Articles | Volume 6, issue 2
https://doi.org/10.5194/gmd-6-327-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-6-327-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modeling atmospheric ammonia and ammonium using a stochastic Lagrangian air quality model (STILT-Chem v0.7)
Waterloo Atmosphere–Land Interactions Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Canada
J. C. Lin
Department of Atmospheric Sciences, University of Utah, USA
Waterloo Atmosphere–Land Interactions Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Canada
Air Quality Research Division, Science and Technology Branch, Environment Canada, Canada
R. Vet
Air Quality Research Division, Science and Technology Branch, Environment Canada, Canada
M. D. Moran
Air Quality Research Division, Science and Technology Branch, Environment Canada, Canada
Related authors
D. Wen, L. Zhang, J. C. Lin, R. Vet, and M. D. Moran
Geosci. Model Dev., 7, 1037–1050, https://doi.org/10.5194/gmd-7-1037-2014, https://doi.org/10.5194/gmd-7-1037-2014, 2014
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, Laszlo Horvath, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Perez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamas Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3038, https://doi.org/10.5194/egusphere-2024-3038, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Irene Cheng, Amanda Cole, Leiming Zhang, and Alexandra Steffen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2895, https://doi.org/10.5194/egusphere-2024-2895, 2024
Short summary
Short summary
Using the Positive Matrix Factorization (PMF) model and observations, we showed natural surface emission (wildfires and re-emitted Hg) dominated anthropogenic contributions to total gaseous mercury (TGM). Decreasing TGM was due to reduced shipping and regional emissions. This has led to increasing relative contributions from natural surface emissions of 1.0–1.6 % yr-1. Results showed Hg control measures have been effective, but greater attention is needed on monitoring surface re-emissions.
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
Pierluigi Renan Guaita, Riccardo Marzuoli, Leiming Zhang, Steven Turnock, Gerbrand Koren, Oliver Wild, Paola Crippa, and Giacomo Alessandro Gerosa
EGUsphere, https://doi.org/10.5194/egusphere-2024-2573, https://doi.org/10.5194/egusphere-2024-2573, 2024
Short summary
Short summary
This study assesses the global impact of tropospheric ozone on wheat crops in the 21st century under various climate scenarios. The research highlights that ozone damage to wheat varies by region and depends on both ozone levels and climate. Vulnerable regions include East Asia, Northern Europe, and the Southern and Eastern edges of the Tibetan Plateau. Our results emphasize the need of policies to reduce ozone levels and mitigate climate change to protect global food security.
Hazel Cathcart, Julian Aherne, Michael D. Moran, Verica Savic-Jovcic, Paul A. Makar, and Amanda Cole
EGUsphere, https://doi.org/10.5194/egusphere-2024-2371, https://doi.org/10.5194/egusphere-2024-2371, 2024
Short summary
Short summary
Deposition from sulfur and nitrogen pollution can harm ecosystems, and recovery from this type of pollution can take decades or longer. To identify risk to Canadian soils, we created maps showing sensitivity to sulfur and nitrogen pollution. Results show that some ecosystems are at risk from acid and nutrient nitrogen deposition; 10 % of protected areas are receiving acid deposition beyond their damage threshold and 70 % may be receiving nitrogen deposition that could cause biodiversity loss.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024, https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Short summary
This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and NO2+O3 measured in 10 Canadian cities during the last 2 to 3 decades. We also investigate associated driving forces in terms of emission reductions, perturbations from varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
EGUsphere, https://doi.org/10.5194/egusphere-2024-980, https://doi.org/10.5194/egusphere-2024-980, 2024
Short summary
Short summary
1. A novel concept integrating crop cycle information into fire spots extraction was proposed. 2. Spatiotemporal variations of open straw burning in Northeast China were revealed. 3. Open straw burning in Northeast China emitted a total of 221 Tg of CO2-eq during 2001–2020. 4. The policy of banning straw burning effectively reduced greenhouse gases emissions.
