Articles | Volume 6, issue 3
Geosci. Model Dev., 6, 849–859, 2013
https://doi.org/10.5194/gmd-6-849-2013
Geosci. Model Dev., 6, 849–859, 2013
https://doi.org/10.5194/gmd-6-849-2013
Development and technical paper
22 Jun 2013
Development and technical paper | 22 Jun 2013

Impacts of using spectral nudging on regional climate model RCA4 simulations of the Arctic

P. Berg et al.

Related authors

MIdASv0.2.1 – MultI-scale bias AdjuStment
Peter Berg, Thomas Bosshard, Wei Yang, and Klaus Zimmermann
Geosci. Model Dev., 15, 6165–6180, https://doi.org/10.5194/gmd-15-6165-2022,https://doi.org/10.5194/gmd-15-6165-2022, 2022
Short summary
Characteristics of precipitation extremes over the Nordic region: added value of convection-permitting modeling
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022,https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
Use of expert elicitation to assign weights to climate and hydrological models in climate impact studies
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean-Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-597,https://doi.org/10.5194/hess-2021-597, 2021
Preprint under review for HESS
Short summary
Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for extreme events, regional and impact evaluation, and analysis of Earth system models in CMIP
Katja Weigel, Lisa Bock, Bettina K. Gier, Axel Lauer, Mattia Righi, Manuel Schlund, Kemisola Adeniyi, Bouwe Andela, Enrico Arnone, Peter Berg, Louis-Philippe Caron, Irene Cionni, Susanna Corti, Niels Drost, Alasdair Hunter, Llorenç Lledó, Christian Wilhelm Mohr, Aytaç Paçal, Núria Pérez-Zanón, Valeriu Predoi, Marit Sandstad, Jana Sillmann, Andreas Sterl, Javier Vegas-Regidor, Jost von Hardenberg, and Veronika Eyring
Geosci. Model Dev., 14, 3159–3184, https://doi.org/10.5194/gmd-14-3159-2021,https://doi.org/10.5194/gmd-14-3159-2021, 2021
Short summary
Visualization of radar-observed rainfall for hydrological risk assessment
Jonas Olsson, Peter Berg, and Remco van de Beek
Adv. Sci. Res., 18, 59–64, https://doi.org/10.5194/asr-18-59-2021,https://doi.org/10.5194/asr-18-59-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
Transport parameterization of the Polar SWIFT model (version 2)
Ingo Wohltmann, Daniel Kreyling, and Ralph Lehmann
Geosci. Model Dev., 15, 7243–7255, https://doi.org/10.5194/gmd-15-7243-2022,https://doi.org/10.5194/gmd-15-7243-2022, 2022
Short summary
Analog data assimilation for the selection of suitable general circulation models
Juan Ruiz, Pierre Ailliot, Thi Tuyet Trang Chau, Pierre Le Bras, Valérie Monbet, Florian Sévellec, and Pierre Tandeo
Geosci. Model Dev., 15, 7203–7220, https://doi.org/10.5194/gmd-15-7203-2022,https://doi.org/10.5194/gmd-15-7203-2022, 2022
Short summary
Uncertainty and sensitivity analysis for probabilistic weather and climate-risk modelling: an implementation in CLIMADA v.3.1.0
Chahan M. Kropf, Alessio Ciullo, Laura Otth, Simona Meiler, Arun Rana, Emanuel Schmid, Jamie W. McCaughey, and David N. Bresch
Geosci. Model Dev., 15, 7177–7201, https://doi.org/10.5194/gmd-15-7177-2022,https://doi.org/10.5194/gmd-15-7177-2022, 2022
Short summary
Grid refinement in ICON v2.6.4
Günther Zängl, Daniel Reinert, and Florian Prill
Geosci. Model Dev., 15, 7153–7176, https://doi.org/10.5194/gmd-15-7153-2022,https://doi.org/10.5194/gmd-15-7153-2022, 2022
Short summary
Classification of tropical cyclone containing images using a convolutional neural network: performance and sensitivity to the learning dataset
Sébastien Gardoll and Olivier Boucher
Geosci. Model Dev., 15, 7051–7073, https://doi.org/10.5194/gmd-15-7051-2022,https://doi.org/10.5194/gmd-15-7051-2022, 2022
Short summary

Cited articles

Alexander, M., Bhatt, U., Walsh, J., Timlin, M., Miller, J., and Scott, J.: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter, J. Climate, 17, 890–905, https://doi.org/10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2, 2004.
Alexandru, A., de Elía, R., Laprise, R., \Separović, L., and Biner, S.: Sensitivity study of regional climate model simulations to large-scale nudging parameters, Mon. Weather Rev., 137, 1666–1686, https://doi.org/10.1175/2008MWR2620.1, 2009.
Bitz, C., Fyfe, J., and Flato, G.: Sea ice response to wind forcing from AMIP models, J. Climate, 15, 522–536, https://doi.org/10.1175/1520-0442(2002)015<0522:SIRTWF>2.0.CO;2, 2002.
Blanchard-Wrigglesworth, E., Armour, K. C., Bitz, C. M., and DeWeaver, E.: Persistence and Inherent Predictability of Arctic Sea Ice in a GCM Ensemble and Observations, J. Climate, 24, 231–250, https://doi.org/10.1175/2010JCLI3775.1, 2011.
Boerhout, J.: Reference HIRLAM scalability optimisation proposal, HIRLAM newsletter, 44, 22 pp., available at: http://www.hirlam.org/publications/NewsLetters/index.html, 2003.
Download