Articles | Volume 9, issue 6
Model description paper
03 Jun 2016
Model description paper |  | 03 Jun 2016

A new subgrid-scale representation of hydrometeor fields using a multivariate PDF

Brian M. Griffin and Vincent E. Larson

Related authors

Parameterizing microphysical effects on variances and covariances of moisture and heat content using a multivariate probability density function: a study with CLUBB (tag MVCS)
Brian M. Griffin and Vincent E. Larson
Geosci. Model Dev., 9, 4273–4295,,, 2016
Short summary

Related subject area

Atmospheric sciences
MEXPLORER 1.0.0 – a mechanism explorer for analysis and visualization of chemical reaction pathways based on graph theory
Rolf Sander
Geosci. Model Dev., 17, 2419–2425,,, 2024
Short summary
Advances and prospects of deep learning for medium-range extreme weather forecasting
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 2347–2358,,, 2024
Short summary
An overview of the Western United States Dynamically Downscaled Dataset (WUS-D3)
Stefan Rahimi, Lei Huang, Jesse Norris, Alex Hall, Naomi Goldenson, Will Krantz, Benjamin Bass, Chad Thackeray, Henry Lin, Di Chen, Eli Dennis, Ethan Collins, Zachary J. Lebo, Emily Slinskey, Sara Graves, Surabhi Biyani, Bowen Wang, Stephen Cropper, and the UCLA Center for Climate Science Team
Geosci. Model Dev., 17, 2265–2286,,, 2024
Short summary
cloudbandPy 1.0: an automated algorithm for the detection of tropical–extratropical cloud bands
Romain Pilon and Daniela I. V. Domeisen
Geosci. Model Dev., 17, 2247–2264,,, 2024
Short summary
PyRTlib: an educational Python-based library for non-scattering atmospheric microwave radiative transfer computations
Salvatore Larosa, Domenico Cimini, Donatello Gallucci, Saverio Teodosio Nilo, and Filomena Romano
Geosci. Model Dev., 17, 2053–2076,,, 2024
Short summary

Cited articles

Anderson, T. W.: On the Distribution of the Two-Sample Cramer-von Mises Criterion, Ann. Math. Statist., 33, 1148–1159, 1962.
Bogenschutz, P. A. and Krueger, S. K.: A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models, J. Adv. Model. Earth Syst., 5,, 2013.
Bogenschutz, P. A., Krueger, S. K., and Khairoutdinov, M.: Assumed Probability Density Functions for Shallow and Deep Convection, J. Adv. Model. Earth Syst., 2, 10,, 2010.
Boutle, I., Abel, S., Hill, P., and Morcrette, C.: Spatial variability of liquid cloud and rain: Observations and microphysical effects, Q. J. Roy. Meteor. Soc., 140, 583–594, 2014.
Short summary
A multivariate probability density function (PDF) can be used to represent the subgrid (below grid-box size) variability of atmospheric fields. The PDF was previously extended to include hydrometeor fields, such as rain water mixing ratio. Now, the PDF of hydrometeor fields is altered to account for precipitating and precipitation-less regions of the subgrid domain. Accounting for these regions allowed the hydrometeor PDF to produce an improved match to results from large-eddy simulations.