Dien Wu, Joshua L. Laughner, Junjie Liu, Paul I. Palmer, John C. Lin, and Paul O. Wennberg
Geosci. Model Dev., 16, 6161–6185, https://doi.org/10.5194/gmd-16-6161-2023, https://doi.org/10.5194/gmd-16-6161-2023, 2023
Short summary
Short summary
To balance computational expenses and chemical complexity in extracting emission signals from tropospheric NO2 columns, we propose a simplified non-linear Lagrangian chemistry transport model and assess its performance against TROPOMI v2 over power plants and cities. Using this model, we then discuss how NOx chemistry affects the relationship between NOx and CO2 emissions and how studying NO2 columns helps quantify modeled biases in wind directions and prior emissions.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Monica Crippa, Diego Guizzardi, Tim Butler, Terry Keating, Rosa Wu, Jacek Kaminski, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Harrison Suchyta, Marilena Muntean, Efisio Solazzo, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Fabio Monforti-Ferrario, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Tabish Ansari, and Kristen Foley
Earth Syst. Sci. Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023, https://doi.org/10.5194/essd-15-2667-2023, 2023
Short summary
Short summary
This study responds to the global and regional atmospheric modelling community's need for a mosaic of air pollutant emissions with global coverage, long time series, spatially distributed data at a high time resolution, and a high sectoral resolution in order to enhance the understanding of transboundary air pollution. The mosaic approach to integrating official regional emission inventories with a global inventory based on a consistent methodology ensures policy-relevant results.
Yu Lin, Leiming Zhang, Qinchu Fan, He Meng, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 16073–16090, https://doi.org/10.5194/acp-22-16073-2022, https://doi.org/10.5194/acp-22-16073-2022, 2022
Short summary
Short summary
In this study, we analyzed 7-year (from May 2014 to April 2021) concentration data of six criteria air pollutants (PM2.5, PM10, O3, NO2, CO and SO2) as well as the sum of NO2 and O3 in six cities in South China. Three different analysis methods were used to identify emission-driven interannual variations and perturbations from varying weather conditions. In addition, a self-developed method was further introduced to constrain analysis uncertainties.
Irene Cheng, Leiming Zhang, Zhuanshi He, Hazel Cathcart, Daniel Houle, Amanda Cole, Jian Feng, Jason O'Brien, Anne Marie Macdonald, Julian Aherne, and Jeffrey Brook
Atmos. Chem. Phys., 22, 14631–14656, https://doi.org/10.5194/acp-22-14631-2022, https://doi.org/10.5194/acp-22-14631-2022, 2022
Short summary
Short summary
Nitrogen (N) and sulfur (S) deposition decreased significantly at 14 Canadian sites during 2000–2018. The greatest decline was observed in southeastern Canada owing to regional SO2 and NOx reductions. Wet deposition was more important than dry deposition, comprising 71–95 % of total N and 45–89 % of total S deposition. While critical loads (CLs) were exceeded at a few sites in the early 2000s, acidic deposition declined below CLs after 2012, which signifies recovery from legacy acidification.
Dustin Roten, John C. Lin, Lewis Kunik, Derek Mallia, Dien Wu, Tomohiro Oda, and Eric A. Kort
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-315, https://doi.org/10.5194/acp-2022-315, 2022
Revised manuscript not accepted
Short summary
Short summary
The systems used to monitor carbon dioxide (CO2) emissions from urban areas provides a means to observe and quantify emissions reductions from policy-related reduction efforts. Space-based instruments, such as NASA's Orbiting Carbon Observatory-3 (OCO-3), provides detailed "snapshots" of CO2 emissions from many megacities around the world. This work quantifies the amount of emission "information" contained in these snapshots and uses this information to update previous estimates of urban CO2.
Mahtab Majdzadeh, Craig A. Stroud, Christopher Sioris, Paul A. Makar, Ayodeji Akingunola, Chris McLinden, Xiaoyi Zhao, Michael D. Moran, Ihab Abboud, and Jack Chen
Geosci. Model Dev., 15, 219–249, https://doi.org/10.5194/gmd-15-219-2022, https://doi.org/10.5194/gmd-15-219-2022, 2022
Short summary
Short summary
A new lookup table for aerosol optical properties based on a Mie scattering code was calculated and adopted within an improved version of the photolysis module in the GEM-MACH in-line chemical transport model. The modified version of the photolysis module makes use of online interactive aerosol feedback and applies core-shell parameterizations to the black carbon absorption efficiency based on Bond et al. (2006) to the size bins with black carbon mass fraction of less than 40 %.
