
Geosci. Model Dev., 8, 3321–3331, 2015

www.geosci-model-dev.net/8/3321/2015/

doi:10.5194/gmd-8-3321-2015

© Author(s) 2015. CC Attribution 3.0 License.

Par@Graph – a parallel toolbox for the construction and analysis of

large complex climate networks

H. Ihshaish1,3, A. Tantet2, J. C. M. Dijkzeul1, and H. A. Dijkstra2

1VORtech – Scientific Software Engineers, Delft, the Netherlands
2Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands
3Department of Computer Science and Creative Technologies, UWE-Bristol, Bristol, UK

Correspondence to: H. Ihshaish (hisham.ihshaish@uwe.ac.uk)

Received: 23 November 2014 – Published in Geosci. Model Dev. Discuss.: 20 January 2015

Revised: 20 July 2015 – Accepted: 25 July 2015 – Published: 22 October 2015

Abstract. In this paper, we present Par@Graph, a software

toolbox to reconstruct and analyze complex climate networks

having a large number of nodes (up to at least 106) and edges

(up to at least 1012). The key innovation is an efficient set

of parallel software tools designed to leverage the inherited

hybrid parallelism in distributed-memory clusters of multi-

core machines. The performance of the toolbox is illustrated

through networks derived from sea surface height (SSH) data

of a global high-resolution ocean model. Less than 8 min are

needed on 90 Intel Xeon E5-4650 processors to reconstruct a

climate network including the preprocessing and the correla-

tion of 3×105 SSH time series, resulting in a weighted graph

with the same number of vertices and about 3.2×108 edges.

In less than 14 min on 30 processors, the resulted graph’s de-

gree centrality, strength, connected components, eigenvector

centrality, entropy and clustering coefficient metrics were ob-

tained. These results indicate that a complete cycle to con-

struct and analyze a large-scale climate network is available

under 22 min Par@Graph therefore facilitates the applica-

tion of climate network analysis on high-resolution obser-

vations and model results, by enabling fast network recon-

struct from the calculation of statistical similarities between

climate time series. It also enables network analysis at un-

precedented scales on a variety of different sizes of input data

sets.

1 Introduction

Over the last decade, the techniques of complex network

analysis have found application in climate research. Many

studies were focused on correlation patterns in the atmo-

spheric surface temperature (Tsonis and Roebber, 2004; Tso-

nis et al., 2010; Donges et al., 2009b, a, 2011) and telecon-

nections (Tsonis et al., 2008). Up to now, the behavior of El

Niño (Gozolchiani et al., 2008, 2011; Tsonis and Swanson,

2008; Yamasaki et al., 2008), the synchronization between

different spatiotemporal climate variability patterns (Tsonis

et al., 2007; Wyatt et al., 2011) and the connections between

the sea surface temperature (SST) variability and the global

mean temperature (Tantet and Dijkstra, 2014) have been in-

vestigated. In addition, network tools have also been used

to detect the propagation of SST anomalies on multidecadal

timescales (Feng and Dijkstra, 2014) and to develop early

warning indicators of climate transitions (van der Mheen

et al., 2013; Feng et al., 2014).

In most studies, the above so-called interaction networks

were used. Here the observation locations serve as nodes and

edges (links) are based on statistical measures of similarity,

for example, a correlation coefficient, between pairwise time

series of climate variables at these different locations. Given

time series of climate data, represented by an N×M matrix,

where N is the number of locations and M is the length of

data attributes (daily or monthly values), one needs to calcu-

late at least N2/2 correlation values. Such computations be-

come challenging for large N ; for example, with a network

of 106 nodes, this would result in 5×1011 calculations. A fur-

ther challenge is the memory needed for such a computation.

To only keep the calculated correlation matrix in memory for
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further processing, about 3.7×103 GB of memory is required

(consider 8 bytes of memory for each of the 5× 1011 matrix

items), which is not available in the vast majority of current

computing platforms.

On the other hand, analyzing the resulting network (graph)

is non-trivial and also computationally challenging. Consid-

ering a graph G, with V vertices and E edges, a typical step

in an algorithm to analyze G involves visiting each v ∈ V

and its neighbors V̄ ⊂ V (the set of vertices connected to v

by an edge e ∈ E), then their consecutive neighbors, and so

on. Processing such steps is normally done within a computa-

tional complexity on the order of | V | and/or | E | squared or

cubed. For example the computation of the clustering coeffi-

cient, which measures the degree to which its vertices tend

to cluster together, has a time complexity of O(| V |3). In

practice, there are various available software tools for graph

analysis, some providing implementations of single-machine

algorithms such as BGL (Boost Graph Library) (Siek et al.,

2002), LEDA (Mehlhorn and Näher, 1995), NetworkX (Hag-

berg et al., 2008), SNAP1 and igraph (Csardi and Nepusz,

2006). However, the computation of a clustering coefficient

for a network with | V |= 106 would be very challenging, if

at all possible, with existing single-machine software.

The most popular approach to tackle such computational

challenges is by exploiting parallelism for both the construc-

tion and the analysis of those massive graphs through the de-

sign of efficient algorithms for parallel computing platforms.

In this regard, some contributions have been made to the de-

velopment of algorithms that exploit parallel computing ma-

chines such as in The Parallel BGL (Gregor and Lumsdaine,

2005) and CGMgraph (Chan et al., 2005). However, due to

structural irregularity and sparsity of real-world graphs, in-

cluding those built from climate data, there are few parallel

implementations that are efficient, scalable and can deliver

high performance. Other factors which contribute to this in-

efficiency include a manifested irregularity of data depen-

dencies in those graphs, as well as the poor locality of data,

making graph exploration and analysis highly dominated by

memory latency rather than processing speed (Lumsdaine

et al., 2007). A recent intent with NetworKit2 has shown

a remarkable step forward towards providing parallel soft-

ware tools capable of analyzing large-scale networks. Yet as

in most of the existing libraries, the processing and memory

challenges involved in the construction of graphs with large

|V | from statistical measures of time series, has not been ad-

dressed.

