Articles | Volume 8, issue 11
Geosci. Model Dev., 8, 3765–3784, 2015
https://doi.org/10.5194/gmd-8-3765-2015
Geosci. Model Dev., 8, 3765–3784, 2015
https://doi.org/10.5194/gmd-8-3765-2015

Model description paper 26 Nov 2015

Model description paper | 26 Nov 2015

FORest Canopy Atmosphere Transfer (FORCAsT) 1.0: a 1-D model of biosphere–atmosphere chemical exchange

K. Ashworth et al.

Related authors

Megacity and local contributions to regional air pollution: an aircraft case study over London
Kirsti Ashworth, Silvia Bucci, Peter J. Gallimore, Junghwa Lee, Beth S. Nelson, Alberto Sanchez-Marroquín, Marina B. Schimpf, Paul D. Smith, Will S. Drysdale, Jim R. Hopkins, James D. Lee, Joe R. Pitt, Piero Di Carlo, Radovan Krejci, and James B. McQuaid
Atmos. Chem. Phys., 20, 7193–7216, https://doi.org/10.5194/acp-20-7193-2020,https://doi.org/10.5194/acp-20-7193-2020, 2020
Short summary
Successful practice in early career networks: insights from the polar sciences
Pascal Bohleber, Mathieu Casado, Kirsti Ashworth, Chelsey A. Baker, Anna Belcher, Jilda Alicia Caccavo, Holly E. Jenkins, Erin Satterthwaite, Andrea Spolaor, and V. Holly L. Winton
Adv. Geosci., 53, 1–14, https://doi.org/10.5194/adgeo-53-1-2020,https://doi.org/10.5194/adgeo-53-1-2020, 2020
Short summary
Potential regional air quality impacts of cannabis cultivation facilities in Denver, Colorado
Chi-Tsan Wang, Christine Wiedinmyer, Kirsti Ashworth, Peter C. Harley, John Ortega, Quazi Z. Rasool, and William Vizuete
Atmos. Chem. Phys., 19, 13973–13987, https://doi.org/10.5194/acp-19-13973-2019,https://doi.org/10.5194/acp-19-13973-2019, 2019
Short summary
Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model
Kirsti Ashworth, Serena H. Chung, Karena A. McKinney, Ying Liu, J. William Munger, Scot T. Martin, and Allison L. Steiner
Atmos. Chem. Phys., 16, 15461–15484, https://doi.org/10.5194/acp-16-15461-2016,https://doi.org/10.5194/acp-16-15461-2016, 2016

Related subject area

Atmospheric sciences
Novel estimation of aerosol processes with particle size distribution measurements: a case study with the TOMAS algorithm v1.0.0
Dana L. McGuffin, Yuanlong Huang, Richard C. Flagan, Tuukka Petäjä, B. Erik Ydstie, and Peter J. Adams
Geosci. Model Dev., 14, 1821–1839, https://doi.org/10.5194/gmd-14-1821-2021,https://doi.org/10.5194/gmd-14-1821-2021, 2021
Short summary
Evaluation of ECMWF IFS-AER (CAMS) operational forecasts during cycle 41r1–46r1 with calibrated ceilometer profiles over Germany
Harald Flentje, Ina Mattis, Zak Kipling, Samuel Rémy, and Werner Thomas
Geosci. Model Dev., 14, 1721–1751, https://doi.org/10.5194/gmd-14-1721-2021,https://doi.org/10.5194/gmd-14-1721-2021, 2021
Short summary
Influence of biomass burning vapor wall loss correction on modeling organic aerosols in Europe by CAMx v6.50
Jianhui Jiang, Imad El Haddad, Sebnem Aksoyoglu, Giulia Stefenelli, Amelie Bertrand, Nicolas Marchand, Francesco Canonaco, Jean-Eudes Petit, Olivier Favez, Stefania Gilardoni, Urs Baltensperger, and André S. H. Prévôt
Geosci. Model Dev., 14, 1681–1697, https://doi.org/10.5194/gmd-14-1681-2021,https://doi.org/10.5194/gmd-14-1681-2021, 2021
Short summary
Seasonal and diurnal performance of daily forecasts with WRF V3.8.1 over the United Arab Emirates
Oliver Branch, Thomas Schwitalla, Marouane Temimi, Ricardo Fonseca, Narendra Nelli, Michael Weston, Josipa Milovac, and Volker Wulfmeyer
Geosci. Model Dev., 14, 1615–1637, https://doi.org/10.5194/gmd-14-1615-2021,https://doi.org/10.5194/gmd-14-1615-2021, 2021
Short summary
MLAir (v1.0) – a tool to enable fast and flexible machine learning on air data time series
Lukas Hubert Leufen, Felix Kleinert, and Martin G. Schultz
Geosci. Model Dev., 14, 1553–1574, https://doi.org/10.5194/gmd-14-1553-2021,https://doi.org/10.5194/gmd-14-1553-2021, 2021
Short summary

Cited articles

Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review, Atmos. Environ., 37 (Supplement No. 2), S197–219, https://doi.org/10.1016/S1352-2310(03)00391-1, 2003.
Baldocchi, D.: A Multi-layer model for estimating sulfur dioxide deposition to a deciduous oak forest canopy, Atmos. Environ., 22, 869–884, 1988.
Barsanti, K. C., Carlton, A. G., and Chung, S. H.: Analyzing experimental data and model parameters: implications for predictions of SOA using chemical transport models, Atmos. Chem. Phys., 13, 12073–12088, https://doi.org/10.5194/acp-13-12073-2013, 2013.
Beaver, M. R., Clair, J. M. St., Paulot, F., Spencer, K. M., Crounse, J. D., LaFranchi, B. W., Min, K. E., Pusede, S. E., Wooldridge, P. J., Schade, G. W., Park, C., Cohen, R. C., and Wennberg, P. O.: Importance of biogenic precursors to the budget of organic nitrates: observations of multifunctional organic nitrates by CIMS and TD-LIF during BEARPEX 2009, Atmos. Chem. Phys., 12, 5773–5785, https://doi.org/10.5194/acp-12-5773-2012, 2012.
Blackadar, A. K.: Vertical distribution of wind and turbulent exchange in a neutral atmosphere, J. Geophys. Res., 67, 3095–3102, https://doi.org/10.1029/JZ067i008p03095, 1962.
Download
Short summary
Volatile organic compounds released from forests into the atmosphere play a key role in governing atmospheric concentrations of trace gases and aerosol particles. We describe the development of a 1-D model that simulates the processes occurring within and above the forest canopy that regulate the transfer of these compounds and their products. We evaluate model performance by comparison of modelled concentrations against measurements from a field campaign at a northern Michigan forest site.