Xiao Lu, Daniel J. Jacob, Haolin Wang, Joannes D. Maasakkers, Yuzhong Zhang, Tia R. Scarpelli, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Hannah Nesser, A. Anthony Bloom, Shuang Ma, John R. Worden, Shaojia Fan, Robert J. Parker, Hartmut Boesch, Ritesh Gautam, Deborah Gordon, Michael D. Moran, Frances Reuland, Claudia A. Octaviano Villasana, and Arlyn Andrews
Atmos. Chem. Phys., 22, 395–418, https://doi.org/10.5194/acp-22-395-2022, https://doi.org/10.5194/acp-22-395-2022, 2022
Short summary
Short summary
We evaluate methane emissions and trends for 2010–2017 in the gridded national emission inventories for the United States, Canada, and Mexico by inversion of in situ and satellite methane observations. We find that anthropogenic methane emissions for all three countries are underestimated in the national inventories, largely driven by oil emissions. Anthropogenic methane emissions in the US peak in 2014, in contrast to the report of a steadily decreasing trend over 2010–2017 from the US EPA.
Hui Zhang, Xuewu Fu, Ben Yu, Baoxin Li, Peng Liu, Guoqing Zhang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 15847–15859, https://doi.org/10.5194/acp-21-15847-2021, https://doi.org/10.5194/acp-21-15847-2021, 2021
Short summary
Short summary
Our observations of speciated atmospheric mercury at the Waliguan GAW Baseline Observatory show that concentrations of gaseous elemental mercury (GEM) and particulate bound mercury (PBM) were elevated compared to the Northern Hemisphere background. We propose that the major sources of GEM and PBM were mainly related to anthropogenic emissions and desert dust sources. This study highlights that dust-related sources played an important role in the variations of PBM in the Tibetan Plateau.
Zhiyong Wu, Leiming Zhang, John T. Walker, Paul A. Makar, Judith A. Perlinger, and Xuemei Wang
Geosci. Model Dev., 14, 5093–5105, https://doi.org/10.5194/gmd-14-5093-2021, https://doi.org/10.5194/gmd-14-5093-2021, 2021
Short summary
Short summary
A community dry deposition algorithm for modeling the gaseous dry deposition process in chemistry transport models was extended to include an additional 12 oxidized volatile organic compounds and hydrogen cyanide based on their physicochemical properties and was then evaluated using field flux measurements over a mixed forest. This study provides a useful tool that is needed in chemistry transport models with increasing complexity for simulating an important atmospheric process.
Dien Wu, John C. Lin, Henrique F. Duarte, Vineet Yadav, Nicholas C. Parazoo, Tomohiro Oda, and Eric A. Kort
Geosci. Model Dev., 14, 3633–3661, https://doi.org/10.5194/gmd-14-3633-2021, https://doi.org/10.5194/gmd-14-3633-2021, 2021
Short summary
Short summary
A model (SMUrF) is presented that estimates biogenic CO2 fluxes over cities around the globe to separate out biogenic fluxes from anthropogenic emissions. The model leverages satellite-based solar-induced fluorescence data and a machine-learning technique. We evaluate the biogenic fluxes against flux observations and show contrasts between biogenic and anthropogenic fluxes over cities, revealing urban–rural flux gradients, diurnal cycles, and the resulting imprints on atmospheric-column CO2.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
Amy Hrdina, Jennifer G. Murphy, Anna Gannet Hallar, John C. Lin, Alexander Moravek, Ryan Bares, Ross C. Petersen, Alessandro Franchin, Ann M. Middlebrook, Lexie Goldberger, Ben H. Lee, Munkh Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 21, 8111–8126, https://doi.org/10.5194/acp-21-8111-2021, https://doi.org/10.5194/acp-21-8111-2021, 2021
Short summary
Short summary
Wintertime air pollution in the Salt Lake Valley is primarily composed of ammonium nitrate, which is formed when gas-phase ammonia and nitric acid react. The major point in this work is that the chemical composition of snow tells a very different story to what we measured in the atmosphere. With the dust–sea salt cations observed in PM2.5 and particle sizing data, we can estimate how much nitric acid may be lost to dust–sea salt that is not accounted for and how much more PM2.5 this could form.