Indeed most researchers tend to develop their own tools

to build correlation matrices beforehand, and thereafter they

transform these matrices into appropriate graph data struc-

tures that can be handled by the existing libraries of graph

1Stanford Network Analysis Platform see http://snap.stanford.

edu.
2Networkit see http://networkit.iti.kit.edu.

analysis. An exception is the software package Pyunicorn3

(Donges et al., 2013), developed at the Potsdam Institute for

Climate Impact Research, that couples Python modules for

numerical analysis with igraph. It can carry out both tasks;

the construction of climate networks and the analysis of the

resulted graphs. However, this software is bounded by the

single-machine’s memory and speed, making it impossible

to reconstruct large-node climate networks and consequently,

inappropriate to analyze them.

The networks which so far have been handled in climate

research applications had only a limited (at most 104) num-

ber of nodes. As a consequence, coarse-resolution observa-

tional and model data have been used with a focus only

on large-scale properties of the climate system. This sys-

tem is, however, known for its multi-scale interactions and

hence one would like to explore the interaction of processes

over the different scales. Data are available through high-

resolution ocean–atmosphere–climate model simulations but

they lead to networks with at least 105 nodes and hence they

can neither be reconstructed, nor efficiently analyzed using

currently available software.

In this paper, we introduce a complete toolbox Par@Graph

designed for parallel computing platforms, which is capable

of the preprocessing of large number of climate time series

and the calculation of pairwise statistical measures, leading

to the reconstruction of large-node climate networks. In addi-

tion, Par@Graph is provided with a set of high-performance

network analyzing algorithms for symmetric multiprocessing

machines (SMPs). It is also coupled to a parallelized version

of igraph (Csardi and Nepusz, 2006) – a widely used graph-

analysis library. The presented toolbox is provided with an

easy-to-use and flexible interface which enables it to be eas-

ily coupled to any existing graph-analysis software.

The rest of the paper is organized as follows. In Sect. 2,

we give an overview of the computational challenges asso-

ciated with the reconstruction of climate networks and their

analysis. In Sect. 3, we provide a description of the design of

Par@Graph and its parallel algorithms for the reconstruction

and analysis of climate networks from climate time series.

In Sect. 4, we describe the application of the toolbox to data

from a high-resolution ocean model including a performance

and scaling analysis. Section 5 provides a summary and dis-

cussion of the results.

2 Climate networks

A common data set of climate observations or model re-

sults consists of spatiotemporal grid points i, i = 1, . . .,N at

a given latitude and longitude, each having a time series of a

state variable, for example, temperature, Ti(tk) of length L,

with k = 1, . . .,L. In order to reconstruct a climate network,

some preprocessing tasks are required beforehand, including

the selection of grid locations and calculation of anomalies

3Pyunicorn see http://tocsy.pik-potsdam.de/pyunicorn.php.
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(e.g., removal of a trend and/or a seasonal cycle that might

produce strong autocorrelations between different locations).

Having done this, each grid point is considered to be a node

in the resulting network.

2.1 Network reconstruction

To define a link between two nodes, both linear and nonlinear

dependencies can be considered. To measure linear correla-

tions between the time series Ti(tk) and Tj (tk), the Pearson

correlation coefficient Rij given by

Rij =

L∑
k=1

Ti(tk)Tj (tk)√
(
L∑
k=1

T 2
i (tk))(

L∑
k=1

T 2
j (tk))

(1)

is widely used (Tsonis and Roebber, 2004). Alternatively,

measures of nonlinear correlation can be used, such as the

mutual information Mij , given by

Mij =

∑
Ti ,Tj

Pij (Ti,Tj ) log
Pij (Ti,Tj )

Pi(Ti)Pj (Tj )
. (2)

Here Pi(Ti) is the probability density function (PDF) of time

series Ti , and Pij (Ti,Tj ) is the joint PDF for (Ti,Tj ). The

issue whether Rij or Mij is better to quantify the statisti-

cal similarity between nodes i and j is discussed in (Donges

et al., 2009a). Whatever the choice, however, a correlation

matrix (C) of N ×N elements is produced, where Cij = Rij
or Cij =Mij , and N is again the number of grid points.

In many climate applications, one is interested in propa-

gating features, such as that of ocean Rossby waves. Time-

delayed (time-lagged) relationships that exist between cli-

mate variables in different geographical locations have also

been addressed by the climate networks approach (Gozolchi-

ani et al., 2008; Berezin et al., 2012; Tirabassi and Masoller,

2013; Feng and Dijkstra, 2014; Tupikina et al., 2014). These

are commonly measured by examining the correlation be-

tween the time series of two locations relatively shifted in

time with respect to one another. Technically this can be done

by defining a time-lag interval and computing the correlation

measures between the shifted time series (Feng and Dijkstra,

2014). One can also define a time interval, say [tmin, tmax],

and then find the value of t in this interval where Cij (t) is

maximal (Gozolchiani et al., 2008).

Having derived the correlation matrix C, a threshold τ is

usually applied to define strong similarities between nodes

as “links”. The adjacency matrix A for the network is then

found by

Aij = Aji =2(Cij − τ)− δij , (3)

where 2 is the Heaviside function and δ is Kronecker delta.

If correlation values are to be considered as weights for the

resulted links, the elements of A after thresholding C with τ

become

Aij =

{
0 Cij < τ,

Cij Cij ≥ τ.
(4)

Note that because C is symmetric, the resulting network

is always undirected when C is calculated at zero time lag.

However, when time-lagged correlations are studied, direc-

tions are added to the links between nodes, reflecting the di-

rection of the shifting of their corresponding time series. If

only thresholding is applied, but the values of the correlation

matrix are kept, a weighted network will result.

