Articles | Volume 8, issue 10
https://doi.org/10.5194/gmd-8-3321-2015
https://doi.org/10.5194/gmd-8-3321-2015
Development and technical paper
 | 
22 Oct 2015
Development and technical paper |  | 22 Oct 2015

Par@Graph – a parallel toolbox for the construction and analysis of large complex climate networks

H. Ihshaish, A. Tantet, J. C. M. Dijkzeul, and H. A. Dijkstra

Related authors

Explaining the high skill of reservoir computing methods in El Niño prediction
Francesco Guardamagna, Claudia Wieners, and Henk A. Dijkstra
Nonlin. Processes Geophys., 32, 201–224, https://doi.org/10.5194/npg-32-201-2025,https://doi.org/10.5194/npg-32-201-2025, 2025
Short summary
Causal Mechanisms of Subpolar Gyre Variability in CMIP6 Models
Swinda K. J. Falkena, Henk A. Dijkstra, and Anna S. von der Heydt
EGUsphere, https://doi.org/10.48550/arXiv.2408.16541,https://doi.org/10.48550/arXiv.2408.16541, 2025
Short summary
Physics of AMOC multistable regime shifts due to freshwater biases in an EMIC
Amber A. Boot and Henk A. Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-758,https://doi.org/10.5194/egusphere-2025-758, 2025
Short summary
An idealized model for the spatial structure of the eddy-driven Ferrel cell in mid-latitudes
Woosok Moon, Seung Pyo Lee, Elian Vanderborght, Georgy Manucharyan, and Henk Dijkstra
EGUsphere, https://doi.org/10.5194/egusphere-2025-1004,https://doi.org/10.5194/egusphere-2025-1004, 2025
Short summary
Dynamics of salt intrusion in complex estuarine networks: an idealised model applied to the Rhine–Meuse Delta
Bouke Biemond, Wouter M. Kranenburg, Ymkje Huismans, Huib E. de Swart, and Henk A. Dijkstra
Ocean Sci., 21, 261–281, https://doi.org/10.5194/os-21-261-2025,https://doi.org/10.5194/os-21-261-2025, 2025
Short summary

Related subject area

Climate and Earth system modeling
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
Geosci. Model Dev., 18, 4399–4416, https://doi.org/10.5194/gmd-18-4399-2025,https://doi.org/10.5194/gmd-18-4399-2025, 2025
Short summary
Enhancing winter climate simulations of the Great Lakes: insights from a new coupled lake–ice–atmosphere (CLIAv1) system on the importance of integrating 3D hydrodynamics with a regional climate model
Pengfei Xue, Chenfu Huang, Yafang Zhong, Michael Notaro, Miraj B. Kayastha, Xing Zhou, Chuyan Zhao, Christa Peters-Lidard, Carlos Cruz, and Eric Kemp
Geosci. Model Dev., 18, 4293–4316, https://doi.org/10.5194/gmd-18-4293-2025,https://doi.org/10.5194/gmd-18-4293-2025, 2025
Short summary
Modelling emission and transport of key components of primary marine organic aerosol using the global aerosol–climate model ECHAM6.3–HAM2.3
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
Geosci. Model Dev., 18, 4183–4213, https://doi.org/10.5194/gmd-18-4183-2025,https://doi.org/10.5194/gmd-18-4183-2025, 2025
Short summary
Assessing the climate impact of an improved volcanic sulfate aerosol representation in E3SM
Ziming Ke, Qi Tang, Jean-Christophe Golaz, Xiaohong Liu, and Hailong Wang
Geosci. Model Dev., 18, 4137–4153, https://doi.org/10.5194/gmd-18-4137-2025,https://doi.org/10.5194/gmd-18-4137-2025, 2025
Short summary
Advanced climate model evaluation with ESMValTool v2.11.0 using parallel, out-of-core, and distributed computing
Manuel Schlund, Bouwe Andela, Jörg Benke, Ruth Comer, Birgit Hassler, Emma Hogan, Peter Kalverla, Axel Lauer, Bill Little, Saskia Loosveldt Tomas, Francesco Nattino, Patrick Peglar, Valeriu Predoi, Stef Smeets, Stephen Worsley, Martin Yeo, and Klaus Zimmermann
Geosci. Model Dev., 18, 4009–4021, https://doi.org/10.5194/gmd-18-4009-2025,https://doi.org/10.5194/gmd-18-4009-2025, 2025
Short summary

Cited articles

Anand, K. and Bianconi, G.: Entropy measures for networks: Toward an information theory of complex topologies, Phys. Rev. E, 80, 045102, https://doi.org/10.1103/PhysRevE.80.045102, 2009.
Berezin, Y., Gozolchiani, A., Guez, O., and Havlin, S.: Stability of climate networks with time., Scientific Reports, 2, 666, https://doi.org/10.1038/srep00666, 2012.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E.: Fast unfolding of communities in large networks, J. Stat. Mech.-Theory E., 2008, P10008, https://doi.org/10.1088/1742-5468/2008/10/P10008, 2008.
Bonacich, P.: Factoring and weighting approaches to status scores and clique identification, J. Math. Sociol., 2, 113–120, 1972.
Brandes, U.: A Faster Algorithm for Betweenness Centrality, J. Math. Sociol., 25, 163–177, 2001.
Download
Short summary
Par@Graph, a software toolbox to reconstruct and analyze large-scale complex climate networks. It exposes parallelism on distributed-memory computing platforms to enable the construction of massive networks from large number of time series based on the calculation of common statistical similarity measures between them. Providing additionally parallel graph algorithms to enable fast calculation of important and common properties of the generated networks on SMP machines.
Share