Articles | Volume 9, issue 8
https://doi.org/10.5194/gmd-9-2721-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-9-2721-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
RTTOV-gb – adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations
Francesco De Angelis
CORRESPONDING AUTHOR
CETEMPS, University of L'Aquila, L'Aquila, Italy
Domenico Cimini
IMAA-CNR, Potenza, Italy
CETEMPS, University of L'Aquila, L'Aquila, Italy
James Hocking
Met Office, Exeter, UK
Pauline Martinet
Météo France – CNRM/GAME, Toulouse, France
Stefan Kneifel
Institute for Geophysics and Meteorology, University of Cologne,
Cologne, Germany
Related authors
Domenico Cimini, James Hocking, Francesco De Angelis, Angela Cersosimo, Francesco Di Paola, Donatello Gallucci, Sabrina Gentile, Edoardo Geraldi, Salvatore Larosa, Saverio Nilo, Filomena Romano, Elisabetta Ricciardelli, Ermann Ripepi, Mariassunta Viggiano, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Pauline Martinet, Yun Young Song, Myoung Hwan Ahn, and Philip W. Rosenkranz
Geosci. Model Dev., 12, 1833–1845, https://doi.org/10.5194/gmd-12-1833-2019, https://doi.org/10.5194/gmd-12-1833-2019, 2019
Short summary
Short summary
The fast radiative transfer model RTTOV-gb was developed to foster ground-based microwave radiometer data assimilation into numerical weather prediction models, as introduced in a companion paper (https://doi.org/10.5194/gmd-9-2721-2016). Here we present the updates and new features of the current version (v1.0), which is freely accessible online.
Francesco De Angelis, Domenico Cimini, Ulrich Löhnert, Olivier Caumont, Alexander Haefele, Bernhard Pospichal, Pauline Martinet, Francisco Navas-Guzmán, Henk Klein-Baltink, Jean-Charles Dupont, and James Hocking
Atmos. Meas. Tech., 10, 3947–3961, https://doi.org/10.5194/amt-10-3947-2017, https://doi.org/10.5194/amt-10-3947-2017, 2017
Short summary
Short summary
Modern data assimilation systems require knowledge of the typical differences between observations and model background (O–B). This work illustrates a 1-year O–B analysis for ground-based microwave radiometer (MWR) observations in clear-sky conditions for a prototype network of six MWRs in Europe. Observations are MWR brightness temperatures (TB). Background profiles extracted from the output of a convective-scale model are used to simulate TB through the radiative transfer model RTTOV-gb.
Pauline Martinet, Domenico Cimini, Francesco De Angelis, Guylaine Canut, Vinciane Unger, Remi Guillot, Diane Tzanos, and Alexandre Paci
Atmos. Meas. Tech., 10, 3385–3402, https://doi.org/10.5194/amt-10-3385-2017, https://doi.org/10.5194/amt-10-3385-2017, 2017
Short summary
Short summary
Microwave radiometers have the capability of observing temperature and humidity profiles with a few minute time resolution. This study investigates the potential benefit of this instrument to improve weather forecasts thanks to a better initialization of the model. Our results show that a significant improvement can be expected in the model initialization in the first 3 km with potential impacts on weather forecasts.
Cheikh Dione, Martial Haeffelin, Frédéric Burnet, Christine Lac, Guylaine Canut, Julien Delanoë, Jean-Charles Dupont, Susana Jorquera, Pauline Martinet, Jean-François Ribaud, and Felipe Toledo
EGUsphere, https://doi.org/10.5194/egusphere-2023-1224, https://doi.org/10.5194/egusphere-2023-1224, 2023
Short summary
Short summary
1. This paper document the role of thermodynamic and turbulence on the fog life cycle over southwestern France. 2. It is base on a unique dataset collected during the SOFOG3D field campaign in Autumn 2019 and Winter 2020. 3. The paper gives threshold in turbulence driving the different phases of fog life cycle and the role of advection in the nighttime dissipation of fog. 4. The results can be operationalize to nowcast fog and improve it short range forecast in numerical weather prediction model.
Giovanni Chellini, Rosa Gierens, Kerstin Ebell, Theresa Kiszler, Pavel Krobot, Alexander Myagkov, Vera Schemann, and Stefan Kneifel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-157, https://doi.org/10.5194/essd-2023-157, 2023
Preprint under review for ESSD
Short summary
Short summary
We present a comprehensive quality-controlled dataset of remote sensing observations of low-level mixed-phase clouds (LLMPCs) taken at the high Arctic site of Ny-Ålesund, Svalbard, Norway. LLMPCs occur frequently in the Arctic region, and substantially warm the surface. However, our understanding of microphysical processes in these clouds is incomplete. This dataset includes a comprehensive set of variables which allow for extensive investigation of such processes in LLMPCs at the site.
Pragya Vishwakarma, Julien Delanoë, Susana Jorquera, Pauline Martinet, Frederic Burnet, Alistair Bell, and Jean-Charles Dupont
Atmos. Meas. Tech., 16, 1211–1237, https://doi.org/10.5194/amt-16-1211-2023, https://doi.org/10.5194/amt-16-1211-2023, 2023
Short summary
Short summary
Cloud observations are necessary to characterize the cloud properties at local and global scales. The observations must be translated to cloud geophysical parameters. This paper presents the estimation of liquid water content (LWC) using radar and microwave radiometer (MWR) measurements. Liquid water path from MWR scales LWC and retrieves the scaling factor (ln a). The retrievals are compared with in situ observations. A climatology of ln a is built to estimate LWC using only radar information.
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023, https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary
Short summary
Profile observations of the atmospheric boundary layer now allow for layer heights and characteristics to be derived at high temporal and vertical resolution. With novel high-density ground-based remote-sensing measurement networks emerging, horizontal information content is also increasing. This review summarises the capabilities and limitations of various sensors and retrieval algorithms which need to be considered during the harmonisation of data products for high-impact applications.
Alistair Bell, Pauline Martinet, Olivier Caumont, Frédéric Burnet, Julien Delanoë, Susana Jorquera, Yann Seity, and Vinciane Unger
Atmos. Meas. Tech., 15, 5415–5438, https://doi.org/10.5194/amt-15-5415-2022, https://doi.org/10.5194/amt-15-5415-2022, 2022
Short summary
Short summary
Cloud radars and microwave radiometers offer the potential to improve fog forecasts when assimilated into a high-resolution model. As this process can be complex, a retrieval of model variables is sometimes made as a first step. In this work, results from a 1D-Var algorithm for the retrieval of temperature, humidity and cloud liquid water content are presented. The algorithm is applied first to a synthetic dataset and then to a dataset of real measurements from a recent field campaign.
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Leonie von Terzi, José Dias Neto, Davide Ori, Alexander Myagkov, and Stefan Kneifel
Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022, https://doi.org/10.5194/acp-22-11795-2022, 2022
Short summary
Short summary
We present a statistical analysis of ice microphysical processes (IMP) in mid-latitude clouds. Combining various radar approaches, we find that the IMP active at −20 to −10 °C seems to be the main driver of ice particle size, shape and concentration. The strength of aggregation at −20 to −10 °C correlates with the increase in concentration and aspect ratio of locally formed ice particles. Despite ongoing aggregation, the concentration of ice particles stays enhanced until −4 °C.
Pascal Marquet, Pauline Martinet, Jean-François Mahfouf, Alina Lavinia Barbu, and Benjamin Ménétrier
Atmos. Meas. Tech., 15, 2021–2035, https://doi.org/10.5194/amt-15-2021-2022, https://doi.org/10.5194/amt-15-2021-2022, 2022
Short summary
Short summary
Two conservative thermodynamic variables (moist-air entropy potential temperature and total water content) are introduced into a one-dimensional EnVar data assimilation system to demonstrate their benefit for future operational assimilation schemes, with the use of microwave brightness temperatures from a ground-based radiometer installed during the field campaign SOFGO3D. Results show that the brightness temperatures analysed with the new variables are improved, including the liquid water.
Teresa Vogl, Maximilian Maahn, Stefan Kneifel, Willi Schimmel, Dmitri Moisseev, and Heike Kalesse-Los
Atmos. Meas. Tech., 15, 365–381, https://doi.org/10.5194/amt-15-365-2022, https://doi.org/10.5194/amt-15-365-2022, 2022
Short summary
Short summary
We are using machine learning techniques, a type of artificial intelligence, to detect graupel formation in clouds. The measurements used as input to the machine learning framework were performed by cloud radars. Cloud radars are instruments located at the ground, emitting radiation with wavelenghts of a few millimeters vertically into the cloud and measuring the back-scattered signal. Our novel technique can be applied to different radar systems and different weather conditions.
Alan J. Geer, Peter Bauer, Katrin Lonitz, Vasileios Barlakas, Patrick Eriksson, Jana Mendrok, Amy Doherty, James Hocking, and Philippe Chambon
Geosci. Model Dev., 14, 7497–7526, https://doi.org/10.5194/gmd-14-7497-2021, https://doi.org/10.5194/gmd-14-7497-2021, 2021
Short summary
Short summary
Satellite observations of radiation from the earth can have strong sensitivity to cloud and precipitation in the atmosphere, with applications in weather forecasting and the development of models. Computing the radiation received at the satellite sensor using radiative transfer theory requires a simulation of the optical properties of a volume containing a large number of cloud and precipitation particles. This article describes the physics used to generate these
bulkoptical properties.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Markus Karrer, Axel Seifert, Davide Ori, and Stefan Kneifel
Atmos. Chem. Phys., 21, 17133–17166, https://doi.org/10.5194/acp-21-17133-2021, https://doi.org/10.5194/acp-21-17133-2021, 2021
Short summary
Short summary
Modeling precipitation is of great relevance, e.g., for mitigating damage caused by extreme weather. A key component in accurate precipitation modeling is aggregation, i.e., sticking together of snowflakes. Simulating aggregation is difficult due to multiple parameters that are not well-known. Knowing how these parameters affect aggregation can help its simulation. We put new parameters in the model and select a combination of parameters with which the model can simulate observations better.