2.2 Network analysis

Many properties in climate networks have interesting physi-

cal interpretations and it is important to compute them effi-

ciently. For later reference in Sects. 3 and 4, we list here the

most important properties.

– Degree centrality. The degree centrality ki of a node

i refers to the number of its incident vertices, that is,

ki = |N(i) |, where N(i) is the set of vertices adjacent

to i.

– Strength centrality. For a weighted network, the strength

centrality is given by the sum of the weights of the edges

between the node and its incident vertices.

– Clustering coefficient. The Watts–Strogatz clustering

coefficient Ci measures the probability that two ran-

domly chosen neighbors of a node are also neighbors

(Watts and Strogatz, 1998). This metric is calculated for

each i ∈ V by

Ci =
2%i

ki(ki − 1)
, (5)

where ki is the number of neighbors of i and %i is the

number of connected pairs between all its neighbors.

When d indicates the average number of i’s neighbors

in a graph, this metric can be obtained in O(|V |d) time

and in O(|V |) space.

– Entropy. The Shannon entropy (Hi) of the incident

edges’ weights (Anand and Bianconi, 2009) is given for

node i ∈ V by

Hi =−

ki∑
j=1

pij log pij ; pij =
wij
ki∑
l=1

wil

, (6)

where ki is the (total) degree of node i and wij is the

weight of edge(s) between nodes i and j . The compu-

tation of the entropy for all nodes in a graph is obtained

in O(|V | + |E|) time and in O(|V |) space.
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– Eigenvector centrality. This centrality metric is com-

monly used to evaluate the influence of a vertex in a

network qualitatively. Unlike degree centrality, which

weights every edge equally, the eigenvector centrality

assigns relative scores to all vertices in the network

based on the concept that edges with high-scoring ver-

tices contribute more to the score of the vertex in ques-

tion than equal edges with low-scoring nodes. As a re-

sult, one would find that a vertex having a high de-

gree does not necessarily imply a high eigenvector cen-

trality, since its connectivity might be with less impor-

tant vertices. Equally, a vertex with a high eigenvec-

tor centrality is not necessarily highly linked (the ver-

tex might have few but important links). As defined in

Bonacich (1972), let A= (Aij ) be the adjacency matrix

of the graph G(V,E), the centrality score (xi) of node

i ∈ V is then found by

xi =
1

λ

∑
j∈V

Aijxj , (7)

where λ is a constant. Note that there could be many

eigenvalues λ for which an eigenvector exists, however,

the centrality score is determined by calculating the

eigenvector corresponding to the largest positive eigen-

value of the adjacency matrix. This metric is obtained

computationally inO(|V |+|E|) time andO(|V |) space.

– Betweenness centrality. This measure, indicated here

by BCi is based on the shortest-path enumeration. It

is considered one of the more commonly used metrics

to quantify the relative importance of nodes in a graph

(Freeman, 1977). To obtain this metric given a graph

G(V,E), let σst denote the number of shortest paths

between the vertices s and t . When the count of those

which pass through the node i is σst (i), then the BCi is

obtained by

BCi =
∑

s 6=i 6=t∈V

σst (i)

σst
. (8)

With the sequential algorithm which has been proposed

in Brandes (2001), it can be computed in O(|V | + |E|)
space and O(|V | |E|) time.

All these quantities can be obtained using the igraph li-

brary for relatively small-node networks.

3 Description of the toolbox

In practice, the reconstruction and analyses of climate net-

works are carried out through performing a set of separate

Figure 1. Provided a parallel machine of p processors, p− 1 pro-

cesses are initialized and assigned with equal blocks of time series,

each block’s set of time series are correlated, then these blocks are

exchanged (p− 1)/2 times (half round of the ring) between pro-

cesses to complete the all-to-all correlations between the whole set

of time series. Conversely, p0 (the master computing element) is

initialized as a master process to gather the resulting calculations

and perform the analysis tasks on the resulted network.

tasks, progressively. First, the preprocessing of climate time

series occurs, then the correlation matrix is calculated, fol-

lowed by network construction from either the correlation

matrix or another graph data structure like an adjacency ma-

trix, and finally the network is analyzed using the selected

graph algorithms library. Contrary to these sequence of com-

putations, Par@Graph is designed to provide end-to-end sup-

port for the creation and analysis of climate networks by in-

tegrating parallel computing tools to perform all the involved

processing efficiently, with attention at the same time to op-

timize required computing memory.

Par@Graph is composed of a set of coupled parallel

tools designed to leverage the inherited hybrid parallelism in

distributed-memory clusters of multi-core (SMPs) machines,

using MPI/OpenMP standards. The provided tools are clas-

sified into two major software modules, which we refer to as

the Network Constructor and the Analysis Engine, together

with additional interfacing tools and wrappers.

3.1 Network Constructor

This module carries out the calculation of the correlation

matrix C from the given time series. It also applies a user-

defined threshold τ to generate the corresponding network

adjacency matrix A. Then it proceeds to the transformation

of the resulted matrix into a network data structure which

will later be analyzed by the analysis module.

The design of the constructer follows a master-worker par-

allel computing paradigm for distributed-memory parallel

Geosci. Model Dev., 8, 3321–3331, 2015 www.geosci-model-dev.net/8/3321/2015/
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clusters of SMPs. The calculation of the correlations between

time series is distributed over the computing elements (work-

ers), forming a ring topology of processes (Fig. 1), which

communicate between each other using MPI standards.

As soon as a process finds Cij ≥ τ , then the pair (i,j) is

copied to a local process’s buffer of a user-configurable size,

and sends the iteratively filled buffer to the master p0, where

the network is to be analyzed. Note that if the network is

weighted, the value of Cij itself is also copied and sent to the

master side by side with its pair of nodes i and j (and in like

manner time-lag values).

A brief description of the processing associated with

each ring process is described in Algorithm 1 below.