Xuewu Fu, Chen Liu, Hui Zhang, Yue Xu, Hui Zhang, Jun Li, Xiaopu Lyu, Gan Zhang, Hai Guo, Xun Wang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 6721–6734, https://doi.org/10.5194/acp-21-6721-2021, https://doi.org/10.5194/acp-21-6721-2021, 2021
Short summary
Short summary
TGM concentrations and isotopic compositions in 10 Chinese cities showed strong seasonality with higher TGM concentrations and Δ199Hg and lower δ202Hg in summer. We found the seasonal variations in TGM concentrations and isotopic compositions were highly related to regional surface Hg(0) emissions, suggesting land surface Hg(0) emissions are an important source of atmospheric TGM that contribute dominantly to the seasonal variations in TGM concentrations and isotopic compositions.
Xiaofei Qin, Leiming Zhang, Guochen Wang, Xiaohao Wang, Qingyan Fu, Jian Xu, Hao Li, Jia Chen, Qianbiao Zhao, Yanfen Lin, Juntao Huo, Fengwen Wang, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 20, 10985–10996, https://doi.org/10.5194/acp-20-10985-2020, https://doi.org/10.5194/acp-20-10985-2020, 2020
Short summary
Short summary
The uncertainties in mercury emissions are much larger from natural sources than anthropogenic sources. A method was developed to quantify the contributions of natural surface emissions to ambient GEM based on PMF modeling. The annual GEM concentration in eastern China showed a decreasing trend from 2015 to 2018, while the relative contribution of natural surface emissions increased significantly from 41 % in 2015 to 57 % in 2018, gradually surpassing those from anthropogenic sources.
Cynthia H. Whaley, Elisabeth Galarneau, Paul A. Makar, Michael D. Moran, and Junhua Zhang
Atmos. Chem. Phys., 20, 2911–2925, https://doi.org/10.5194/acp-20-2911-2020, https://doi.org/10.5194/acp-20-2911-2020, 2020
Short summary
Short summary
Benzene and polycyclic aromatic compounds are toxic air pollutants and ubiquitous in the environment. Using a chemical transport model, we have determined the net impact of vehicle emissions on ambient concentrations of these species. Traffic emissions were found to be a significant fraction of ambient pollution in the densely populated modelled region of North America. Our simulations demonstrate the air quality benefits that would result from transitioning to a zero-emission vehicle fleet.
Mark W. Shephard, Enrico Dammers, Karen E. Cady-Pereira, Shailesh K. Kharol, Jesse Thompson, Yonatan Gainariu-Matz, Junhua Zhang, Chris A. McLinden, Andrew Kovachik, Michael Moran, Shabtai Bittman, Christopher E. Sioris, Debora Griffin, Matthew J. Alvarado, Chantelle Lonsdale, Verica Savic-Jovcic, and Qiong Zheng
Atmos. Chem. Phys., 20, 2277–2302, https://doi.org/10.5194/acp-20-2277-2020, https://doi.org/10.5194/acp-20-2277-2020, 2020
Short summary
Short summary
Presented is a description and survey demonstrating the capabilities of the CrIS ammonia product for monitoring, air quality forecast model evaluation, dry deposition estimates, and emission estimates of an agricultural hotspot.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 20, 721–733, https://doi.org/10.5194/acp-20-721-2020, https://doi.org/10.5194/acp-20-721-2020, 2020
Short summary
Short summary
An innovative approach is developed to preprocess monitored wet deposition data of inorganic ions for generating their decadal trends. Differing from traditional approaches which directly apply annual or seasonal average data to trend analysis tools, the proposed new approach makes use of slopes of regression equations between a series of study years and a climatology (base) year in terms of monthly averaged data. The new approach yields more robust results than the traditional tools.