Alistair Bell, Pauline Martinet, Olivier Caumont, Benoît Vié, Julien Delanoë, Jean-Charles Dupont, and Mary Borderies
Atmos. Meas. Tech., 14, 4929–4946, https://doi.org/10.5194/amt-14-4929-2021, https://doi.org/10.5194/amt-14-4929-2021, 2021
Short summary
Short summary
This paper presents work towards making retrievals on the liquid water content in fog and low clouds. Future retrievals will rely on a radar simulator and high-resolution forecast. In this work, real observations are used to assess the errors associated with the simulator and forecast. A selection method to reduce errors associated with the forecast is proposed. It is concluded that the distribution of errors matches the requirements for future retrievals.
James Hocking, Jérôme Vidot, Pascal Brunel, Pascale Roquet, Bruna Silveira, Emma Turner, and Cristina Lupu
Geosci. Model Dev., 14, 2899–2915, https://doi.org/10.5194/gmd-14-2899-2021, https://doi.org/10.5194/gmd-14-2899-2021, 2021
Short summary
Short summary
RTTOV is a fast radiative transfer model for simulating passive satellite-based observations at visible, infrared, and microwave wavelengths. A core part of the model is a parameterisation of the absorption of radiation by the various gases present in the atmosphere. We present a new parameterisation that performs well compared to the existing one in terms of accuracy and can be developed further more easily. The new parameterisation is implemented in the latest release, RTTOV v13.0.
Ayham Alyosef, Domenico Cimini, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Marianna Biscarini, Luca Milani, Antonio Martellucci, Sabrina Gentile, Saverio T. Nilo, Francesco Di Paola, Ayman Alkhateeb, and Filomena Romano
Atmos. Meas. Tech., 14, 2737–2748, https://doi.org/10.5194/amt-14-2737-2021, https://doi.org/10.5194/amt-14-2737-2021, 2021
Short summary
Short summary
Telecommunication is based on the propagation of radio signals through the atmosphere. The signal power diminishes along the path due to atmospheric attenuation, which needs to be estimated to be accounted for. In a study funded by the European Space Agency, we demonstrate an innovative method improving atmospheric attenuation estimates from ground-based radiometric measurements by 10–30 %. More accurate atmospheric attenuation estimates imply better telecommunication services in the future.
Davide Ori, Leonie von Terzi, Markus Karrer, and Stefan Kneifel
Geosci. Model Dev., 14, 1511–1531, https://doi.org/10.5194/gmd-14-1511-2021, https://doi.org/10.5194/gmd-14-1511-2021, 2021
Short summary
Short summary
Snowflakes have very complex shapes, and modeling their properties requires vast computing power. We produced a large number of realistic snowflakes and modeled their average properties by leveraging their fractal structure. Our approach allows modeling the properties of big ensembles of snowflakes, taking into account their natural variability, at a much lower cost. This enables the usage of remote sensing instruments, such as radars, to monitor the evolution of clouds and precipitation.
Kamil Mróz, Alessandro Battaglia, Stefan Kneifel, Leonie von Terzi, Markus Karrer, and Davide Ori
Atmos. Meas. Tech., 14, 511–529, https://doi.org/10.5194/amt-14-511-2021, https://doi.org/10.5194/amt-14-511-2021, 2021
Short summary
Short summary
The article examines the relationship between the characteristics of rain and the properties of the ice cloud from which the rain originated. Our results confirm the widely accepted assumption that the mass flux through the melting zone is well preserved with an exception of extreme aggregation and riming conditions. Moreover, it is shown that the mean (mass-weighted) size of particles above and below the melting zone is strongly linked, with the former being on average larger.
Pauline Martinet, Domenico Cimini, Frédéric Burnet, Benjamin Ménétrier, Yann Michel, and Vinciane Unger
Atmos. Meas. Tech., 13, 6593–6611, https://doi.org/10.5194/amt-13-6593-2020, https://doi.org/10.5194/amt-13-6593-2020, 2020
Short summary
Short summary
Each year large human and economical losses are due to fog episodes. However, fog forecasts remain quite inaccurate, partly due to a lack of observations in the atmospheric boundary layer. The benefit of ground-based microwave radiometers has been investigated and has demonstrated their capability of significantly improving the initial state of temperature and liquid water content profiles in current numerical weather prediction models, paving the way for improved fog forecasts in the future.
Jie Gong, Xiping Zeng, Dong L. Wu, S. Joseph Munchak, Xiaowen Li, Stefan Kneifel, Davide Ori, Liang Liao, and Donifan Barahona
Atmos. Chem. Phys., 20, 12633–12653, https://doi.org/10.5194/acp-20-12633-2020, https://doi.org/10.5194/acp-20-12633-2020, 2020
Short summary
Short summary
This work provides a novel way of using polarized passive microwave measurements to study the interlinked cloud–convection–precipitation processes. The magnitude of differences between polarized radiances is found linked to ice microphysics (shape, size, orientation and density), mesoscale dynamic and thermodynamic structures, and surface precipitation. We conclude that passive sensors with multiple polarized channel pairs may serve as cheaper and useful substitutes for spaceborne radar sensors.
Alexander Myagkov, Stefan Kneifel, and Thomas Rose
Atmos. Meas. Tech., 13, 5799–5825, https://doi.org/10.5194/amt-13-5799-2020, https://doi.org/10.5194/amt-13-5799-2020, 2020
Short summary
Short summary
This study shows two methods for evaluating the reflectivity calibration of W-band cloud radars. Both methods use natural rain as a reference target. The first method is based on spectral polarimetric observations and requires a polarimetric cloud radar with a scanner. The second method utilizes disdrometer observations and can be applied to scanning and vertically pointed radars. Both methods show consistent results and can be applied for operational monitoring of measurement quality.
Frédéric Tridon, Alessandro Battaglia, and Stefan Kneifel
Atmos. Meas. Tech., 13, 5065–5085, https://doi.org/10.5194/amt-13-5065-2020, https://doi.org/10.5194/amt-13-5065-2020, 2020
Short summary
Short summary
The droplets and ice crystals composing clouds and precipitation interact with microwaves and can therefore be observed by radars, but they can also attenuate the signal they emit. By combining the observations made by two ground-based radars, this study describes an original approach for estimating such attenuation. As a result, the latter can be not only corrected in the radar observations but also exploited for providing an accurate characterization of droplet and ice crystal properties.
Mario Mech, Maximilian Maahn, Stefan Kneifel, Davide Ori, Emiliano Orlandi, Pavlos Kollias, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020, https://doi.org/10.5194/gmd-13-4229-2020, 2020
Short summary
Short summary
The Passive and Active Microwave TRAnsfer tool (PAMTRA) is a public domain software package written in Python and Fortran for the simulation of microwave remote sensing observations. PAMTRA models the interaction of radiation with gases, clouds, precipitation, and the surface using either in situ observations or model output as input parameters. The wide range of applications is demonstrated for passive (radiometer) and active (radar) instruments on ground, airborne, and satellite platforms.
Darielle Dexheimer, Martin Airey, Erika Roesler, Casey Longbottom, Keri Nicoll, Stefan Kneifel, Fan Mei, R. Giles Harrison, Graeme Marlton, and Paul D. Williams
Atmos. Meas. Tech., 12, 6845–6864, https://doi.org/10.5194/amt-12-6845-2019, https://doi.org/10.5194/amt-12-6845-2019, 2019
Short summary
Short summary
A tethered-balloon system deployed supercooled liquid water content sondes and fiber optic distributed temperature sensing to collect in situ atmospheric measurements within mixed-phase Arctic clouds. These data were validated against collocated surface-based and remote sensing datasets. From these measurements and sensor evaluations, tethered-balloon flights are shown to offer an effective method of collecting data to inform numerical models and calibrate remote sensing instrumentation.
Shannon L. Mason, Robin J. Hogan, Christopher D. Westbrook, Stefan Kneifel, Dmitri Moisseev, and Leonie von Terzi
Atmos. Meas. Tech., 12, 4993–5018, https://doi.org/10.5194/amt-12-4993-2019, https://doi.org/10.5194/amt-12-4993-2019, 2019
Short summary
Short summary
The mass contents of snowflakes are critical to remotely sensed estimates of snowfall. The signatures of snow measured at three radar frequencies can distinguish fluffy, fractal snowflakes from dense and more homogeneous rimed snow. However, we show that the shape of the particle size spectrum also has a significant impact on triple-frequency radar signatures and must be accounted for when making triple-frequency radar estimates of snow that include variations in particle structure and density.
José Dias Neto, Stefan Kneifel, Davide Ori, Silke Trömel, Jan Handwerker, Birger Bohn, Normen Hermes, Kai Mühlbauer, Martin Lenefer, and Clemens Simmer
Earth Syst. Sci. Data, 11, 845–863, https://doi.org/10.5194/essd-11-845-2019, https://doi.org/10.5194/essd-11-845-2019, 2019
Short summary
Short summary
This study describes a 2-month dataset of ground-based, vertically pointing triple-frequency cloud radar observations recorded during the winter season 2015/2016 in Jülich, Germany. Intensive quality control has been applied to the unique long-term dataset, which allows the multifrequency signatures of ice and snow particles to be statistically analyzed for the first time. The analysis includes, for example, aggregation and its dependence on cloud temperature, riming, and onset of melting.
Domenico Cimini, James Hocking, Francesco De Angelis, Angela Cersosimo, Francesco Di Paola, Donatello Gallucci, Sabrina Gentile, Edoardo Geraldi, Salvatore Larosa, Saverio Nilo, Filomena Romano, Elisabetta Ricciardelli, Ermann Ripepi, Mariassunta Viggiano, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Pauline Martinet, Yun Young Song, Myoung Hwan Ahn, and Philip W. Rosenkranz
Geosci. Model Dev., 12, 1833–1845, https://doi.org/10.5194/gmd-12-1833-2019, https://doi.org/10.5194/gmd-12-1833-2019, 2019
Short summary
Short summary
The fast radiative transfer model RTTOV-gb was developed to foster ground-based microwave radiometer data assimilation into numerical weather prediction models, as introduced in a companion paper (https://doi.org/10.5194/gmd-9-2721-2016). Here we present the updates and new features of the current version (v1.0), which is freely accessible online.
