Articles | Volume 8, issue 12
Geosci. Model Dev., 8, 3947–3973, 2015
Geosci. Model Dev., 8, 3947–3973, 2015

Methods for assessment of models 11 Dec 2015

Methods for assessment of models | 11 Dec 2015

A global empirical system for probabilistic seasonal climate prediction

J. M. Eden et al.

Related authors

Attribution of the role of climate change in the forest fires in Sweden 2018
Folmer Krikken, Flavio Lehner, Karsten Haustein, Igor Drobyshev, and Geert Jan van Oldenborgh
Nat. Hazards Earth Syst. Sci., 21, 2169–2179,,, 2021
Short summary
Attribution of the Australian bushfire risk to anthropogenic climate change
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960,,, 2021
Short summary
Impact of precipitation and increasing temperatures on drought trends in eastern Africa
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35,,, 2021
Short summary
Uncertainty in aerosol radiative forcing impacts the simulated global monsoon in the 20th century
Jonathan K. P. Shonk, Andrew G. Turner, Amulya Chevuturi, Laura J. Wilcox, Andrea J. Dittus, and Ed Hawkins
Atmos. Chem. Phys., 20, 14903–14915,,, 2020
Short summary
A protocol for probabilistic extreme event attribution analyses
Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, Friederike Otto, Robert Vautard, Karin van der Wiel, Andrew King, Fraser Lott, Julie Arrighi, Roop Singh, and Maarten van Aalst
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203,,, 2020
Short summary

Related subject area

Climate and Earth system modeling
ChAP 1.0: a stationary tropospheric sulfur cycle for Earth system models of intermediate complexity
Alexey V. Eliseev, Rustam D. Gizatullin, and Alexandr V. Timazhev
Geosci. Model Dev., 14, 7725–7747,,, 2021
Short summary
Non-Hydrostatic RegCM4 (RegCM4-NH): model description and case studies over multiple domains
Erika Coppola, Paolo Stocchi, Emanuela Pichelli, Jose Abraham Torres Alavez, Russell Glazer, Graziano Giuliani, Fabio Di Sante, Rita Nogherotto, and Filippo Giorgi
Geosci. Model Dev., 14, 7705–7723,,, 2021
Short summary
Robustness of neural network emulations of radiative transfer parameterizations in a state-of-the-art general circulation model
Alexei Belochitski and Vladimir Krasnopolsky
Geosci. Model Dev., 14, 7425–7437,,, 2021
Short summary
NorCPM1 and its contribution to CMIP6 DCPP
Ingo Bethke, Yiguo Wang, François Counillon, Noel Keenlyside, Madlen Kimmritz, Filippa Fransner, Annette Samuelsen, Helene Langehaug, Lea Svendsen, Ping-Gin Chiu, Leilane Passos, Mats Bentsen, Chuncheng Guo, Alok Gupta, Jerry Tjiputra, Alf Kirkevåg, Dirk Olivié, Øyvind Seland, Julie Solsvik Vågane, Yuanchao Fan, and Tor Eldevik
Geosci. Model Dev., 14, 7073–7116,,, 2021
Short summary
ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler
Bin Mu, Bo Qin, and Shijin Yuan
Geosci. Model Dev., 14, 6977–6999,,, 2021
Short summary

Cited articles

Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N.-C., and Scott, J. D.: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans, J. Climate, 15, 2205–2231, 2002.
Balmaseda, M. and Anderson, D.: Impact of initialization strategies and observations on seasonal forecast skill, Geophys. Res. Lett., 36, L01701,, 2009.
Brands, S., Manzanas, R., Gutiérrez, J. M., and Cohen, J.: Seasonal predictability of wintertime precipitation in Europe using the snow advance index, J. Climate, 25, 4023–4028, 2012.
Short summary
Our paper reports on a simple regression-based system for producing probabilistic forecasts of seasonal climate. We discuss the physical motivation behind the statistical relationships underpinning our empirical model and provide a validation of hindcasts produced for the last half century. The generation of probabilistic forecasts on a global scale along with the use of the long-term trend as a source of skill constitutes a novel approach to empirical forecasting of seasonal climate.