Fig. 1: Provided a parallel machine of p proces-

sors, p�1 processes are initialized and assigned

with equal blocks of time series, each block’s set

of time series are correlated, then these blocks

are exchanged (p�1)/2 times (half round of the

ring) between processes to complete the all-to-all

correlations between the whole set of time series.

Conversely, p0 (the master computing element) is

initialized as a master process to gather the result-

ing calculations and perform the analysis tasks on

the resulted network.

MPI standards. As soon as a process finds Cij � ⌧ , then the pair (i,j) is copied to a local process’s buffer of a180

user-configurable size, and sends the iteratively filled buffer to the master p0, where the network is to be analyzed.

Note that if the network is weighted, the value of Cij itself is also copied and sent to the master side by side with

its pair of nodes i and j (and in like manner time-lag values).

A brief description of the processing associated to each ring process is described in Algorithm 1 below.

Algorithm 1 Network Constructor
1: procedure RING PROCESS(p)

2: Nlocal p’s block of time series

3: Nneighbor neighbor’s block of time series

4: neighbor(right) p+1

5: neighbor(left) p�1

6: preprocessing remove user specified time cycle

7: performance reorder time series of Nlocal . for better memory-access

8: local block cross correlate Nlocal . performed once

9: for i 0 to (p�1)/2 do . iterate half ring

10: function SEND(Nlocal,neighbor(right)) . send block to a neighbor

11: function RECEIVE(Nneighbor,neighbor(left)) . receive block from another

12: function C(ij,8i,j 2Nlocal +Nneighbor)

13: if (Cij >= ⌧) then

14: if weighted then

15: function SEND!MASTER(i, j, Cij) . time-lag t is also sent to master if needed

16: else

17: function SEND!MASTER(i, j)

18: neighbor(right) neighbor(right)+1

19: neighbor(left) neighbor(left)-1

20: return Done

Note that only a subset C̄ of C, such that 8C̄ij 2 C̄,C̄ij � ⌧ , is sent progressively to the master computing element.185

7

Note that only a subset C̄ of C, such that ∀C̄ij ∈ C̄, C̄ij ≥

τ , is sent progressively to the master computing element.

This indeed means that the under-threshold values of C are

discarded directly at each ring process. This reduces both the

amount of data sent to the master element and the memory

required there for the construction of the network.

The process of constructing the network itself is performed

progressively in the event that the master (p0) receives edges’

coordinates (and attributes, e.g., weights/lags) from any ring

process. Initially p0, having the number of data set grid

points, constructs a completely unconnected network, that is,

no edges between graph vertices. As soon as ring processes

start sending edge coordinates to p0, these edges are added

to the network straightaway. In the long run, constructing the

network following this approach results in saving time, since

the master is idle (except when receiving data from workers)

during the ring processing iterations. And more importantly,

because the coming edges are added directly to the graph

data structure, memory usage is optimized at the master as

data redundancy are markedly minimized.

With attention to the overall performance, it is crucial not

to overlook the I/O overhead, especially because the toolbox

is intended to be processing large climate data sets. To that

end, the Network Constructor is designed to perform mul-

tiple I/O collective operations at the same time (MPI-IO).

In like manner, simultaneously, each ring process reads its

chunk of time series from a parallel file system. Furthermore,

owing to the fact that the elements of those time series are

neither read nor stored contiguously, another key point in or-

der to improve performance is to optimize memory access at

each processor. This is provided at each process by perform-

ing preprocessing tasks that include the reordering of each

process’s chunk of time series, for the sake of reducing cache

misses during calculation.

3.2 Analysis engine

Once correlations and their coordinates are available at the

master machine, it consecutively runs graph algorithms to

analyze the resulted network. The developed parallel algo-

rithms for network analysis are based on those in igraph.

The intent here is that this design (coupled with the Net-

work Constructor) will achieve three primary goals: (1) to

construct the network rapidly, (2) to enable efficient and safe

multi-threading of the core library algorithms and (3) to re-

duce memory usage for network representation.

With respect to the analyzing algorithms, a set of 20 of

the core algorithms of igraph have been parallelized using

POSIX threads and OpenMP directives. Generally speak-

ing, the embedded routines of those algorithms – a sample

pseudocode is shown below in (a) – could naively be paral-

lelized by transforming their iterative instructions into paral-

lel loops; see (b) pseudocode:

This indeed means that the under-threshold values of C are discarded directly at each ring process. This reduces

both the amount of data sent to the master element and the memory required there for the construction of the

network.190

The process of constructing the network itself is performed progressively in the events that the master (p0)

receives edges’ coordinates (and attributes, e.g. weights/lags) from any ring process. Initially p0, having the

number of dataset grid points, constructs a completely unconnected network, i.e. no edges between graph vertices.

As soon as ring processes start sending edge coordinates to p0, these edges are added to the network straightaway.

In the long run, constructing the network following this approach results in saving time, since the master is idle195

(except when receiving data from workers) during the ring processing iterations. And more importantly, because

the coming edges are added directly to the graph data structure, memory usage is optimized at the master as data

redundancy is markedly minimized.

With attention to the overall performance, it is crucial not to overlook the I/O overhead, especially because the

toolbox is intended to be processing large climate datasets. To that end, the Constructor is designed to perform200

multiple I/O collective operations at the same time (MPI-IO). In like manner, simultaneously, each ring process

reads its chunk of time series from a parallel file system. Furthermore, owing to the fact that the elements of

those time series are neither read nor stored contiguously, another key point in order to improve performance is

to optimize memory access at each processor. This is provided at each process by performing preprocessing tasks

that include the reordering of each process’s chunk of time series, for the sake of reducing cache misses during205

calculation.