Fabien Carminati, Stefano Migliorini, Bruce Ingleby, William Bell, Heather Lawrence, Stuart Newman, James Hocking, and Andrew Smith
Atmos. Meas. Tech., 12, 83–106, https://doi.org/10.5194/amt-12-83-2019, https://doi.org/10.5194/amt-12-83-2019, 2019
Short summary
Short summary
The GRUAN processor is a software developed to collocate radiosonde profiles and numerical weather prediction model fields, simulate top-of-atmosphere brightness temperature at frequencies used by space-borne instruments, and propagate the radiosonde uncertainties in that simulation. This work responds to an identified lack of metrologically traceable characterisation of uncertainties in model fields that are increasingly used for the validation and calibration of space-borne instruments.
Domenico Cimini, Philip W. Rosenkranz, Mikhail Y. Tretyakov, Maksim A. Koshelev, and Filomena Romano
Atmos. Chem. Phys., 18, 15231–15259, https://doi.org/10.5194/acp-18-15231-2018, https://doi.org/10.5194/acp-18-15231-2018, 2018
Short summary
Short summary
The paper presents a general approach to quantify the uncertainty related to atmospheric absorption models. These models describe how the atmosphere interacts with radiation, and they have general implications for atmospheric sciences.
The presented approach contributes to a better understanding of the total uncertainty affecting atmospheric radiative properties, thus reducing the chances of systematic errors when observations are exploited for weather forecast or climate trend derivations.
Roger Saunders, James Hocking, Emma Turner, Peter Rayer, David Rundle, Pascal Brunel, Jerome Vidot, Pascale Roquet, Marco Matricardi, Alan Geer, Niels Bormann, and Cristina Lupu
Geosci. Model Dev., 11, 2717–2737, https://doi.org/10.5194/gmd-11-2717-2018, https://doi.org/10.5194/gmd-11-2717-2018, 2018
Short summary
Short summary
This paper describes a fast atmospheric radiative transfer model, RTTOV, which is widely used in the satellite retrieval and weather forecast model assimilation communities. It computes top-of-atmosphere radiances for visible, infrared and microwave downward-viewing satellite radiometers. It enables the satellite data, which are a key part of the observing system, to be optimally used with forecast models. The developments made to RTTOV over the past 20 years are summarised.
Francesco De Angelis, Domenico Cimini, Ulrich Löhnert, Olivier Caumont, Alexander Haefele, Bernhard Pospichal, Pauline Martinet, Francisco Navas-Guzmán, Henk Klein-Baltink, Jean-Charles Dupont, and James Hocking
Atmos. Meas. Tech., 10, 3947–3961, https://doi.org/10.5194/amt-10-3947-2017, https://doi.org/10.5194/amt-10-3947-2017, 2017
Short summary
Short summary
Modern data assimilation systems require knowledge of the typical differences between observations and model background (O–B). This work illustrates a 1-year O–B analysis for ground-based microwave radiometer (MWR) observations in clear-sky conditions for a prototype network of six MWRs in Europe. Observations are MWR brightness temperatures (TB). Background profiles extracted from the output of a convective-scale model are used to simulate TB through the radiative transfer model RTTOV-gb.
Pauline Martinet, Domenico Cimini, Francesco De Angelis, Guylaine Canut, Vinciane Unger, Remi Guillot, Diane Tzanos, and Alexandre Paci
Atmos. Meas. Tech., 10, 3385–3402, https://doi.org/10.5194/amt-10-3385-2017, https://doi.org/10.5194/amt-10-3385-2017, 2017
Short summary
Short summary
Microwave radiometers have the capability of observing temperature and humidity profiles with a few minute time resolution. This study investigates the potential benefit of this instrument to improve weather forecasts thanks to a better initialization of the model. Our results show that a significant improvement can be expected in the model initialization in the first 3 km with potential impacts on weather forecasts.
Claudia Acquistapace, Stefan Kneifel, Ulrich Löhnert, Pavlos Kollias, Maximilian Maahn, and Matthias Bauer-Pfundstein
Atmos. Meas. Tech., 10, 1783–1802, https://doi.org/10.5194/amt-10-1783-2017, https://doi.org/10.5194/amt-10-1783-2017, 2017
Short summary
Short summary
The goal of the paper is to understand what the optimal cloud radar settings for drizzle detection are. The number of cloud radars in the world has increased in the last 10 years and it is important to develop strategies to derive optimal settings which can be applied to all radar systems. The study is part of broader research focused on better understanding the microphysical process of drizzle growth using ground-based observations.
John C. Kealy, Franco Marenco, John H. Marsham, Luis Garcia-Carreras, Pete N. Francis, Michael C. Cooke, and James Hocking
Atmos. Chem. Phys., 17, 5789–5807, https://doi.org/10.5194/acp-17-5789-2017, https://doi.org/10.5194/acp-17-5789-2017, 2017
Short summary
Short summary
Using novel methods of cloud detection from aircraft data over the Sahara desert, we evaluate the performance of the Meteosat satellite in measuring cloud properties: namely, the cloud mask and the cloud-top height. We find that the cloud mask can justifiably be used for many applications (such as creating a detailed Saharan cloud climatology), and we also discuss its limitations. As for the cloud-top height, we show that the dataset cannot yet be considered robust in this part of the world.
Heike Kalesse, Wanda Szyrmer, Stefan Kneifel, Pavlos Kollias, and Edward Luke
Atmos. Chem. Phys., 16, 2997–3012, https://doi.org/10.5194/acp-16-2997-2016, https://doi.org/10.5194/acp-16-2997-2016, 2016
Short summary
Short summary
Mixed-phase clouds are ubiquitous. Process-level understanding is needed to address the complexity of mixed-phase clouds and to improve their representation in models. This study illustrates steps to identify the impact of a microphysical process (riming) on cloud Doppler radar observations. It suggests that in situ observations of key ice properties are needed to complement radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations in models.
M. S. Johnston, G. Holl, J. Hocking, S. J. Cooper, and D. Chen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-11753-2015, https://doi.org/10.5194/amtd-8-11753-2015, 2015
Preprint withdrawn
I. V. Gorodetskaya, S. Kneifel, M. Maahn, K. Van Tricht, W. Thiery, J. H. Schween, A. Mangold, S. Crewell, and N. P. M. Van Lipzig
The Cryosphere, 9, 285–304, https://doi.org/10.5194/tc-9-285-2015, https://doi.org/10.5194/tc-9-285-2015, 2015
Short summary
Short summary
Our paper presents a new cloud-precipitation-meteorological observatory established in the escarpment zone of Dronning Maud Land, East Antarctica. The site is characterised by bimodal cloud occurrence (clear sky or overcast) with liquid-containing clouds occurring 20% of the cloudy periods. Local surface mass balance strongly depends on rare intense snowfall events. A substantial part of the accumulated snow is removed by surface and drifting snow sublimation and wind-driven snow erosion.
D. Cimini, M. Nelson, J. Güldner, and R. Ware
Atmos. Meas. Tech., 8, 315–333, https://doi.org/10.5194/amt-8-315-2015, https://doi.org/10.5194/amt-8-315-2015, 2015
Short summary
Short summary
Forecast indices commonly used in operational meteorology can be computed from temperature and humidity profiles retrieved from a ground-based microwave radiometer.
The values of radiometer-derived forecast indices agree well with values computed from radiosondes (correlation usually above 0.8).
Radiometer-derived forecast indices offer the advantage (with respect to radiosondes) of nearly continuous data, capturing the entire diurnal cycle and providing fresh and timely data to forecasters.
E. Ricciardelli, D. Cimini, F. Di Paola, F. Romano, and M. Viggiano
Hydrol. Earth Syst. Sci., 18, 2559–2576, https://doi.org/10.5194/hess-18-2559-2014, https://doi.org/10.5194/hess-18-2559-2014, 2014
A. Battaglia, C. D. Westbrook, S. Kneifel, P. Kollias, N. Humpage, U. Löhnert, J. Tyynelä, and G. W. Petty
Atmos. Meas. Tech., 7, 1527–1546, https://doi.org/10.5194/amt-7-1527-2014, https://doi.org/10.5194/amt-7-1527-2014, 2014
D. Cimini, F. Romano, E. Ricciardelli, F. Di Paola, M. Viggiano, F. S. Marzano, V. Colaiuda, E. Picciotti, G. Vulpiani, and V. Cuomo
Atmos. Meas. Tech., 6, 3181–3196, https://doi.org/10.5194/amt-6-3181-2013, https://doi.org/10.5194/amt-6-3181-2013, 2013
D. Cimini, F. De Angelis, J.-C. Dupont, S. Pal, and M. Haeffelin
Atmos. Meas. Tech., 6, 2941–2951, https://doi.org/10.5194/amt-6-2941-2013, https://doi.org/10.5194/amt-6-2941-2013, 2013
Related subject area
Atmospheric sciences
Modelling concentration heterogeneities in streets using the street-network model MUNICH
Simulation model of Reactive Nitrogen Species in an Urban Atmosphere using a Deep Neural Network: RNDv1.0
J-GAIN v1.1: a flexible tool to incorporate aerosol formation rates obtained by molecular models into large-scale models
Metrics for evaluating the quality in linear atmospheric inverse problems: a case study of a trace gas inversion
Improved representation of volcanic sulfur dioxide depletion in Lagrangian transport simulations: a case study with MPTRAC v2.4
Use of threshold parameter variation for tropical cyclone tracking
Passive-tracer modelling at super-resolution with Weather Research and Forecasting – Advanced Research WRF (WRF-ARW) to assess mass-balance schemes
The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.1) model enables fast dynamic downscaling to the hectometer scale
A gridded air quality forecast through fusing site-available machine learning predictions from RFSML v1.0 and chemical transport model results from GEOS-Chem v13.1.0 using the ensemble Kalman filter
Plume detection and emission estimate for biomass burning plumes from TROPOMI carbon monoxide observations using APE v1.1
CHEEREIO 1.0: a versatile and user-friendly ensemble-based chemical data assimilation and emissions inversion platform for the GEOS-Chem chemical transport model
A method to derive Fourier–wavelet spectra for the characterization of global-scale waves in the mesosphere and lower thermosphere and its MATLAB and Python software (fourierwavelet v1.1)
Dynamic Meteorology-induced Emissions Coupler (MetEmis) development in the Community Multiscale Air Quality (CMAQ): CMAQ-MetEmis
Visual analysis of model parameter sensitivities along warm conveyor belt trajectories using Met.3D (1.6.0-multivar1)
Simulating heat and CO2 fluxes in Beijing using SUEWS V2020b: sensitivity to vegetation phenology and maximum conductance
A Python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0
The three-dimensional structure of fronts in mid-latitude weather systems in numerical weather prediction models
The development and validation of the Inhomogeneous Wind Scheme for Urban Street (IWSUS-v1)
GPU-HADVPPM V1.0: a high-efficiency parallel GPU design of the piecewise parabolic method (PPM) for horizontal advection in an air quality model (CAMx V6.10)
Variability and combination as an ensemble of mineral dust forecasts during the 2021 CADDIWA experiment using the WRF 3.7.1 and CHIMERE v2020r3 models
Breakups are complicated: an efficient representation of collisional breakup in the superdroplet method
An optimized semi-empirical physical approach for satellite-based PM2.5 retrieval: embedding machine learning to simulate complex physical parameters
Sensitivity of tropospheric ozone to halogen chemistry in the chemistry–climate model LMDZ-INCA vNMHC
Segmentation of XCO2 images with deep learning: application to synthetic plumes from cities and power plants
Evaluating precipitation distributions at regional scales: a benchmarking framework and application to CMIP5 and 6 models
The Fire Inventory from NCAR version 2.5: an updated global fire emissions model for climate and chemistry applications
An approach to refining the ground meteorological observation stations for improving PM2.5 forecasts in the Beijing–Tianjin–Hebei region
Assessment of WRF (v 4.2.1) dynamically downscaled precipitation on subdaily and daily timescales over CONUS
Convective-gust nowcasting based on radar reflectivity and a deep learning algorithm
Self-nested large-eddy simulations in PALM model system v21.10 for offshore wind prediction under different atmospheric stability conditions
How does cloud-radiative heating over the North Atlantic change with grid spacing, convective parameterization, and microphysics scheme in ICON version 2.1.00?
