Articles | Volume 9, issue 8
https://doi.org/10.5194/gmd-9-2721-2016
https://doi.org/10.5194/gmd-9-2721-2016
Development and technical paper
 | 
19 Aug 2016
Development and technical paper |  | 19 Aug 2016

RTTOV-gb – adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations

Francesco De Angelis, Domenico Cimini, James Hocking, Pauline Martinet, and Stefan Kneifel

Related authors

RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability
Domenico Cimini, James Hocking, Francesco De Angelis, Angela Cersosimo, Francesco Di Paola, Donatello Gallucci, Sabrina Gentile, Edoardo Geraldi, Salvatore Larosa, Saverio Nilo, Filomena Romano, Elisabetta Ricciardelli, Ermann Ripepi, Mariassunta Viggiano, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Pauline Martinet, Yun Young Song, Myoung Hwan Ahn, and Philip W. Rosenkranz
Geosci. Model Dev., 12, 1833–1845, https://doi.org/10.5194/gmd-12-1833-2019,https://doi.org/10.5194/gmd-12-1833-2019, 2019
Short summary
Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network
Francesco De Angelis, Domenico Cimini, Ulrich Löhnert, Olivier Caumont, Alexander Haefele, Bernhard Pospichal, Pauline Martinet, Francisco Navas-Guzmán, Henk Klein-Baltink, Jean-Charles Dupont, and James Hocking
Atmos. Meas. Tech., 10, 3947–3961, https://doi.org/10.5194/amt-10-3947-2017,https://doi.org/10.5194/amt-10-3947-2017, 2017
Short summary
Combining ground-based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in complex terrain: an Alpine valley case study
Pauline Martinet, Domenico Cimini, Francesco De Angelis, Guylaine Canut, Vinciane Unger, Remi Guillot, Diane Tzanos, and Alexandre Paci
Atmos. Meas. Tech., 10, 3385–3402, https://doi.org/10.5194/amt-10-3385-2017,https://doi.org/10.5194/amt-10-3385-2017, 2017
Short summary

Related subject area

Atmospheric sciences
SCIATRAN software package (V4.6): update and further development of aerosol, clouds, surface reflectance databases and models
Linlu Mei, Vladimir Rozanov, Alexei Rozanov, and John P. Burrows
Geosci. Model Dev., 16, 1511–1536, https://doi.org/10.5194/gmd-16-1511-2023,https://doi.org/10.5194/gmd-16-1511-2023, 2023
Short summary
Deep learning models for generation of precipitation maps based on numerical weather prediction
Adrian Rojas-Campos, Michael Langguth, Martin Wittenbrink, and Gordon Pipa
Geosci. Model Dev., 16, 1467–1480, https://doi.org/10.5194/gmd-16-1467-2023,https://doi.org/10.5194/gmd-16-1467-2023, 2023
Short summary
An inconsistency in aviation emissions between CMIP5 and CMIP6 and the implications for short-lived species and their radiative forcing
Robin N. Thor, Mariano Mertens, Sigrun Matthes, Mattia Righi, Johannes Hendricks, Sabine Brinkop, Phoebe Graf, Volker Grewe, Patrick Jöckel, and Steven Smith
Geosci. Model Dev., 16, 1459–1466, https://doi.org/10.5194/gmd-16-1459-2023,https://doi.org/10.5194/gmd-16-1459-2023, 2023
Short summary
On the use of Infrared Atmospheric Sounding Interferometer (IASI) spectrally resolved radiances to test the EC-Earth climate model (v3.3.3) in clear-sky conditions
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394, https://doi.org/10.5194/gmd-16-1379-2023,https://doi.org/10.5194/gmd-16-1379-2023, 2023
Short summary
Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023,https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary

Cited articles

Blumberg, W. G., Turner, D. D., Löhnert, U., and Castleberry, S.: Ground-Based Temperature and Humidity Profiling Using Spectral Infrared and Microwave Observations. Part II: Actual Retrieval Performance in Clear-Sky and Cloudy Conditions, J. Appl. Meteorol. Clim., 54, 2305–2319, https://doi.org/10.1175/JAMC-D-15-0005.1, 2015.
Boukabara S. A., Clough, S. A., Moncet, J.-L., Krupnov, A. F., Tretyakov, M. Yu., and Parshin, V. V.: Uncertainties in the Temperature Dependence of the Line-Coupling Parameters of the Microwave Oxygen Band: Impact Study, IEEE T. Geosci. Remote Sens., 43, 1109–1114, https://doi.org/10.1109/TGRS.2004.839654, 2005.
Brousseau, P., Berre, L., Bouttier, F., and Desroziers, G.: Background error covariances for a convective scale data assimilation system: AROME 3D-Var, Q. J. Roy. Meteor. Soc., 137, 409–422, 2011.
Brunel, P. and Hocking, J.: RTTOV v11 Test Suite, Met Office Doc ID: NWPSAF-MO-TV-031, 2014.
Buehler, S. A., Eriksson, P., Kuhn, T., von Engeln, A., and Verdes, C.: ARTS, the Atmospheric Radiative Transfer Simulator, J. Quant. Spectrosc. Ra., 91, 65–93, https://doi.org/10.1016/j.jqsrt.2004.05.051, 2005.
Download
Short summary
Ground-based microwave radiometers (MWRs) offer to bridge the observational gap in the atmospheric boundary layer. Currently MWRs are operational at many sites worldwide. However, their potential is largely under-exploited, partly due to the lack of a fast radiative transfer model (RTM) suited for data assimilation into numerical weather prediction models. Here we propose and test an RTM, building on satellite heritage and adapting for ground-based MWRs, which addresses this shortage.