Articles | Volume 9, issue 4
Geosci. Model Dev., 9, 1293–1339, 2016
https://doi.org/10.5194/gmd-9-1293-2016
Geosci. Model Dev., 9, 1293–1339, 2016
https://doi.org/10.5194/gmd-9-1293-2016

Model description paper 05 Apr 2016

Model description paper | 05 Apr 2016

ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels

Momme Butenschön et al.

Related authors

The UKC2 regional coupled environmental prediction system
Huw W. Lewis, Juan Manuel Castillo Sanchez, Jennifer Graham, Andrew Saulter, Jorge Bornemann, Alex Arnold, Joachim Fallmann, Chris Harris, David Pearson, Steven Ramsdale, Alberto Martínez-de la Torre, Lucy Bricheno, Eleanor Blyth, Victoria A. Bell, Helen Davies, Toby R. Marthews, Clare O'Neill, Heather Rumbold, Enda O'Dea, Ashley Brereton, Karen Guihou, Adrian Hines, Momme Butenschon, Simon J. Dadson, Tamzin Palmer, Jason Holt, Nick Reynard, Martin Best, John Edwards, and John Siddorn
Geosci. Model Dev., 11, 1–42, https://doi.org/10.5194/gmd-11-1-2018,https://doi.org/10.5194/gmd-11-1-2018, 2018
Short summary
Marine regime shifts in ocean biogeochemical models: a case study in the Gulf of Alaska
Claudie Beaulieu, Harriet Cole, Stephanie Henson, Andrew Yool, Thomas R. Anderson, Lee de Mora, Erik T. Buitenhuis, Momme Butenschön, Ian J. Totterdell, and J. Icarus Allen
Biogeosciences, 13, 4533–4553, https://doi.org/10.5194/bg-13-4533-2016,https://doi.org/10.5194/bg-13-4533-2016, 2016
Short summary
The assessment of a global marine ecosystem model on the basis of emergent properties and ecosystem function: a case study with ERSEM
L. de Mora, M. Butenschön, and J. I. Allen
Geosci. Model Dev., 9, 59–76, https://doi.org/10.5194/gmd-9-59-2016,https://doi.org/10.5194/gmd-9-59-2016, 2016
Short summary
iMarNet: an ocean biogeochemistry model intercomparison project within a common physical ocean modelling framework
L. Kwiatkowski, A. Yool, J. I. Allen, T. R. Anderson, R. Barciela, E. T. Buitenhuis, M. Butenschön, C. Enright, P. R. Halloran, C. Le Quéré, L. de Mora, M.-F. Racault, B. Sinha, I. J. Totterdell, and P. M. Cox
Biogeosciences, 11, 7291–7304, https://doi.org/10.5194/bg-11-7291-2014,https://doi.org/10.5194/bg-11-7291-2014, 2014
Heterogeneity of impacts of high CO2 on the North Western European Shelf
Y. Artioli, J. C. Blackford, G. Nondal, R. G. J. Bellerby, S. L. Wakelin, J. T. Holt, M. Butenschön, and J. I. Allen
Biogeosciences, 11, 601–612, https://doi.org/10.5194/bg-11-601-2014,https://doi.org/10.5194/bg-11-601-2014, 2014

Related subject area

Biogeosciences
Addressing biases in Arctic–boreal carbon cycling in the Community Land Model Version 5
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021,https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance
Alexey N. Shiklomanov, Michael C. Dietze, Istem Fer, Toni Viskari, and Shawn P. Serbin
Geosci. Model Dev., 14, 2603–2633, https://doi.org/10.5194/gmd-14-2603-2021,https://doi.org/10.5194/gmd-14-2603-2021, 2021
Short summary
Ecosystem age-class dynamics and distribution in the LPJ-wsl v2.0 global ecosystem model
Leonardo Calle and Benjamin Poulter
Geosci. Model Dev., 14, 2575–2601, https://doi.org/10.5194/gmd-14-2575-2021,https://doi.org/10.5194/gmd-14-2575-2021, 2021
Short summary
CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 2: Global benchmarking
Christian Seiler, Joe R. Melton, Vivek K. Arora, and Libo Wang
Geosci. Model Dev., 14, 2371–2417, https://doi.org/10.5194/gmd-14-2371-2021,https://doi.org/10.5194/gmd-14-2371-2021, 2021
Short summary
How to reconstruct aerosol-induced diffuse radiation scenario for simulating GPP in land surface models? An evaluation of reconstruction methods with ORCHIDEE_DFv1.0_DFforc
Yuan Zhang, Olivier Boucher, Philippe Ciais, Laurent Li, and Nicolas Bellouin
Geosci. Model Dev., 14, 2029–2039, https://doi.org/10.5194/gmd-14-2029-2021,https://doi.org/10.5194/gmd-14-2029-2021, 2021
Short summary

Cited articles

Aksnes, D. L. and Egge, J. K.: A theoretical model for nutrient uptake in phytoplankton, Mar. Ecol.-Prog. Ser., 70, 65–72, https://doi.org/10.3354/meps070065, 1991.
Allen, J. I. and Somerfield, P. J.: A multivariate approach to model skill assessment, J. Marine Syst., 76, 83–94, https://doi.org/10.1016/j.jmarsys.2008.05.009, 2009.
Allen, J. I., Somerfield, P. J., and Siddonr, J.: Primary and bacterial production in the Mediterranean Sea: a modelling study, J. Marine Syst., 33–34, 473–495, https://doi.org/10.1016/S0924-7963(02)00072-6, 2002.
Allen, J. I., Blackford, J. C., Holt, J., Proctor, R., Ashworth, M., and Siddorn, J.: A highly spatially resolved ecosystem model for the North West European Continental Shelf, Sarsia, 86, 423–440, 2001.
Allen, J. I., Somerfield, P. J., and Gilbert, F. J.: Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models, in: Contributions from Advances in Marine Ecosystem Modelling Research, 27–29 June 2005, Plymouth, UK AMEMR, 64, 3–14, available at: http://www.sciencedirect.com/science/article/pii/S0924796306001035 (last access: 14 August 2015), 2007.
Download
Short summary
ERSEM 15.06 is a model for marine biogeochemistry and the lower trophic levels of the marine food web. It comprises a pelagic and benthic sub-model including the microbial food web and the major biogeochemical cycles of carbon, nitrogen, phosphorus, silicate, and iron using dynamic stochiometry. Further features include modules for the carbonate system and calcification. We present full mathematical descriptions of all elements along with examples at various scales up to 3-D applications.