Simulations of idealised 3D atmospheric flows on terrestrial planets using LFRic-Atmosphere
Updated isoprene and terpene emission factors for the Interactive BVOC (iBVOC) emission scheme in the United Kingdom Earth System Model (UKESM1.0)
Technical descriptions of the experimental dynamical downscaling simulations over North America by the CAM–MPAS variable-resolution model
Evaluating WRF-GC v2.0 predictions of boundary layer and vertical ozone profiles during the 2021 TRACER-AQ campaign in Houston, Texas
Intercomparison of the weather and climate physics suites of a unified forecast–climate model system (GRIST-A22.7.28) based on single-column modeling
A robust error correction method for numerical weather prediction wind speed based on Bayesian optimization, Variational Mode Decomposition, Principal Component Analysis, and Random Forest: VMD-PCA-RF (version 1.0.0)
Halogen chemistry in volcanic plumes: a 1D framework based on MOCAGE 1D (version R1.18.1) preparing 3D global chemistry modelling
PyFLEXTRKR: a flexible feature tracking Python software for convective cloud analysis
CLGAN: a generative adversarial network (GAN)-based video prediction model for precipitation nowcasting
Long-term evaluation of surface air pollution in CAMSRA and MERRA-2 global reanalyses over Europe (2003–2020)
A simplified non-linear chemistry-transport model for analyzing NO2 column observations
Evaluating Three Decades of Precipitation in the Upper Colorado River Basin from a High-Resolution Regional Climate Model
Emulating aerosol optics with randomly generated neural networks
Development of an ecophysiology module in the GEOS-Chem chemical transport model version 12.2.0 to represent biosphere–atmosphere fluxes relevant for ozone air quality
Application of the Multi-Scale Infrastructure for Chemistry and Aerosols version 0 (MUSICAv0) for air quality in Africa
Comparison of ozone formation attribution techniques in the northeastern United States
Description and performance of the CARMA sectional aerosol microphysical model in CESM2
Improving trajectory calculations by FLEXPART 10.4+ using single-image super-resolution
Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona: a case study with CALIOPE-Urban v1.0
Thibaud Sarica, Alice Maison, Yelva Roustan, Matthias Ketzel, Steen Solvang Jensen, Youngseob Kim, Christophe Chaillou, and Karine Sartelet
Geosci. Model Dev., 16, 5281–5303, https://doi.org/10.5194/gmd-16-5281-2023, https://doi.org/10.5194/gmd-16-5281-2023, 2023
Short summary
Short summary
A new version of the Model of Urban Network of Intersecting Canyons and Highways (MUNICH) is developed to represent heterogeneities of concentrations in streets. The street volume is discretized vertically and horizontally to limit the artificial dilution of emissions and concentrations. This new version is applied to street networks in Copenhagen and Paris. The comparisons to observations are improved, with higher concentrations of pollutants emitted by traffic at the bottom of the street.
Junsu Gil, Meehye Lee, Jeonghwan Kim, Gangwoong Lee, Joonyoung Ahn, and Cheol-Hee Kim
Geosci. Model Dev., 16, 5251–5263, https://doi.org/10.5194/gmd-16-5251-2023, https://doi.org/10.5194/gmd-16-5251-2023, 2023
Short summary
Short summary
In this study, the framework for calculating reactive nitrogen species using a deep neural network (RND) was developed. It works through simple Python codes and provides high-accuracy reactive nitrogen oxide data. In the first version (RNDv1.0), the model calculates the nitrous acid (HONO) in urban areas, which has an important role in producing O3 and fine aerosol.
Daniel Yazgi and Tinja Olenius
Geosci. Model Dev., 16, 5237–5249, https://doi.org/10.5194/gmd-16-5237-2023, https://doi.org/10.5194/gmd-16-5237-2023, 2023
Short summary
Short summary
We present flexible tools to implement aerosol formation rate predictions in climate and chemical transport models. New-particle formation is a significant but uncertain factor affecting aerosol numbers and an active field within molecular modeling which provides data for assessing formation rates for different chemical species. We introduce tools to generate and interpolate formation rate lookup tables for user-defined data, thus enabling the easy inclusion and testing of formation schemes.
Vineet Yadav, Subhomoy Ghosh, and Charles E. Miller
Geosci. Model Dev., 16, 5219–5236, https://doi.org/10.5194/gmd-16-5219-2023, https://doi.org/10.5194/gmd-16-5219-2023, 2023
Short summary
Short summary
Measuring the performance of inversions in linear Bayesian problems is crucial in real-life applications. In this work, we provide analytical forms of the local and global sensitivities of the estimated fluxes with respect to various inputs. We provide methods to uniquely map the observational signal to spatiotemporal domains. Utilizing this, we also show techniques to assess correlations between the Jacobians that naturally translate to nonstationary covariance matrix components.
Mingzhao Liu, Lars Hoffmann, Sabine Griessbach, Zhongyin Cai, Yi Heng, and Xue Wu
Geosci. Model Dev., 16, 5197–5217, https://doi.org/10.5194/gmd-16-5197-2023, https://doi.org/10.5194/gmd-16-5197-2023, 2023
Short summary
Short summary
We introduce new and revised chemistry and physics modules in the Massive-Parallel Trajectory Calculations (MPTRAC) Lagrangian transport model aiming to improve the representation of volcanic SO2 transport and depletion. We test these modules in a case study of the Ambae eruption in July 2018 in which the SO2 plume underwent wet removal and convection. The lifetime of SO2 shows highly variable and complex dependencies on the atmospheric conditions at different release heights.
Bernhard M. Enz, Jan P. Engelmann, and Ulrike Lohmann
Geosci. Model Dev., 16, 5093–5112, https://doi.org/10.5194/gmd-16-5093-2023, https://doi.org/10.5194/gmd-16-5093-2023, 2023
Short summary
Short summary
An algorithm to track tropical cyclones in model simulation data has been developed. The algorithm uses many combinations of varying parameter thresholds to detect weaker phases of tropical cyclones while still being resilient to false positives. It is shown that the algorithm performs well and adequately represents the tropical cyclone activity of the underlying simulation data. The impact of false positives on overall tropical cyclone activity is shown to be insignificant.
Sepehr Fathi, Mark Gordon, and Yongsheng Chen
Geosci. Model Dev., 16, 5069–5091, https://doi.org/10.5194/gmd-16-5069-2023, https://doi.org/10.5194/gmd-16-5069-2023, 2023
Short summary
Short summary
We have combined various capabilities within a WRF model to generate simulations of atmospheric pollutant dispersion at 50 m resolution. The study objective was to resolve transport processes at the scale of measurements to assess and optimize aircraft-based emission rate retrievals. Model performance evaluation resulted in agreement within 5 % of observed meteorological and within 1–2 standard deviations of observed wind fields. Mass was conserved in the model within 5 % of input emissions.
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068, https://doi.org/10.5194/gmd-16-5049-2023, https://doi.org/10.5194/gmd-16-5049-2023, 2023
Short summary
Short summary
The challenge of running geophysical models is often compounded by the question of where to obtain appropriate data to give as input to a model. Here we present the HICAR model, a simplified atmospheric model capable of running at spatial resolutions of hectometers for long time series or over large domains. This makes physically consistent atmospheric data available at the spatial and temporal scales needed for some terrestrial modeling applications, for example seasonal snow forecasting.
Li Fang, Jianbing Jin, Arjo Segers, Hong Liao, Ke Li, Bufan Xu, Wei Han, Mijie Pang, and Hai Xiang Lin
Geosci. Model Dev., 16, 4867–4882, https://doi.org/10.5194/gmd-16-4867-2023, https://doi.org/10.5194/gmd-16-4867-2023, 2023
Short summary
Short summary
Machine learning models have gained great popularity in air quality prediction. However, they are only available at air quality monitoring stations. In contrast, chemical transport models (CTM) provide predictions that are continuous in the 3D field. Owing to complex error sources, they are typically biased. In this study, we proposed a gridded prediction with high accuracy by fusing predictions from our regional feature selection machine learning prediction (RFSML v1.0) and a CTM prediction.
Manu Goudar, Juliëtte C. S. Anema, Rajesh Kumar, Tobias Borsdorff, and Jochen Landgraf
Geosci. Model Dev., 16, 4835–4852, https://doi.org/10.5194/gmd-16-4835-2023, https://doi.org/10.5194/gmd-16-4835-2023, 2023
Short summary
Short summary
A framework was developed to automatically detect plumes and compute emission estimates with cross-sectional flux method (CFM) for biomass burning events in TROPOMI CO datasets using Visible Infrared Imaging Radiometer Suite active fire data. The emissions were more reliable when changing plume height in downwind direction was used instead of constant injection height. The CFM had uncertainty even when the meteorological conditions were accurate; thus there is a need for better inversion models.