3.2 Analysis Engine

Once correlations and their coordinates are available at the master machine, it consecutively runs graph algo-

rithms to analyze the resulted network. The developed parallel algorithms for network analysis are based on those

in igraph. The intent here is that this design (coupled with the Network Constructor) will achieve three pri-210

mary goals:- 1) to construct the network rapidly, 2) to enable efficient and safe multithreading of the core library

algorithms and 3) to reduce memory usage for network representation.

With respect to the analyzing algorithms, a set of 20 of the core algorithms of igraph have been parallelized

using POSIX threads and OpenMP directives. Generally speaking, the embedded routines of those algorithms (a

sample pseudocode is shown below in (a)), could naively be parallelized by transforming their iterative instruc-215

tions into parallel loops, see (b) pseudocode:

while i vertices

do

8
<

:
result(i) some processing

i i+1

(a)

#pragma omp parallel for private(i)

for i 0 to vertices,i i++

do
n

result(i) some processing

(b)

For instance, in a global transitivity routine, by which the network’s average clustering coefficient is obtained, the

value result is scalar (average value), so that parallelism appears straightforward and safe multithreading could be

achieved by applying reduction binary operators over its parallelizable loop. Although this may be approachable

8

For instance, in a global transitivity routine, by which the net-

work’s average clustering coefficient is obtained, the value

result is scalar (average value), so that parallelism appears

straightforward and safe multi-threading could be achieved

by applying reduction binary operators over its parallelizable

loop. Although this may be approachable in similar cases,

unfortunately in most routines result’s value does not depend

linearly on the iteration variable i in some arbitrary way (de-

pending on the algorithm). This is added to the synchroniza-

tion overhead which could be imposed in algorithms where

dependent iterative operations are found, which need careful

consideration to prevent conflicts commonly caused by the

concurrent access to shared memory spaces.

The parallelized algorithms of igraph are those mostly

used to obtain important network metrics needed to evaluate

structural (local and global) properties of graphs. Amongst

them are the algorithms of the shortest paths, centrality mea-

sures (e.g., betweenness, closeness, eigenvector), transitiv-

ity and clustering coefficient, connected components, degree

www.geosci-model-dev.net/8/3321/2015/ Geosci. Model Dev., 8, 3321–3331, 2015
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tripolar grid layout, with poles in Canada and Russia and the model has 42 non-equidistant z-levels,285

increasing in thickness from 10 m just below the upper boundary to 250 m just above the lower

boundary at 6000 m depth. We use data from the control simulation of this model as described in

?, where the POP is forced with a repeated annual cycle from the (normal-year) Coordinated Ocean

Reference Experiment (CORE4) forcing dataset (?), with the 6-hourly forcing averaged to monthly.

Correlation networks were built from one year (year 136 of the control run) of the simulated global290

daily sea surface height (SSH) data. The seasonal cycle was removed by subtracting for each day of

the year its 5 days running mean averaged over years 131 to 141. The mean and standard deviation

of the SSH for this year are plotted in Fig. 3a and Fig. 3b, respectively. Strong spatial and temporal

variability can be observed in the region of the western boundary currents (e.g. the Gulf Stream

in the Atlantic, the Kuroshio in the Pacific and the Agulhas Current in the Indian Ocean) and the295

Southern Ocean.

(a) (b)

Fig. 3: Mean (a) and standard-deviation (b) of the daily SSH (units in cm) for year 136 of the POP control run

as in ?.

Two datasets have been used for network reconstruction, one with the actual 0.1� horizontal res-

olution of the model, resulting in 4.7⇥106 grid points, and an interpolated one with a lower 0.4�

horizontal resolution resulting in 3⇥105 grid points. The latter data set has been used for the per-

formance analysis in the next subsection.300

4.2 Performance analysis

The results were computed on a bullx supercomputer 5 composed of multiple ”fat” computing nodes

of 4-socket bullx R428 E3 each, having 8-core 2.7 GHz Intel Xeon E5-4650 (Sandy Bridge) CPUs,

with a shared Intel smart cache of 20 MB at each socket, resulting in SMP nodes of 32 cores which

share 256 GB of memory. The interconnection between those ”fat” nodes is built on InfiniBand305

technology providing 56 Gbits/s of inter-node bandwidth. The same technology is used to connect

the nodes to a Lustre parallel file system of 48 OSTs each with multiple disks.
4see http://www.clivar.org/clivar-panels/omdp/core-2
5see https://surfsara.nl/systems/cartesius
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Figure 2. Mean (a) and standard deviation (b) of the daily SSH (units in cm) for year 136 of the POP control run as in (Weijer et al., 2012).

4.2 Performance analysis280

The results were computed on a bullx supercomputer 5 composed of multiple ”fat” computing nodes of 4-socket

bullx R428 E3 each, having 8-core 2.7 GHz Intel Xeon E5-4650 (Sandy Bridge) CPUs, with a shared intel smart

cache of 20 MB at each socket, resulting in SMP nodes of 32 cores which share 256 GB of memory. The

interconnection between those ”fat” nodes is built on InfiniBand technology providing 56 Gbits/s of inter-node

bandwidth. The same technology is used to connect the nodes to a Lustre parallel file system of 48 OSTs each285

with multiple disks.

First experiments were performed to construct weighted correlation networks from the 0.4� POP grid, having

300,842 grid points. Different edge densities (see Table(1)) were obtained as a result of applying different thresh-

old values ⌧ for the link definition. The parallel speedup of the toolbox and the corresponding computational time

are plotted in Fig. 3a and Fig. 3b, respectively.

Network POP ⌧ Vertices Edges

1 0.4� 0.7 3.0⇥105 3.2⇥108

2 0.4� 0.6 3.0⇥105 1.5⇥109

3 0.4� 0.5 3.0⇥105 2.7⇥109

4 0.1� 0.4 4.7⇥106 1.4⇥1012

Table 2: Different threshold values ⌧ used in the reconstruction of Pearson Correlation networks from the 0.4� and 0.1� POP

datasets and corresponding number of network vertices and edges.

