Articles | Volume 8, issue 10
https://doi.org/10.5194/gmd-8-3285-2015
https://doi.org/10.5194/gmd-8-3285-2015
Development and technical paper
 | 
20 Oct 2015
Development and technical paper |  | 20 Oct 2015

CH4 parameter estimation in CLM4.5bgc using surrogate global optimization

J. Müller, R. Paudel, C. A. Shoemaker, J. Woodbury, Y. Wang, and N. Mahowald

Related authors

AERO-MAP: A data compilation and modelling approach to understand spatial variability in fine and coarse mode aerosol composition
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter G. Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1617,https://doi.org/10.5194/egusphere-2024-1617, 2024
Short summary
Representation of iron aerosol size distributions is critical in evaluating atmospheric soluble iron input to the ocean
Mingxu Liu, Hitoshi Matsui, Douglas Hamilton, Sagar Rathod, Kara Lamb, and Natalie Mahowald
EGUsphere, https://doi.org/10.5194/egusphere-2024-1454,https://doi.org/10.5194/egusphere-2024-1454, 2024
Short summary
Opinion: A research roadmap for exploring atmospheric methane removal via iron salt aerosol
Katrine A. Gorham, Sam Abernethy, Tyler R. Jones, Peter Hess, Natalie M. Mahowald, Daphne Meidan, Matthew S. Johnson, Maarten M. J. W. van Herpen, Yangyang Xu, Alfonso Saiz-Lopez, Thomas Röckmann, Chloe A. Brashear, Erika Reinhardt, and David Mann
Atmos. Chem. Phys., 24, 5659–5670, https://doi.org/10.5194/acp-24-5659-2024,https://doi.org/10.5194/acp-24-5659-2024, 2024
Short summary
A global dust emission dataset for estimating dust radiative forcings in climate models
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1124,https://doi.org/10.5194/egusphere-2024-1124, 2024
Short summary
A new process-based and scale-aware desert dust emission scheme for global climate models – Part II: Evaluation in the Community Earth System Model version 2 (CESM2)
Danny M. Leung, Jasper F. Kok, Longlei Li, Natalie M. Mahowald, David M. Lawrence, Simone Tilmes, Erik Kluzek, Martina Klose, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 2287–2318, https://doi.org/10.5194/acp-24-2287-2024,https://doi.org/10.5194/acp-24-2287-2024, 2024
Short summary

Related subject area

Climate and Earth system modeling
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024,https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024,https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024,https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024,https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024,https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary

Cited articles

Adhya, T., Bharati, K., Mohanty, S., Ramakrishnan, B., Rao, V., Sethunathan, N., and Wassmann, R.: Methane emission from rice fields at Cuttack, India, Nutr. Cycl. Agroecosys., 58, 95–105, 2000.
Aleman, D., Romeijn, H., and Dempsey, J.: A response surface approach to beam orientation optimization in intensity modulated radiation therapy treatment planning, INFORMS J. Comput., 21, 62–76, 2009.
Arah, J. and Stephen, K.: A model of the processes leading to methane emission from peatland, Atmos. Environ., 32, 3257–3264, 1998.
Aselmann, I. and Crutzen, P.: Global distribution of natural fresh-water wetlands and rice paddies, their net primary productivity, seasonality and possible methane emsissions, J. Atmos. Chem., 8, 307–358, 1989.
Baird, A., Beckwith, C., Waldron, S., and Waddington, J.: Ebullition of methane-containing gas bubbles from near surface Sphagnum peat, Geophys. Res. Lett., 31, L21505, https://doi.org/10.1029/2004GL021157, 2004.
Download
Short summary
We tune the CH4-related parameters of the Community Land Model (CLM) using surrogate global optimization in order to reduce the discrepancies between the CLM predictions and observed CH4 emissions. This is the first application of a surrogate optimization method to calibrate a global climate model. We found that the observation data drives the model to predict more CH4 emissions in the northern latitudes and less in the tropics.