Drew C. Pendergrass, Daniel J. Jacob, Hannah Nesser, Daniel J. Varon, Melissa Sulprizio, Kazuyuki Miyazaki, and Kevin W. Bowman
Geosci. Model Dev., 16, 4793–4810, https://doi.org/10.5194/gmd-16-4793-2023, https://doi.org/10.5194/gmd-16-4793-2023, 2023
Short summary
Short summary
We have built a tool called CHEEREIO that allows scientists to use observations of pollutants or gases in the atmosphere, such as from satellites or surface stations, to update supercomputer models that simulate the Earth. CHEEREIO uses the difference between the model simulations of the atmosphere and real-world observations to come up with a good guess for the actual composition of our atmosphere, the true emissions of various pollutants, and whatever else they may want to study.
Yosuke Yamazaki
Geosci. Model Dev., 16, 4749–4766, https://doi.org/10.5194/gmd-16-4749-2023, https://doi.org/10.5194/gmd-16-4749-2023, 2023
Short summary
Short summary
The Earth's atmosphere can support various types of global-scale waves. Some waves propagate eastward and others westward, and they can have different zonal wavenumbers. The Fourier–wavelet analysis is a useful technique for identifying different components of global-scale waves and their temporal variability. This paper introduces an easy-to-implement method to derive Fourier–wavelet spectra from 2-D space–time data. Application examples are presented using atmospheric models.
Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Yunyao Li, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo
Geosci. Model Dev., 16, 4659–4676, https://doi.org/10.5194/gmd-16-4659-2023, https://doi.org/10.5194/gmd-16-4659-2023, 2023
Short summary
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
Christoph Neuhauser, Maicon Hieronymus, Michael Kern, Marc Rautenhaus, Annika Oertel, and Rüdiger Westermann
Geosci. Model Dev., 16, 4617–4638, https://doi.org/10.5194/gmd-16-4617-2023, https://doi.org/10.5194/gmd-16-4617-2023, 2023
Short summary
Short summary
Numerical weather prediction models rely on parameterizations for sub-grid-scale processes, which are a source of uncertainty. We present novel visual analytics solutions to analyze interactively the sensitivities of a selected prognostic variable to multiple model parameters along trajectories regarding similarities in temporal development and spatiotemporal relationships. The proposed workflow is applied to cloud microphysical sensitivities along coherent strongly ascending trajectories.
Yingqi Zheng, Minttu Havu, Huizhi Liu, Xueling Cheng, Yifan Wen, Hei Shing Lee, Joyson Ahongshangbam, and Leena Järvi
Geosci. Model Dev., 16, 4551–4579, https://doi.org/10.5194/gmd-16-4551-2023, https://doi.org/10.5194/gmd-16-4551-2023, 2023
Short summary
Short summary
The performance of the Surface Urban Energy and Water Balance Scheme (SUEWS) is evaluated against the observed surface exchanges (fluxes) of heat and carbon dioxide in a densely built neighborhood in Beijing. The heat flux modeling is noticeably improved by using the observed maximum conductance and by optimizing the vegetation phenology modeling. SUEWS also performs well in simulating carbon dioxide flux.
Simone Dietmüller, Sigrun Matthes, Katrin Dahlmann, Hiroshi Yamashita, Abolfazl Simorgh, Manuel Soler, Florian Linke, Benjamin Lührs, Maximilian M. Meuser, Christian Weder, Volker Grewe, Feijia Yin, and Federica Castino
Geosci. Model Dev., 16, 4405–4425, https://doi.org/10.5194/gmd-16-4405-2023, https://doi.org/10.5194/gmd-16-4405-2023, 2023
Short summary
Short summary
Climate-optimized aircraft trajectories avoid atmospheric regions with a large climate impact due to aviation emissions. This requires spatially and temporally resolved information on aviation's climate impact. We propose using algorithmic climate change functions (aCCFs) for CO2 and non-CO2 effects (ozone, methane, water vapor, contrail cirrus). Merged aCCFs combine individual aCCFs by assuming aircraft-specific parameters and climate metrics. Technically this is done with a Python library.
Andreas A. Beckert, Lea Eisenstein, Annika Oertel, Tim Hewson, George C. Craig, and Marc Rautenhaus
Geosci. Model Dev., 16, 4427–4450, https://doi.org/10.5194/gmd-16-4427-2023, https://doi.org/10.5194/gmd-16-4427-2023, 2023
Short summary
Short summary
We investigate the benefit of objective 3-D front detection with modern interactive visual analysis techniques for case studies of extra-tropical cyclones and comparisons of frontal structures between different numerical weather prediction models. The 3-D frontal structures show agreement with 2-D fronts from surface analysis charts and augment them in the vertical dimension. We see great potential for more complex studies of atmospheric dynamics and for operational weather forecasting.
Zhenxin Liu, Yuanhao Chen, Yuhang Wang, Cheng Liu, Shuhua Liu, and Hong Liao
Geosci. Model Dev., 16, 4385–4403, https://doi.org/10.5194/gmd-16-4385-2023, https://doi.org/10.5194/gmd-16-4385-2023, 2023
Short summary
Short summary
The heterogeneous layout of urban buildings leads to the complex wind field in and over the urban canopy. Large discrepancies between the observations and the current simulations result from misunderstanding the character of the wind field. The Inhomogeneous Wind Scheme in Urban Street (IWSUS) was developed to simulate the heterogeneity of the wind speed in a typical street and then improve the simulated energy budget in the lower atmospheric layer over the urban canopy.
Kai Cao, Qizhong Wu, Lingling Wang, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongqing Li, and Lanning Wang
Geosci. Model Dev., 16, 4367–4383, https://doi.org/10.5194/gmd-16-4367-2023, https://doi.org/10.5194/gmd-16-4367-2023, 2023
Short summary
Short summary
Offline performance experiment results show that the GPU-HADVPPM on a V100 GPU can achieve up to 1113.6 × speedups to its original version on an E5-2682 v4 CPU. A series of optimization measures are taken, and the CAMx-CUDA model improves the computing efficiency by 128.4 × on a single V100 GPU card. A parallel architecture with an MPI plus CUDA hybrid paradigm is presented, and it can achieve up to 4.5 × speedup when launching eight CPU cores and eight GPU cards.
Laurent Menut
Geosci. Model Dev., 16, 4265–4281, https://doi.org/10.5194/gmd-16-4265-2023, https://doi.org/10.5194/gmd-16-4265-2023, 2023
Short summary
Short summary
This study analyzes forecasts that were made in 2021 to help trigger measurements during the CADDIWA experiment. The WRF and CHIMERE models were run each day, and the first goal is to quantify the variability of the forecast as a function of forecast leads and forecast location. The possibility of using the different leads as an ensemble is also tested. For some locations, the correlation scores are better with this approach. This could be tested on operational forecast chains in the future.
Emily de Jong, John Ben Mackay, Oleksii Bulenok, Anna Jaruga, and Sylwester Arabas
Geosci. Model Dev., 16, 4193–4211, https://doi.org/10.5194/gmd-16-4193-2023, https://doi.org/10.5194/gmd-16-4193-2023, 2023
Short summary
Short summary
In clouds, collisional breakup occurs when two colliding droplets splinter into new, smaller fragments. Particle-based modeling approaches often do not represent breakup because of the computational demands of creating new droplets. We present a particle-based breakup method that preserves the computational efficiency of these methods. In a series of simple demonstrations, we show that this representation alters cloud processes in reasonable and expected ways.
Caiyi Jin, Qiangqiang Yuan, Tongwen Li, Yuan Wang, and Liangpei Zhang
Geosci. Model Dev., 16, 4137–4154, https://doi.org/10.5194/gmd-16-4137-2023, https://doi.org/10.5194/gmd-16-4137-2023, 2023
Short summary
Short summary
The semi-empirical physical approach derives PM2.5 with strong physical significance. However, due to the complex optical characteristic, the physical parameters are difficult to express accurately. Thus, combining the atmospheric physical mechanism and machine learning, we propose an optimized model. It creatively embeds the random forest model into the physical PM2.5 remote sensing approach to simulate a physical parameter. Our method shows great optimized performance in the validations.
Cyril Caram, Sophie Szopa, Anne Cozic, Slimane Bekki, Carlos A. Cuevas, and Alfonso Saiz-Lopez
Geosci. Model Dev., 16, 4041–4062, https://doi.org/10.5194/gmd-16-4041-2023, https://doi.org/10.5194/gmd-16-4041-2023, 2023
Short summary
Short summary
We studied the role of halogenated compounds (containing chlorine, bromine and iodine), emitted by natural processes (mainly above the oceans), in the chemistry of the lower layers of the atmosphere. We introduced this relatively new chemistry in a three-dimensional climate–chemistry model and looked at how this chemistry will disrupt the ozone. We showed that the concentration of ozone decreases by 22 % worldwide and that of the atmospheric detergent, OH, by 8 %.
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Marc Bocquet, Jinghui Lian, Grégoire Broquet, Gerrit Kuhlmann, Alexandre Danjou, and Thomas Lauvaux
Geosci. Model Dev., 16, 3997–4016, https://doi.org/10.5194/gmd-16-3997-2023, https://doi.org/10.5194/gmd-16-3997-2023, 2023
Short summary
Short summary
Monitoring of CO2 emissions is key to the development of reduction policies. Local emissions, from cities or power plants, may be estimated from CO2 plumes detected in satellite images. CO2 plumes generally have a weak signal and are partially concealed by highly variable background concentrations and instrument errors, which hampers their detection. To address this problem, we propose and apply deep learning methods to detect the contour of a plume in simulated CO2 satellite images.
Min-Seop Ahn, Paul A. Ullrich, Peter J. Gleckler, Jiwoo Lee, Ana C. Ordonez, and Angeline G. Pendergrass
Geosci. Model Dev., 16, 3927–3951, https://doi.org/10.5194/gmd-16-3927-2023, https://doi.org/10.5194/gmd-16-3927-2023, 2023
Short summary
Short summary
We introduce a framework for regional-scale evaluation of simulated precipitation distributions with 62 climate reference regions and 10 metrics and apply it to evaluate CMIP5 and CMIP6 models against multiple satellite-based precipitation products. The common model biases identified in this study are mainly associated with the overestimated light precipitation and underestimated heavy precipitation. These biases persist from earlier-generation models and have been slightly improved in CMIP6.
