Schmidt, H., Chiodo, G., Thiéblemont, R., Rozanov, E., Shindell, D., and Krivolutsky, A.: Solar signals in CMIP-5 simulations: the stratospheric pathway, Q. J. Roy. Meteor. Soc., 141, 2390–2403, https://doi.org/10.1002/qj.2530, 2015.
Myhre, G., Boucher, O., Breon, F.-M., Forster, P., and Shindell, D.: Declining uncertainty in transient climate response as CO2 forcing dominates future climate change, Nat. Geosci., 8, 181–185, https://doi.org/10.1038/ngeo2371, 2015.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Pincus, R., Forster, P. M., and Stevens, B.: The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6, Geosci. Model Dev., 9, 3447–3460, https://doi.org/10.5194/gmd-9-3447-2016, 2016.
Ribes, A. and Terray, L.: Application of regularised optimal fingerprinting to attribution. Part II: application to global near-surface temperature, Clim. Dynam., 41, 2837–2853, https://doi.org/10.1007/s00382-013-1736-6, 2013.
Ribes, A., Gillett, N. P., and Zwiers, F. W.: Designing detection and attribution simulations for CMIP6 to optimize the estimation of greenhouse gas–induced warming, J. Climate, 28, 3435–3438, https://doi.org/10.1175/jcli-d-14-00691.1, 2015.
Rogelj, J., Meinshausen, M., and Knutti, R.: Global warming under old and new scenarios using IPCC climate sensitivity range estimates, Nature Clim. Change, 2, 248–253, 2012.
Rotstayn, L. D., Collier, M. A., Chrastansky, A., Jeffrey, S. J., and Luo, J.-J.: Projected effects of declining aerosols in RCP4.5: unmasking global warming?, Atmos. Chem. Phys., 13, 10883–10905, https://doi.org/10.5194/acp-13-10883-2013, 2013.
Santer, B. D., Painter, J. F., Bonfils, C., Mears, C. A., Solomon, S., Wigley, T. M. L., Gleckler, P. J., Schmidt, G. A., Doutriaux, C., Gillett, N. P., Taylor, K. E., Thorne, P. W., and Wentz, F. J.: Human and natural influences on the changing thermal structure of the atmosphere, P. Natl. Acad. Sci. USA, 110, 17235–17240, https://doi.org/10.1073/pnas.1305332110, 2013.
Scaife, A. A., Ineson, S., Knight, J., R., Gray, L. J., Kodera, K., and Smith, D. M.: A mechanism for lagged North Atlantic climate response to solar variability, Geophys. Res. Lett., 40, 434–439, https://doi.org/10.1002/grl.50099, 2013.
Schaller, N., Cermak, J., Wild, M., and Knutti, R.: The sensitivity of the modeled energy budget and hydrological cycle to CO2 and solar forcing, Earth Syst. Dynam., 4, 253–266, https://doi.org/10.5194/esd-4-253-2013, 2013.
Schaller, N., Sedlacek, J., and Knutti, R.: The asymmetry of the climate system's response to solar forcing changes and its implications for geoengineering scenarios, J. Geophys. Res., 119, 5171–5184, https://doi.org/10.1002/2013JD021258, 2014.
Schmidt, G. A., Shindell, D. T., and Tsigaridis, K.: Reconciling warming trends, Nat. Geosci., 7, 158–160, https://doi.org/10.1038/ngeo2105, 2014.
Seppälä, A., Matthes, K., Randall, C., and Mironova, I.: What is the solar influence on climate? – Overview of activities during CAWSES-II, Progress in Earth and Planetary Science, 1, 24, https://doi.org/10.1186/s40645-014-0024-3, 2014.
Shindell, D. T.: Inhomogeneous forcing and transient climate sensitivity, Nature Clim. Change, 4, 274–277, https://doi.org/10.1038/nclimate2136, 2014.
Shiogama, H., Emori, S., Takahashi, K., Nagashima, T., Ogura, T., Nozawa, T., and Takemura, T.: Emission scenario dependency of precipitation on global warming in the MIROC3.2 model, J. Climate, 23, 2404–2417, 2010a.
Shiogama, H., Hanasaki, N., Masutomi, Y., Nagashima, T., Ogura, T., Takahashi, K., Hijioka, Y., Takemura, T., Nozawa, T., and Emori, S.: Emission scenario dependencies in climate change assessments of the hydrological cycle, Climatic Change, 99, 321–329, https://doi.org/10.1007/s10584-009-9765-1, 2010b.
Shiogama, H., Stone, D. A., Nagashima, T., Nozawa, T., and Emori, S.: On the linear additivity of climate forcing-response relationships at global and continental scales, Int. J. Climatol., 33, 2542–2550, 2013.