(a) Speedup (b) Execution time corresponding to (a)

Fig. 3: Speedup ratio (a) for the parallel construction of SSH climate networks from the POP model data having 0.4� spatial

resolution. The shown speedup also includes the parallel reading and reordering of the input time series. The corresponding

execution times (in seconds) over different sizes of computing processors starting from 5 processors upwards is given in (b).

290
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Figure 3. Speedup ratio (a) for the parallel construction of SSH climate networks from the POP model data having 0.4◦ spatial resolution.

The shown speedup also includes the parallel reading and reordering of the input time series. The corresponding execution times (in seconds)

over different sizes of computing processors starting from five processors upwards is given in (b).

and strength centralities, entropy and diameter. A complete

list of the parallelized routines and algorithms as well as the

particular approach of parallelism for each would make this

paper too technical and will be reported elsewhere. However,

our approach to achieve efficient fine-grained parallelism for

the targeted algorithms of igraph included major changes in

their internal routines and the used data structures. For exam-

ple, shared memory queues were added to achieve safe multi-

threading, loops’ iterations were optimized to minimize syn-

chronization costs, and iterative workload was accordingly

designed to be scheduled dynamically amongst threads in or-

der to improve load imbalance caused by the poor locality

of data. Furthermore, the internal data structure of the graph

itself was modified from indexed edge lists (supported by it-

erators and internal stacks) to graph adjacency lists which re-

sulted in achieving significant reduction of memory require-

ments, especially in the case of sparse networks.

Additionally, special attention was given to the calculation

of both the degree and strength centralities. As such, both

metrics’ algorithms were redesigned to be computed progres-

sively during the time the network is being constructed. In

other words, each time the master receives edges from one of

the ring processes, these are added to the accumulated count

of the edges that corresponds to their relative vertices. As

soon as the last packet of edges is received by the master,

these metrics are instantly available. A notable benefit of this

approach, of course apart from saving time, is the significant

reduction of memory requirements, as each time the master

receives a new set of edges, the previous ones are released.

Such technique enables computing machines of rather few

gigabytes of memory to process degree and strength central-

ity metrics for large-scale networks.

3.3 Interfaces and other features

In order to match a wider range of user requirements,

Par@Graph is provided with all the necessary tools to do the

job, including parallel collective tools to write the resulted

correlation or mutual information matrices, where each ring

Geosci. Model Dev., 8, 3321–3331, 2015 www.geosci-model-dev.net/8/3321/2015/
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of data (edges, weights/attributes) which is sent to the master processor, as they will be more when

lower values of ⌧ are applied. That is to say that in such cases, communication overhead hinders

the overall performance. The timing for both the parallel reading and the reordering of time series

is comparatively constant and pointless compared to the overall execution time, regardless of the

number of processors, as shown in Fig. 5.

(a) (b)

Fig. 5: In (a) the overall runtime of the experiment in Fig. 4b (for ⌧ = 0.5) is shown in the upper curve

and compared to the time for parallel reading and reordering of time series (the lower curve). The shaded

area corresponds to real cpu time for the calculation of the correlation matrix and the communication between

processors. Both times for parallel reading and reordering preprocessing tasks are shown respectively in (b).

325

Results of the performance tests to determine the six network properties as discussed in section

2.2 are shown in Fig. 7. Although there are some differences in the performance gain in each of the

algorithms, a general improvement is achieved by our fine-grained parallel implementation over the

sequential igraph algorithms.

In some algorithms, like the clustering coefficient, parallel performance seems more sensitive330

to the density of the network, whereas in others like the degree centrality, performance remains

intact. However, although an evident performance gain is observed here, one has to remember that

the performance of the vast majority of network analyzing algorithms is highly dependent on the

topology of the network itself, and thus, further study should be carried out to compare results for

different types of networks.335

In view of memory requirements, we show in Table 2 a comparison of the needed memory

to represent an edge (for different types of networks) when using igraph’s data structures with

Par@Graph’s adjacency list. Indeed, the presented networks constructed by our toolbox, as a result

of changing the internal data structure, are at least 60% lighter in size compared to their size in

memory when using the original data structures of igraph.340

Similar performance results were obtained for tests using the much larger correlation networks

13

Figure 4. In (a) the overall runtime of the experiment in Fig. 3 (for τ = 0.5) is shown in the upper curve and compared to the time for parallel

reading and reordering of time series (the lower curve). The shaded area corresponds to real-cpu time for the calculation of the correlation

matrix and the communication between processors. Both times for parallel reading and reordering preprocessing tasks are shown in (b).

process writes its calculated portion to a common file in a

parallel file system. This is added to other tools to read (in

parallel) and also construct a graph directly from a matrix

as well as tools to read and write standard graph formats,

including edge lists, adjacency lists and the popular Pajek

format which contains metadata added to an edge list.

Another key point is the flexible interface between the Net-

work Constructor and the analysis engine. That is, although

the toolbox provides wrappers to the parallelized igraph,

those are quite flexible to be used with any other analysis

library other than igraph, or any other user developed rou-

tines. Additionally, users are provided with a configuration

input file where they can specify their experimental settings.

These include the selection of the data grid (location coordi-

nates), preprocessing parameters, the threshold (τ ), the type

of the network (weighted, unweighted, directed, etc.), time-

lag intervals, whether to construct a network from time se-

ries, a matrix or another graph format.

4 Application and performance

In this section, we will apply Par@Graph to reconstruct and

analyze networks obtained from high-resolution ocean model

data. The motivation for performing these computations is

to understand coherence of the ocean circulation at different

scales (Froyland et al., 2014) .

4.1 The POP model data

The data used here are taken from simulations which were

performed with the Parallel Ocean Program (POP; Dukowicz

and Smith, 1994), developed at Los Alamos National Labo-

ratory. This configuration has a nominal horizontal resolu-

tion of 0.1◦ and is the same as that used by Maltrud et al.