Christine Wiedinmyer, Yosuke Kimura, Elena C. McDonald-Buller, Louisa K. Emmons, Rebecca R. Buchholz, Wenfu Tang, Keenan Seto, Maxwell B. Joseph, Kelley C. Barsanti, Annmarie G. Carlton, and Robert Yokelson
Geosci. Model Dev., 16, 3873–3891, https://doi.org/10.5194/gmd-16-3873-2023, https://doi.org/10.5194/gmd-16-3873-2023, 2023
Short summary
Short summary
The Fire INventory from NCAR (FINN) provides daily global estimates of emissions from open fires based on satellite detections of hot spots. This version has been updated to apply MODIS and VIIRS satellite fire detection and better represents both large and small fires. FINNv2.5 generates more emissions than FINNv1 and is in general agreement with other fire emissions inventories. The new estimates are consistent with satellite observations, but uncertainties remain regionally and by pollutant.
Lichao Yang, Wansuo Duan, and Zifa Wang
Geosci. Model Dev., 16, 3827–3848, https://doi.org/10.5194/gmd-16-3827-2023, https://doi.org/10.5194/gmd-16-3827-2023, 2023
Short summary
Short summary
An approach is proposed to refine a ground meteorological observation network to improve the PM2.5 forecasts in the Beijing–Tianjin–Hebei region. A cost-effective observation network is obtained and makes the relevant PM2.5 forecasts assimilate fewer observations but achieve the forecasting skill comparable to or higher than that obtained by assimilating all ground station observations, suggesting that many of the current ground stations can be greatly scattered to avoid much unnecessary work.
Abhishekh Kumar Srivastava, Paul Aaron Ullrich, Deeksha Rastogi, Pouya Vahmani, Andrew Jones, and Richard Grotjahn
Geosci. Model Dev., 16, 3699–3722, https://doi.org/10.5194/gmd-16-3699-2023, https://doi.org/10.5194/gmd-16-3699-2023, 2023
Short summary
Short summary
Stakeholders need high-resolution regional climate data for applications such as assessing water availability and mountain snowpack. This study examines 3 h and 24 h historical precipitation over the contiguous United States in the 12 km WRF version 4.2.1-based dynamical downscaling of the ERA5 reanalysis. WRF improves precipitation characteristics such as the annual cycle and distribution of the precipitation maxima, but it also displays regionally and seasonally varying precipitation biases.
Haixia Xiao, Yaqiang Wang, Yu Zheng, Yuanyuan Zheng, Xiaoran Zhuang, Hongyan Wang, and Mei Gao
Geosci. Model Dev., 16, 3611–3628, https://doi.org/10.5194/gmd-16-3611-2023, https://doi.org/10.5194/gmd-16-3611-2023, 2023
Short summary
Short summary
Due to the small-scale and nonstationary nature of convective wind gusts (CGs), reliable CG nowcasting has remained unattainable. Here, we developed a deep learning model — namely CGsNet — for 0—2 h of quantitative CG nowcasting, first achieving minute—kilometer-level forecasts. Based on the CGsNet model, the average surface wind speed (ASWS) and peak wind gust speed (PWGS) predictions are obtained. Experiments indicate that CGsNet exhibits higher accuracy than the traditional method.
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Geosci. Model Dev., 16, 3553–3564, https://doi.org/10.5194/gmd-16-3553-2023, https://doi.org/10.5194/gmd-16-3553-2023, 2023
Short summary
Short summary
Local refinement of the grid is a powerful method allowing us to reduce the computational time while preserving the accuracy in the area of interest. Depending on the implementation, the local refinement may introduce unwanted numerical effects into the results. We study the wind speed common to the wind turbine operational speeds and confirm strong alteration of the result when the heat fluxes are present, except for the specific refinement scheme used.
Sylvia Sullivan, Behrooz Keshtgar, Nicole Albern, Elzina Bala, Christoph Braun, Anubhav Choudhary, Johannes Hörner, Hilke Lentink, Georgios Papavasileiou, and Aiko Voigt
Geosci. Model Dev., 16, 3535–3551, https://doi.org/10.5194/gmd-16-3535-2023, https://doi.org/10.5194/gmd-16-3535-2023, 2023
Short summary
Short summary
Clouds absorb and re-emit infrared radiation from Earth's surface and absorb and reflect incoming solar radiation. As a result, they change atmospheric temperature gradients that drive large-scale circulation. To better simulate this circulation, we study how the radiative heating and cooling from clouds depends on model settings like grid spacing; whether we describe convection approximately or exactly; and the level of detail used to describe small-scale processes, or microphysics, in clouds.
Denis E. Sergeev, Nathan J. Mayne, Thomas Bendall, Ian A. Boutle, Alex Brown, Iva Kavcic, James Kent, Krisztian Kohary, James Manners, Thomas Melvin, Enrico Olivier, Lokesh K. Ragta, Ben J. Shipway, Jon Wakelin, Nigel Wood, and Mohamed Zerroukat
EGUsphere, https://doi.org/10.5194/egusphere-2023-647, https://doi.org/10.5194/egusphere-2023-647, 2023
Short summary
Short summary
3D climate models are one of the best tools we have to study planetary atmospheres. Here, we apply LFRic-Atmosphere, a new model developed by the Met Office, to seven different scenarios for terrestrial planetary climates, including four for the exoplanet TRAPPIST-1e, a primary target for future observations. LFRic-Atmosphere reproduces these scenarios within the spread of the existing models across a range of key climatic variables, justifying its use in future exoplanet studies.
James Weber, James A. King, Katerina Sindelarova, and Maria Val Martin
Geosci. Model Dev., 16, 3083–3101, https://doi.org/10.5194/gmd-16-3083-2023, https://doi.org/10.5194/gmd-16-3083-2023, 2023
Short summary
Short summary
The emissions of volatile organic compounds from vegetation (BVOCs) influence atmospheric composition and contribute to certain gases and aerosols (tiny airborne particles) which play a role in climate change. BVOC emissions are likely to change in the future due to changes in climate and land use. Therefore, accurate simulation of BVOC emission is important, and this study describes an update to the simulation of BVOC emissions in the United Kingdom Earth System Model (UKESM).
Koichi Sakaguchi, L. Ruby Leung, Colin M. Zarzycki, Jihyeon Jang, Seth McGinnis, Bryce E. Harrop, William C. Skamarock, Andrew Gettelman, Chun Zhao, William J. Gutowski, Stephen Leak, and Linda Mearns
Geosci. Model Dev., 16, 3029–3081, https://doi.org/10.5194/gmd-16-3029-2023, https://doi.org/10.5194/gmd-16-3029-2023, 2023
Short summary
Short summary
We document details of the regional climate downscaling dataset produced by a global variable-resolution model. The experiment is unique in that it follows a standard protocol designed for coordinated experiments of regional models. We found negligible influence of post-processing on statistical analysis, importance of simulation quality outside of the target region, and computational challenges that our model code faced due to rapidly changing super computer systems.
Xueying Liu, Yuxuan Wang, Shailaja Wasti, Wei Li, Ehsan Soleimanian, James Flynn, Travis Griggs, Sergio Alvarez, John T. Sullivan, Maurice Roots, Laurence Twigg, Guillaume Gronoff, Timothy Berkoff, Paul Walter, Mark Estes, Johnathan W. Hair, Taylor Shingler, Amy Jo Scarino, Marta Fenn, and Laura Judd
EGUsphere, https://doi.org/10.5194/egusphere-2023-892, https://doi.org/10.5194/egusphere-2023-892, 2023
Short summary
Short summary
With a comprehensive suite of ground-based and airborne remote sensing measurements during the 2021 Tracking Aerosol Convection Experiment Air Quality (TRACER-AQ) campaign in Houston, this study evaluates the simulation of the planetary boundary layer (PBL) height and the ozone vertical profile by a high-resolution (1.33 km) 3-D photochemical model Weather Research and Forecasting-driven GEOS-Chem (WRF-GC).
Xiaohan Li, Yi Zhang, Xindong Peng, Baiquan Zhou, Jian Li, and Yiming Wang
Geosci. Model Dev., 16, 2975–2993, https://doi.org/10.5194/gmd-16-2975-2023, https://doi.org/10.5194/gmd-16-2975-2023, 2023
Short summary
Short summary
The weather and climate physics suites used in GRIST-A22.7.28 are compared using single-column modeling. The source of their discrepancies in terms of modeling cloud and precipitation is explored. Convective parameterization is found to be a key factor responsible for the differences. The two suites also have intrinsic differences in the interaction between microphysics and other processes, resulting in different cloud features and time step sensitivities.
Shaohui Zhou, Yuchao Gao, Zexia Duan, Xingya Xi, and Yubin Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-945, https://doi.org/10.5194/egusphere-2023-945, 2023
Short summary
Short summary
The proposed wind speed correction model (VMD-PCA-RF) demonstrates the highest prediction accuracy and stability in the five southern provinces in nearly a year and at different heights. VMD-PCA-RF evaluation indexes for 10 months remain relatively stable: accuracy rate FA is above 85 %. In future research, the proposed VMD-PCA-RF algorithm can be extrapolated to the 3 km grid points of the five southern provinces to generate a 3 km grid-corrected wind speed product.
Virginie Marécal, Ronan Voisin-Plessis, Tjarda Jane Roberts, Alessandro Aiuppa, Herizo Narivelo, Paul David Hamer, Béatrice Josse, Jonathan Guth, Luke Surl, and Lisa Grellier
Geosci. Model Dev., 16, 2873–2898, https://doi.org/10.5194/gmd-16-2873-2023, https://doi.org/10.5194/gmd-16-2873-2023, 2023
Short summary
Short summary
We implemented a halogen volcanic chemistry scheme in a one-dimensional modelling framework preparing for further use in a three-dimensional global chemistry-transport model. The results of the simulations for an eruption of Mt Etna in 2008, including various sensitivity tests, show a good consistency with previous modelling studies.