Alexander Moravek, Jennifer G. Murphy, Amy Hrdina, John C. Lin, Christopher Pennell, Alessandro Franchin, Ann M. Middlebrook, Dorothy L. Fibiger, Caroline C. Womack, Erin E. McDuffie, Randal Martin, Kori Moore, Munkhbayar Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 19, 15691–15709, https://doi.org/10.5194/acp-19-15691-2019, https://doi.org/10.5194/acp-19-15691-2019, 2019
Short summary
Short summary
Ammonium nitrate is a major component of fine particulate matter of wintertime air pollution in the Great Salt Lake Region (UT, USA). We investigate the sources of ammonia in the region by using aircraft observations and comparing them to modelled ammonia mixing ratios based on emission inventory estimates. The results suggest that ammonia emissions are underestimated, specifically in regions with high agricultural activity, while ammonia in Salt Lake City is mainly of local origin.
Ryan Bares, Logan Mitchell, Ben Fasoli, David R. Bowling, Douglas Catharine, Maria Garcia, Byron Eng, Jim Ehleringer, and John C. Lin
Earth Syst. Sci. Data, 11, 1291–1308, https://doi.org/10.5194/essd-11-1291-2019, https://doi.org/10.5194/essd-11-1291-2019, 2019
Short summary
Short summary
We overview two near-surface trace gas measurement networks with the aim of describing procedures, locations, and data structure with sufficient detail to serve as an in-depth method reference. Additionally, we developed a novel method for quantifying measurement uncertainty produced by these networks providing insight into appropriate applications of the data and differences in data collection methods. This uncertainty metric is broadly applicable to many trace gas and air quality datasets.
Xiaoyi Zhao, Debora Griffin, Vitali Fioletov, Chris McLinden, Jonathan Davies, Akira Ogyu, Sum Chi Lee, Alexandru Lupu, Michael D. Moran, Alexander Cede, Martin Tiefengraber, and Moritz Müller
Atmos. Chem. Phys., 19, 10619–10642, https://doi.org/10.5194/acp-19-10619-2019, https://doi.org/10.5194/acp-19-10619-2019, 2019
Short summary
Short summary
New nitrogen dioxide (NO2) retrieval algorithms are developed for Pandora zenith-sky measurements. A column-to-surface conversion look-up table was produced for the Pandora instruments; therefore, quick and practical Pandora-based surface NO2 concentration data can be obtained for air quality monitoring purposes. It is demonstrated that the surface NO2 concentration is controlled not only by the planetary boundary layer height but also by both boundary layer dynamics and photochemistry.
Jack Chen, Kerry Anderson, Radenko Pavlovic, Michael D. Moran, Peter Englefield, Dan K. Thompson, Rodrigo Munoz-Alpizar, and Hugo Landry
Geosci. Model Dev., 12, 3283–3310, https://doi.org/10.5194/gmd-12-3283-2019, https://doi.org/10.5194/gmd-12-3283-2019, 2019
Short summary
Short summary
Emissions from wildland fires can cause significant impacts on regional air quality. We introduce the Canadian Forest Fire Emissions Prediction System and demonstrate its integration with Canada's FireWork operational air quality forecast system with biomass burning emissions. The coupled system shows improved skill in providing short-term, 48 h forecasts of surface air pollutant concentrations (PM2.5, O3, and NO2) from the impacts of regional wildland fires across the North American domain.
Jun Tao, Zhisheng Zhang, Yunfei Wu, Leiming Zhang, Zhijun Wu, Peng Cheng, Mei Li, Laiguo Chen, Renjian Zhang, and Junji Cao
Atmos. Chem. Phys., 19, 8471–8490, https://doi.org/10.5194/acp-19-8471-2019, https://doi.org/10.5194/acp-19-8471-2019, 2019
Short summary
Short summary
Mass-scattering efficiencies (MSE) of dominant chemical species in atmospheric aerosols are important parameters for building the relationships between chemical species and the particle-scattering coefficient. Particle MSE mainly depends on the mass fractions of (NH4)2SO4, NH4NO3, and organic matter and their MSEs in the droplet mode. MSEs of (NH4)2SO4, NH4NO3 and organic matter were determined by their size distributions in the droplet mode.