(2010). We note that this configuration has a tripolar grid lay-

out, with poles in Canada and Russia, and the model has 42

non-equidistant z-levels, increasing in thickness from 10 m

just below the upper boundary to 250 m just above the lower

boundary at 6000 m depth. We use data from the control sim-

ulation of this model as described in Weijer et al. (2012),

where the POP is forced with a repeated annual cycle from

the (normal-year) Coordinated Ocean Reference Experiment

(CORE4) forcing data set (Large and Yeager, 2004), with the

6-hourly forcing averaged to monthly.

Correlation networks were built from 1 year (year 136 of

the control run) of the simulated global daily sea surface

height (SSH) data. The seasonal cycle was removed by sub-

tracting for each day of the year its 5 days running mean

averaged over years 131 to 141. The mean and standard de-

viation of the SSH for this year are plotted in Fig. 2a and

b, respectively. Strong spatial and temporal variability can be

observed in the region of the western boundary currents (e.g.,

the Gulf Stream in the Atlantic, the Kuroshio in the Pacific

and the Agulhas Current in the Indian Ocean) and the South-

ern Ocean.

Two data sets have been used for network reconstruction,

one with the actual 0.1◦ horizontal resolution of the model,

resulting in 4.7×106 grid points, and an interpolated one with

a lower 0.4◦ horizontal resolution resulting in 3× 105 grid

points. The latter data set has been used for the performance

analysis in the next subsection.

4.2 Performance analysis

The results were computed on a bullx supercomputer 5 com-

posed of multiple “fat” computing nodes of 4-socket bullx

4see http://www.clivar.org/clivar-panels/omdp/core-2.
5See https://surfsara.nl/systems/cartesius.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7: Performance of the parallel algorithms running on a single SMP bullx node of 30 compute cores. The

speedup ratios correspond to the analysis of the networks 1-3 presented in Table 1.

18

Figure 5. Performance of the parallel algorithms – (a) clustering

coefficient, (b) entropy, (c) degree centrality, (d) strength central-

ity, (e) eigenvector centrality and (f) betweenness centrality. Algo-

rithms are run on a single SMP bullx node of 30 compute cores.

The speedup ratios correspond to the analysis of the networks 1–3

presented in Table 1.

R428 E3 each, having 8-core 2.7 GHz Intel Xeon E5-4650

(Sandy Bridge) CPUs, with a shared Intel smart cache of

20 MB at each socket, resulting in SMP nodes of 32 cores

which share 256 GB of memory. The interconnection be-

tween those “fat” nodes is built on InfiniBand technology

providing 56 Gbits s−1 of inter-node bandwidth. The same

technology is used to connect the nodes to a Lustre paral-

lel file system of 48 object storage targets (OSTs) each with

multiple disks.

First experiments were performed to construct weighted

Pearson correlation networks from the 0.4◦ POP grid, hav-

ing 300842 grid points. Different edge densities (see Table 1)

were obtained as a result of applying different threshold val-

ues τ for the link definition. The parallel speedup of the tool-

box and the corresponding computational time are plotted in

Fig. 3.

The execution time falls nearly super linearly with the

number of processors up to 100. Moreover, the performance

becomes strongly super linear for τ > 0.5 as the number of

Table 1. Different threshold values τ used in the reconstruction of

Pearson correlation networks from the 0.4 and 0.1◦ POP data sets

and corresponding number of network vertices and edges.

Network POP τ Vertices Edges

1 0.4◦ 0.7 3.0× 105 3.2× 108

2 0.4◦ 0.6 3.0× 105 1.5× 109

3 0.4◦ 0.5 3.0× 105 2.7× 109

4 0.1◦ 0.4 4.7× 106 1.4× 1012

processors increases. This super linearity is due to a reduc-

tion in cache misses at each processor’s cache (note that

20 MB of cache are shared among each of the 8 cores) as

less time series are needed to fit in those shared caches when

more cores are implied. In a further analysis, we also ob-

served that the reordering of input time series did improve

the performance of the toolbox, mainly when the number of

processors was less than 100. In the case of τ = 0.5, per-

formance drops with larger system sizes. First thing to re-

member here is that regardless of the value of the applied τ ,

the all-to-all correlations are calculated amongst the ring pro-

cesses. However, the only difference when different values of

τ are applied is the amount of data (edges, weights/attributes)

that are sent to the master processor, as they will be more

when lower values of τ are applied. That is to say that in

such cases, communication overhead hinders the overall per-

formance.

The timing for both the parallel reading and the reordering

of time series is comparatively constant and pointless com-

pared to the overall execution time, regardless of the number

of processors, as shown in Fig. 4.

Results of the performance tests to determine the six net-

work properties as discussed in Sect. 2.2 are shown in Fig. 5.

Although there are some differences in the performance

gain in each of the algorithms, a general improvement is

achieved by our fine-grained parallel implementation over

the sequential igraph algorithms.

In some algorithms, like the clustering coefficient, parallel

performance seems more sensitive to the density of the net-

work, whereas in others, such as the degree centrality, per-

formance remains intact. However, although an evident per-

formance gain is observed here, one has to remember that

the performance of the vast majority of network analyzing

algorithms is highly dependent on the topology of the net-

work itself, and thus a further study should be carried out to

compare results for different types of networks.

In view of memory requirements, we show in Table 2 a

comparison of the needed memory to represent an edge (for

different types of networks) when using igraph’s data struc-

tures with Par@Graph’s adjacency list. Indeed, the presented

networks constructed by our toolbox, as a result of chang-

ing the internal data structure, are at least 60 % lighter in size

Geosci. Model Dev., 8, 3321–3331, 2015 www.geosci-model-dev.net/8/3321/2015/
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(a) (b)

(c) (d)

Fig. 9: (a) Degree, (b) Clustering and (c) Betweenness for the SSH POP data interpolated on the 0.4� grid and a

threshold of ⌧ = 0.5. (d) Degree field for the 0.1� grid and a threshold ⌧ = 0.4; here the reconstructed network

has 4.7⇥106 nodes and 1.4⇥1012 edges.