Zhe Feng, Joseph Hardin, Hannah C. Barnes, Jianfeng Li, L. Ruby Leung, Adam Varble, and Zhixiao Zhang
Geosci. Model Dev., 16, 2753–2776, https://doi.org/10.5194/gmd-16-2753-2023, https://doi.org/10.5194/gmd-16-2753-2023, 2023
Short summary
Short summary
PyFLEXTRKR is a flexible atmospheric feature tracking framework with specific capabilities to track convective clouds from a variety of observations and model simulations. The package has a collection of multi-object identification algorithms and has been optimized for large datasets. This paper describes the algorithms and demonstrates applications for tracking deep convective cells and mesoscale convective systems from observations and model simulations at a wide range of scales.
Yan Ji, Bing Gong, Michael Langguth, Amirpasha Mozaffari, and Xiefei Zhi
Geosci. Model Dev., 16, 2737–2752, https://doi.org/10.5194/gmd-16-2737-2023, https://doi.org/10.5194/gmd-16-2737-2023, 2023
Short summary
Short summary
Formulating short-term precipitation forecasting as a video prediction task, a novel deep learning architecture (convolutional long short-term memory generative adversarial network, CLGAN) is proposed. A benchmark dataset is built on minute-level precipitation measurements. Results show that with the GAN component the model generates predictions sharing statistical properties with observations, resulting in it outperforming the baseline in dichotomous and spatial scores for heavy precipitation.
Aleksander Lacima, Hervé Petetin, Albert Soret, Dene Bowdalo, Oriol Jorba, Zhaoyue Chen, Raúl F. Méndez Turrubiates, Hicham Achebak, Joan Ballester, and Carlos Pérez García-Pando
Geosci. Model Dev., 16, 2689–2718, https://doi.org/10.5194/gmd-16-2689-2023, https://doi.org/10.5194/gmd-16-2689-2023, 2023
Short summary
Short summary
Understanding how air pollution varies across space and time is of key importance for the safeguarding of human health. This work arose in the context of the project EARLY-ADAPT, for which the Barcelona Supercomputing Center developed an air pollution database covering all of Europe. Through different statistical methods, we compared two global pollution models against measurements from ground stations and found significant discrepancies between the observed and the modeled surface pollution.
Dien Wu, Joshua L. Laughner, Junjie Liu, Paul I. Palmer, John C. Lin, and Paul O. Wennberg
EGUsphere, https://doi.org/10.5194/egusphere-2023-876, https://doi.org/10.5194/egusphere-2023-876, 2023
Short summary
Short summary
To balance computational expenses and chemical complexity in extracting emission signals from tropospheric NO2 columns, we propose a simplified non-linear Lagrangian chemistry transport model and evaluate modeled results against TROPOMI v2 over multiple power plants and cities. Using this model, we then discuss how NOx chemistry affects the relationship between NOx and CO2 emissions and how studying NO2 columns helps quantify modeled biases in wind direction and prior emissions.
William Rudisill, Alejandro Flores, and Rosemary Carroll
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-69, https://doi.org/10.5194/gmd-2023-69, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
It's important to know how well atmospheric models do in the mountains, but there aren't very many weather stations. We evaluate rain and snow from a model from 1987–2020 in the Upper Colorado river basin against the data that's available. The model works pretty well but, there are still some uncertainties in remote locations. We then use snow maps collected by aircraft, streamflow measurements, and some advanced statistics to help identify how well the model works in ways we couldn't before.
Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C. Hardin
Geosci. Model Dev., 16, 2355–2370, https://doi.org/10.5194/gmd-16-2355-2023, https://doi.org/10.5194/gmd-16-2355-2023, 2023
Short summary
Short summary
Atmospheric aerosols play a critical role in Earth's climate, but it is too computationally expensive to directly model their interaction with radiation in climate simulations. This work develops a new neural-network-based parameterization of aerosol optical properties for use in the Energy Exascale Earth System Model that is much more accurate than the current one; it also introduces a unique model optimization method that involves randomly generating neural network architectures.
Joey C. Y. Lam, Amos P. K. Tai, Jason A. Ducker, and Christopher D. Holmes
Geosci. Model Dev., 16, 2323–2342, https://doi.org/10.5194/gmd-16-2323-2023, https://doi.org/10.5194/gmd-16-2323-2023, 2023
Short summary
Short summary
We developed a new component within an atmospheric chemistry model to better simulate plant ecophysiological processes relevant for ozone air quality. We showed that it reduces simulated biases in plant uptake of ozone in prior models. The new model enables us to explore how future climatic changes affect air quality via affecting plants, examine ozone–vegetation interactions and feedbacks, and evaluate the impacts of changing atmospheric chemistry and climate on vegetation productivity.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-50, https://doi.org/10.5194/gmd-2023-50, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations, and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model-satellite discrepancies, we find that future field campaigns in an East African region (30° E – 45° E, 5° S – 5° N) could substantially improve the predictive skill of air quality models.
Qian Shu, Sergey L. Napelenok, William T. Hutzell, Kirk R. Baker, Barron H. Henderson, Benjamin N. Murphy, and Christian Hogrefe
Geosci. Model Dev., 16, 2303–2322, https://doi.org/10.5194/gmd-16-2303-2023, https://doi.org/10.5194/gmd-16-2303-2023, 2023
Short summary
Short summary
Source attribution methods are generally used to determine culpability of precursor emission sources to ambient pollutant concentrations. However, source attribution of secondarily formed pollutants such as ozone and its precursors cannot be explicitly measured, making evaluation of source apportionment methods challenging. In this study, multiple apportionment approach comparisons show common features but still reveal wide variations in predicted sector contribution and species dependency.
Simone Tilmes, Michael J. Mills, Yunqian Zhu, Charles G. Bardeen, Francis Vitt, Pengfei Yu, David Fillmore, Xiaohong Liu, Brian Toon, and Terry Deshler
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-79, https://doi.org/10.5194/gmd-2023-79, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We implemented an alternative aerosol scheme in the high and low-top model versions of the Community Earth System Model Version 2 (CESM2) with a more detailed description of tropospheric and stratospheric aerosol size distributions than the existing aerosol model. The development enables the comparison of different aerosol schemes with different complexity in the same model framework and identifies improvements in comparison to a range of observations in both the troposphere and stratosphere.
Rüdiger Brecht, Lucie Bakels, Alex Bihlo, and Andreas Stohl
Geosci. Model Dev., 16, 2181–2192, https://doi.org/10.5194/gmd-16-2181-2023, https://doi.org/10.5194/gmd-16-2181-2023, 2023
Short summary
Short summary
We use neural-network-based single-image super-resolution to improve the upscaling of meteorological wind fields to be used for particle dispersion models. This deep-learning-based methodology improves the standard linear interpolation typically used in particle dispersion models. The improvement of wind fields leads to substantial improvement in the computed trajectories of the particles.
Alvaro Criado, Jan Mateu Armengol, Hervé Petetin, Daniel Rodriguez-Rey, Jaime Benavides, Marc Guevara, Carlos Pérez García-Pando, Albert Soret, and Oriol Jorba
Geosci. Model Dev., 16, 2193–2213, https://doi.org/10.5194/gmd-16-2193-2023, https://doi.org/10.5194/gmd-16-2193-2023, 2023
Short summary
Short summary
This work aims to derive and evaluate a general statistical post-processing tool specifically designed for the street scale that can be applied to any urban air quality system. Our data fusion methodology corrects NO2 fields based on continuous hourly observations and experimental campaigns. This study enables us to obtain exceedance probability maps of air quality standards. In 2019, 13 % of the Barcelona area had a 70 % or higher probability of exceeding the annual legal NO2 limit of 40 µg/m3.
Cited articles
Blumberg, W. G., Turner, D. D., Löhnert, U., and Castleberry, S.: Ground-Based Temperature and Humidity Profiling Using Spectral Infrared and Microwave Observations. Part II: Actual Retrieval Performance in Clear-Sky and Cloudy Conditions, J. Appl. Meteorol. Clim., 54, 2305–2319, https://doi.org/10.1175/JAMC-D-15-0005.1, 2015.
Boukabara S. A., Clough, S. A., Moncet, J.-L., Krupnov, A. F., Tretyakov, M. Yu., and Parshin, V. V.: Uncertainties in the Temperature Dependence of the Line-Coupling Parameters of the Microwave Oxygen Band: Impact Study, IEEE T. Geosci. Remote Sens., 43, 1109–1114, https://doi.org/10.1109/TGRS.2004.839654, 2005.
Brousseau, P., Berre, L., Bouttier, F., and Desroziers, G.: Background error covariances for a convective scale data assimilation system: AROME 3D-Var, Q. J. Roy. Meteor. Soc., 137, 409–422, 2011.
Brunel, P. and Hocking, J.: RTTOV v11 Test Suite, Met Office Doc ID: NWPSAF-MO-TV-031, 2014.
Buehler, S. A., Eriksson, P., Kuhn, T., von Engeln, A., and Verdes, C.: ARTS, the Atmospheric Radiative Transfer Simulator, J. Quant. Spectrosc. Ra., 91, 65–93, https://doi.org/10.1016/j.jqsrt.2004.05.051, 2005.
Buehler, S. A., Courcoux, N., and John, V. O.: Radiative transfer calculations for a passive microwave satellite sensor: Comparing a fast model and a line-by-line model, J. Geophys. Res., 111, D20304, https://doi.org/10.1029/2005JD006552, 2006.
Cadeddu, M. P., Payne, V. H., Clough, S. A., Cady-Pereira, K., and Liljegren, J. C.: The effect of the oxygen line-parameter modeling on temperature and humidity retrievals from ground-based microwave radiometers, IEEE T. Geosci. Remote Sens., 45, 2216–2223, 2007.
Caumont, O., Cimini, D., Löhnert, U., Alados-Arboledas, L., Bleisch, R., Buffa, F., Ferrario, M. E., Haefele, A., Huet, T., Madonna, F., and Pace, G.: Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model, Q. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.2860, 2016.
Cimini, D., Hewison, T. J., Martin, L., Güldner, J., Gaffard, C., and Marzano, F.: Temperature and humidity profile retrievals from groundbased microwave radiometers during TUC, Meteorol. Z., 15, 45–56, 2006.
Cimini, D., Westwater, E. R., and Gasiewski, A. J.: Temperature and Humidity Profiling in the Arctic Using Ground-Based Millimeter-Wave Radiometry and 1DVAR, IEEE T. Geosci. Remote Sens., 48, 1381–1388, 2010.
