the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Par@Graph – a parallel toolbox for the construction and analysis of large complex climate networks
H. Ihshaish
A. Tantet
J. C. M. Dijkzeul
H. A. Dijkstra
Related authors
No articles found.
The mid-Pliocene, a geological period around 3 million years ago, is sometimes considered the best analogue for near-future climate. It saw similar CO2 concentrations to the present-day but also a slightly different geography. In this study, we use climate model simulations and find that the Northern Hemisphere winter responds very differently to increased CO2 or to the mid-Pliocene geography. Our results weaken the potential of the mid-Pliocene as a future climate analogue.
emergent constraintsuses observations of current climate to improve those predictions, using relationships between different climate models. Our paper first classifies the different uses of the technique, and continues with proposing a mathematical justification for their use. We also highlight when the application of emergent constraints might give biased predictions.
too lateto start reducing GHGs in order to avoid dangerous anthropogenic interference. We develop a method for determining a so-called point of no return (PNR) for several GHG emission scenarios. The innovative element in this approach is the applicability to high-dimensional climate models.
Related subject area
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.