Shiogama, H., Stone, D., Emori, S., Takahashi, K., Mori, S., Maeda, A., Ishizaki, Y., and Allen, M. R.: Predicting future uncertainty constraints on global warming projections, Sci. Rep., 6, 18903, https://doi.org/10.1038/srep18903, 2016.
Stevens, B., Fiedler, S., Kinne, S., Peters, K., Rast, S., Müsse, J., Smith, S. J., and Mauritsen, T.: Simple Plumes: A parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for climate studies, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-189, in review, 2016.
Stone, D. A. and Pall., P.: A benchmark estimate of the effect of anthropogenic emissions on the ocean surface, in preparation, 2016.
Stott, P., Good, P., Jones, G., Gillett, N., and Hawkins, E.: The upper end of climate model temperature projections is inconsistent with past warming, Environ. Res. Lett., 8, 014024, https://doi.org/10.1088/1748-9326/8/1/014024, 2013.
Stott, P. A. and Jones, G. S.: Observed 21st century temperatures further constrain likely rates of future warming, Atmos. Sci. Lett., 13, 151–156, https://doi.org/10.1002/asl.383, 2012.
Stott, P. A. and Kettleborough, J. A.: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise, Nature, 416, 723–726, https://doi.org/10.1038/416723a, 2002.
Stott, P. A., Mitchell, J. F. B., Allen, M. R., Delworth, T. L., Gregory, J. M., Meehl, G. A., and Santer, B. D.: Observational constraints on past attributable warming and predictions of future global warming, J. Climate, 19, 3055–3069, https://doi.org/10.1175/jcli3802.1, 2006.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thiéblemont, R., Matthes, K., Omrani, N.-E., Kodera, K., and Hansen, F.: Solar forcing synchronizes decadal North Atlantic climate variability, Nat. Comm., 6, 8268, https://doi.org/10.1038/ncomms9268, 2015.
Watanabe, M., Shiogama, H., Tatebe, H., Hayashi, M., Ishii, M., and Kimoto, M.: Contribution of natural decadal variability to global warming acceleration and hiatus, Nature Clim. Change, 4, 893–897, https://doi.org/10.1038/nclimate2355, 2014.
Waugh, D. W., Oman, L., Newman, P. A., Stolarski, R. S., Pawson, S., Nielsen, J. E., and Perlwitz, J.: Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends, Geophys. Res. Lett., 36, L18701, https://doi.org/10.1029/2009GL040419, 2009.
WMO: Scientific Assessment of Ozone Depletion: 2014, World Meteorological Organization, Global Ozone Research and Monitoring Project – Report No. 55, 416 pp., Geneva, Switzerland, 2014.
Yoshimori, M. and Broccoli, A. J.: Equilibrium response of an atmosphere-mixed layer ocean model to different radiative forcing agents: Global and zonal mean response, J. Climate, 21, 4399–4423, https://doi.org/10.1175/2008jcli2172.1, 2008.
Zanchettin, D., Khodri, M., Timmreck, C., Toohey, M., Schmidt, A., Gerber, E. P., Hegerl, G., Robock, A., Pausata, F. S. R., Ball, W. T., Bauer, S. E., Bekki, S., Dhomse, S. S., LeGrande, A. N., Mann, G. W., Marshall, L., Mills, M., Marchand, M., Niemeier, U., Poulain, V., Rozanov, E., Rubino, A., Stenke, A., Tsigaridis, K., and Tummon, F.: The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, 2016.
Zhang, X., Zwiers, F. W., Hegerl, G. C., Lambert, F. H., Gillett, N. P., Solomon, S., Stott, P. A., and Nozawa, T.: Detection of human influence on twentieth-century precipitation trends, Nature, 448, 461–465, https://doi.org/10.1038/nature06025, 2007.
Zhou, T., Turner, A. G., Kinter, J. L., Wang, B., Qian, Y., Chen, X., Wu, B., Wang, B., Liu, B., Zou, L., and He, B.: GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project, Geosci. Model Dev., 9, 3589–3604, https://doi.org/10.5194/gmd-9-3589-2016, 2016.
Short summary
Detection and attribution of climate change is the process of determining the causes of observed climate changes, which has underpinned key conclusions on the role of human influence on climate in the reports of the Intergovernmental Panel on Climate Change (IPCC). This paper describes a coordinated set of climate model experiments that will form part of the Sixth Coupled Model Intercomparison Project and will support improved attribution of climate change in the next IPCC report.
Detection and attribution of climate change is the process of determining the causes of observed...