20

Figure 6. (a) Degree, (b) clustering and (c) betweenness for the SSH POP data interpolated on the 0.4◦ grid and a threshold of τ = 0.5.

(d) Degree field for the 0.1◦ grid and a threshold τ = 0.4. Here the reconstructed network has 4.7× 106 nodes and 1.4× 1012 edges.

Table 2. A single edge’s size in memory when using the indexed

edge list used in igraph compared to its corresponding size when

applying Par@Graph. Additionally, a vertex in igraph is repre-

sented by 16 bytes in memory, whereas it needs only 4 bytes in

Par@Graph.

Bytes/edge in igraph Bytes/edge in Par@Graph

weighted unweighted weighted unweighted

Directed 40 32 8 4

Undirected 40 32 16 8

compared to their size in memory when using the original

data structures of igraph.

Similar performance results were obtained for tests using

much larger correlation networks from the 0.1◦ POP grid,

resulting in networks of 4.7× 106 nodes and edges ranging

from 1.5× 1010 to 1.4× 1012 for thresholds from 0.8 to 0.4,

excluding, however, the performance for betweenness cen-

trality and clustering coefficient algorithms for the network

of 1.4× 1012 that have not been performed. In summary, it

is possible to construct large-scale climate networks in quite

reasonable times on modest parallel computing platforms.

4.3 Coherence of global sea level

Being able to reconstruct and analyze the large complex net-

works arising from the POP ocean model, we now shortly

demonstrate the novel results one can obtain. One of the im-

portant questions in physical oceanography deals with the

coherence of the global ocean circulation. In low-resolution

(non-eddying) ocean models, the flows appear quite coherent

with near-steady currents filling the ocean basins. However,

as soon as eddies are represented (when the spatial resolution

is smaller than the internal Rossby radius of deformation) a

fast decorrelation is seen in the flow field.

The issue of coherence has for example been tackled by

looking at the eigenvalues of the transfer matrix (Dellnitz

et al., 2009; Froyland et al., 2014) but also complex networks

are very suited to address this question (Tantet and Dijkstra,

2014). Preliminary results on some of the important prop-

erties (degree, clustering and betweenness) of the complex

network derived from the SSH data of the 0.4◦ POP simula-

tion are shown in Fig. 6a–c. In all cases, a weighted, undi-

rected network was constructed by using the Pearson corre-

lation with zero lag and a threshold value τ = 0.5.

In Fig. 6d, the degree field for the network constructed

with τ = 0.4 from the 0.1◦ POP SSH data is shown. The

overall features of the degree field for the 0.1◦ POP data are

www.geosci-model-dev.net/8/3321/2015/ Geosci. Model Dev., 8, 3321–3331, 2015
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already found in the degree field for the 0.4◦ POP data, but

additional small-scale correlations can be distinguished.

The precise physical interpretation of these metrics is out-

side the scope of this paper as it requires a background in

dynamical oceanography. However, one can observe that the

subtropical gyres (Dellnitz et al., 2009; Froyland et al., 2014)

tend to have a large degree while the regions of the west-

ern boundary currents, near the Equator and Southern Ocean

tend to have smaller degree.

5 Summary and conclusions

Up to now, the data sets (both observational and model

based) used to reconstruct and analyze climate networks have

been relatively small due to computational limitations. In

this paper we presented the new parallel software toolbox

Par@Graph to construct and analyze large-scale complex

networks. The software exposes parallelism on distributed-

memory computing platforms to enable the construction of

massive networks from a large number of time series based

on the calculation of common statistical similarity measures

between them. Additionally, Par@Graph is provided with

a set of parallel graph algorithms to enable fast calculation

of important properties of the generated networks on SMPs.

These include those of the betweenness, closeness, eigenvec-

tor and degree centralities as well as the algorithms needed

for the calculation of transitivity, connected components, en-

tropy and diameter. Additionally, a parallel implementation

of a community detection algorithm based on modularity op-

timization (Blondel et al., 2008) is provided.

The capabilities of Par@Graph were shown by using sea

surface height data of a strongly eddying global ocean model

(POP). The resulting networks had number of nodes ranging

from 3.0×105 to 4.7×106, with the number of edges ranging

from 3.2×108 to 1.4×1012. The performance of Par@Graph

showed excellent parallel speedup in the construction of mas-

sive networks, especially when higher thresholds were ap-

plied. When lower values of τ were used, communication

overhead was seen to decrease the performance. On the other

hand, we observed a significant speed gain in the calculation

of the discussed network characteristics which was obtained

by our parallel implementation of igraph.

With regards to the challenging issue of memory require-

ments in order to compute such big networks, we showed that

the presented toolbox notably optimizes the usage of memory

during the reconstruction of large-scale networks by mini-

mizing the accompanying data redundancy. Additionally, the

resulted networks themselves are markedly lighter in size

compared to their equivalents in igraph as a result of chang-

ing the data structures from indexed edge lists to adjacency

lists.

The availability of Par@Graph will allow one to solve a

new set of questions in climate research, one of which, the

coherence of the ocean circulation at different scales, was

shortly discussed in this paper. Apart from higher resolution

data sets of one observable, it will now also be possible to

deal with data sets of several variables and to more efficiently

reconstruct and analyze networks of networks (Berezin et al.,

2012). However, apart from climate research, Par@Graph

will also be very useful for all fields of science where very

large-scale networks are applied, and it is hoped that the tool-

box will find its way into the complexity science community.

Code availability

Par@Graph is not yet provided with a license. For the time

being, source code will be available from authors upon re-

quest. Authors will also provide support in the initial soft-

ware installation and setup.
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