Cimini, D., Campos, E., Ware, R., Albers, S., Graziano, G., Oreamuno, J., Joe, P., Koch, S., Cober, S., and Westwater, E.: Thermodynamic Atmospheric Profiling during the 2010 Winter Olympics Using Ground-based Microwave Radiometry, T. Geosci. Remote Sens., 49, 4959–4969, 2011.
Cimini D., Caumont, O., Löhnert, U., Alados-Arboledas, L., Bleisch, R., Fernández-Gálvez, J., Huet, T., Ferrario, M. E., Madonna, F., Maier, O., Nasir, F., Pace, G., and Posada, R.: An International Network of Ground-Based Microwave Radiometers for the Assimilation of Temperature and Humidity Profiles into NWP Models, Proceedings of 9th International Symposium on Tropospheric Profiling, ISBN 978-90-815839-4-7, L'Aquila, ITALY, 3–7 September 2012.
Cimini, D., Caumont, O., Löhnert, U., Alados-Arboledas, L., Bleisch, R., Huet, T., Ferrario, M. E., Madonna, F., Haefele, A., Nasir, F., Pace, G., and Posada, R.: A data assimilation experiment of temperature and humidity profiles from an international network of ground-based microwave radiometers, Proc. Microrad 2014, Pasadena, USA, 24-27 March, ISBN: 978-1-4799-4645-7, 978-1-4799-4644-0/14/$31.00, 2014.
Cimini, D., Nelson, M., Güldner, J., and Ware, R.: Forecast indices from a ground-based microwave radiometer for operational meteorology, Atmos. Meas. Tech., 8, 315–333, https://doi.org/10.5194/amt-8-315-2015, 2015.
Courtier, P., Andersson, E., Heckley, W., Vasiljevic, D., Hamrud, M., Hollingsworth, A., Rabier, F., Fisher, M., and Pailleux, J.: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation, Q. J. Roy. Meteor. Soc., 124, 1783–1807, https://doi.org/10.1002/qj.49712455002, 1998.
Ding, S., Yang, P., Weng, F., Liu, Q., Han, Y., Van Delst, P., Li, J., and Baum, B.: Validation of the community radiative transfer model, J. Quant. Spectrosc. Ra., 112, 1050–1064, 2011.
Ebell, K., Orlandi, E., Hünerbein, A., Löhnert, U., and Crewell, S.: Combining ground and satellite based measurements in the atmospheric state retrieval: Assessment of the information content, J. Geophys. Res., 18, 6940–6956, 2013.
English, S. J., Poulsen, C., and Smith, A. J.: Forward modelling for liquid water cloud and land surface emissivity Proceedings of ECMWF workshop on ATOVS, ECMWF, Reading, UK, 2–5 November 1999.
Eriksson, P. and Buehler, S.: ARTS user guide, available at: http://www.radiativetransfer.org/misc/arts-doc-stable/uguide/arts_user.pdf (last access: 1 March 2016), 2015.
Eriksson, P., Buehler, S. A., Davis, C. P., Emde, C., and Lemke, O.: ARTS, the atmospheric radiative transfer simulator, Version 2, J. Quant. Spectrosc. Ra., 112, 1551–1558, https://doi.org/10.1016/j.jqsrt.2011.03.001, 2011.
Eyre, J. R.: A fast radiative transfer model for satellite sounding 105 systems, ECMWF Technical Memorandum 176, ECMWF, Reading, UK, available at: http://www.ecmwf.int/sites/default/files/elibrary/1991/9329-fast-radiative-transfer-model-satellite-sounding-systems.pdf (last access: 1 March 2016), 1991.
Geer, A. J., Bauer, P., and Lopez, P.: Lessons learnt from the operational 1D 4DVar assimilation of rain and cloud affected SSM/I observations at ECMWF, Q. J. Roy. Meteor. Soc., 134, 1513–1525, 2008.
Hewison, T.: 1D-VAR Retrievals of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer, IEEE TGRS, 45, 2163–2168, 2007.
Hewison, T. J., Cimini, D., Martin, L., Gaffard, C., and Nash, J.: Validating clear air absorption model using ground-based microwave radiometers and vice-versa, Meteorol. Z., 15, 27–36, 2006.
Hocking, J.: Interpolation methods in the RTTOV radiative transfer model, Forecast Research Technical Report No. 590, Met Office, Exeter, UK, available at: http://www.metoffice.gov.uk/media/pdf/i/k/FRTR590.pdf (last access: 1 March 2016), 2014.
Hocking, J., Rayer, P., Saunders, R., Madricardi, M., Geer, A., Brunel, P., and Vidot, J.: RTTOV v11 Users Guide, Doc ID: NWPSAF-MO-UD-028, available at: https://nwpsaf.eu/deliverables/rtm/docs_rttov11/users_guide_11_v1.4.pdf (last access: 1 March 2016), 2015.
Kneifel, S., Löhnert, U., Battaglia, A., Crewell, S., and Siebler, D.: Snow scattering signals in ground-based passive microwave measurements, J. Geophys. Res., 115, D16214, https://doi.org/10.1029/2010JD013856, 2010.
Lamkaouchy, K., Balama, A., and Ellison, W. J.: New permittivity data for sea water (30–100 GHz), Extension of ESA report 11197/94/NL/CN, ESA, Paris, France, 1997.
Liebe, H. J., Hufford, G. A., and Manabe, T.: A model for the complex permittivity of water at frequencies below 1 THz, Int. J. Infrared and Millimetre Waves, 12, 659–671, 1991.
Liebe, H. J., Hufford, G. A., and Cotton, M. G.: Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz, AGARD 52nd Specialists' Meeting of the Electromagnetic Wave Propagation Panel, Ch3, 1993.
Löhnert, U. and Maier, O.: Operational profiling of temperature using ground-based microwave radiometry at Payerne: prospects and challenges, Atmos. Meas. Tech., 5, 1121–1134, https://doi.org/10.5194/amt-5-1121-2012, 2012.
Löhnert, U., Turner, D., and Crewell, S.: Ground-Based Temperature and Humidity Profiling Using Spectral Infrared and Microwave Observations. Part I: Simulated Retrieval Performance in Clear-Sky Conditions, J. Appl. Meteorol. Clim., 48, 1017–1032, 2009.
Martinet, P., Dabas, A., Donier, J.-M., Douffet, T., Garrouste, O., and Guillot, R.: 1D-Var Temperature retrievals from Microwave Radiometer and convective scale Model, Tellus A, 67, 27925, https://doi.org/10.3402/tellusa.v67.27925, 2015.
Matricardi, M.: The inclusion of aerosols and clouds in RTIASI, the ECMWF fast radiative transfer model for the Infrared Atmospheric Sounding Interferometer, ECMWF Technical Memorandum 474, ECMWF, Reading, UK, available at: http://www.ecmwf.int/sites/default/files/elibrary/2005/11020-inclusion-aerosols-and-clouds-rtiasi-ecmwf-fast-radiative-transfer-model-infrared-atmospheric.pdf (last access: 1 March 2016), 2005.
Matricardi, M.: The generation of RTTOV regression coefficients for IASI and AIRS using a new profile training set and a new line-by-line dataset, ECMWF Technical Memorandum 564, ECMWF, Reading, UK, available at: http://www.ecmwf.int/sites/default/files/elibrary/2008/11040-generation-rttov-regression-coefficients-iasi-and-airs-using-new-profile-training-set-and-new.pdf (last access: 1 March 2016), 2008.
Matricardi, M., Chevallier, F., and Tjemkes, S.: An improved general fast radiative transfer model for the assimilation of radiance observations, ECMWF Technical Memorandum 345, ECMWF, Reading, UK, available at: http://www.ecmwf.int/sites/default/files/elibrary/2001/11030-improved-general-fast-radiative-transfer-model-assimilation-radiance-observations.pdf (last access: 1 March 2016), 2001.
National Research Council: Committee on Developing Mesoscale Meteorological Observational Capabilities to Meet Multiple Needs, Observing Weather and Climate from the Ground Up, A Nationwide Network of Networks, ISBN: 978-0-309-12986-2, 250 pp., 2008.
NWPSAF: RTTOV v11, Met Office, Exeter, UK, available at: http://nwpsaf.eu/site/software/rttov/rttov-v11/ (last access: 1 March 2016), 2013.
Rose, T., Crewell, S., Löhnert, U., and Simmer, C.: A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere, Atmos. Res., 75, 183–200, 2005.
Rosenkranz, P. W.: Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Sci., 33, 919–928, https://doi.org/10.1029/98RS01182, 1998.
Saunders, R.: RTTOV-7 Science and validation report, available at: https://nwpsaf.eu/deliverables/rtm/rttov7_svr.pdf (last access: 1 March 2016), 2002.
Saunders, R.: RTTOV-9 Science and validation report, Doc ID: NWPSAF-MO-TV-020, available at: https://www.nwpsaf.eu/deliverables/rtm/rttov9_files/rttov9_svr.pdf (last access: 1 March 2016), 2010.
Saunders, R. W., Matricardi, M., and Brunel, P.: An Improved Fast Radiative Transfer Model for Assimilation of Satellite Radiance Observations. Q. J. Roy. Meteor. Soc., 125, 1407–1425, 1999.
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Benard, P., Bouttier, F., Lac, C., and Masson, V.: The AROME–France convective-scale operational model, Mon. Weather Rev., 139, 976–991, 2010.
Weston, P.: NWPSAF 1D-Var User Manual, Met Office Doc ID: NWPSAF-MO-UD-032, Met Office, Exeter, UK, 2014.
WMO: Statement Of Guidance For Global Numerical Weather Prediction, available at: http://www.wmo.int/pages/prog/www/OSY/SOG/SoG-Global-NWP.pdf (last access: 1 March 2016), 2014.
Short summary
Ground-based microwave radiometers (MWRs) offer to bridge the observational gap in the atmospheric boundary layer. Currently MWRs are operational at many sites worldwide. However, their potential is largely under-exploited, partly due to the lack of a fast radiative transfer model (RTM) suited for data assimilation into numerical weather prediction models. Here we propose and test an RTM, building on satellite heritage and adapting for ground-based MWRs, which addresses this shortage.
Ground-based microwave radiometers (MWRs) offer to bridge the observational gap in the...