Matthew Russell, Amir Hakami, Paul A. Makar, Ayodeji Akingunola, Junhua Zhang, Michael D. Moran, and Qiong Zheng
Atmos. Chem. Phys., 19, 4393–4417, https://doi.org/10.5194/acp-19-4393-2019, https://doi.org/10.5194/acp-19-4393-2019, 2019
Short summary
Short summary
High-resolution air-quality forecast modeling results are compared for two different grid spacings for the Environment and Climate Change Canada GEM-MACH model. While the higher-resolution simulations have worse formal error scores, we show that the higher-resolution model nevertheless has the ability to better resolve plume maxima and has better performance when the evaluation occurs using new scoring metrics which operate on an equal-representative-area basis.
Yang Chen, Mi Tian, Ru-Jin Huang, Guangming Shi, Huanbo Wang, Chao Peng, Junji Cao, Qiyuan Wang, Shumin Zhang, Dongmei Guo, Leiming Zhang, and Fumo Yang
Atmos. Chem. Phys., 19, 3245–3255, https://doi.org/10.5194/acp-19-3245-2019, https://doi.org/10.5194/acp-19-3245-2019, 2019
Short summary
Short summary
Amine-containing particles were characterized in an urban area of Chongqing during both summer and winter using a single-particle aerosol mass spectrometer (SPAMS). Amines were observed to internally mix with elemental carbon (EC), organic carbon (OC), sulfate, and nitrate. Diethylamine (DEA) was the most abundant in both number and peak area among amine-containing particles. Vegetation and traffic were the primary sources of particulate amines.
Dien Wu, John C. Lin, Benjamin Fasoli, Tomohiro Oda, Xinxin Ye, Thomas Lauvaux, Emily G. Yang, and Eric A. Kort
Geosci. Model Dev., 11, 4843–4871, https://doi.org/10.5194/gmd-11-4843-2018, https://doi.org/10.5194/gmd-11-4843-2018, 2018
Short summary
Short summary
Urban CO2 enhancement signals can be derived using satellite column CO2 concentrations and atmospheric transport models. However, uncertainties due to model configurations, atmospheric transport, and defined background values can potentially impact the derived urban signals. In this paper, we present a modified Lagrangian model framework that extracts urban CO2 signals from satellite observations and determines potential error impacts.
Junhua Zhang, Michael D. Moran, Qiong Zheng, Paul A. Makar, Pegah Baratzadeh, George Marson, Peter Liu, and Shao-Meng Li
Atmos. Chem. Phys., 18, 10459–10481, https://doi.org/10.5194/acp-18-10459-2018, https://doi.org/10.5194/acp-18-10459-2018, 2018
Short summary
Short summary
This paper discusses the development of new synthesized emissions inventories and the generation of air quality model-ready emissions files for the Athabasca Oil Sands Region of Alberta, Canada, using multiple emissions inventories, continuous emissions monitoring data, and inferred emission rates based on aircraft measurements. Novel facility-specific gridded spatial surrogate fields were generated to allocate emissions spatially within each huge mining facility.
Paul A. Makar, Ayodeji Akingunola, Julian Aherne, Amanda S. Cole, Yayne-abeba Aklilu, Junhua Zhang, Isaac Wong, Katherine Hayden, Shao-Meng Li, Jane Kirk, Ken Scott, Michael D. Moran, Alain Robichaud, Hazel Cathcart, Pegah Baratzedah, Balbir Pabla, Philip Cheung, Qiong Zheng, and Dean S. Jeffries
Atmos. Chem. Phys., 18, 9897–9927, https://doi.org/10.5194/acp-18-9897-2018, https://doi.org/10.5194/acp-18-9897-2018, 2018
Short summary
Short summary
Complex computer model output was compared to and fused with observation data, to estimate potential damage due to acidifying precipitation for ecosystems in the Canadian provinces of Alberta and Saskatchewan. Estimated deposition was compared to the maximum no-damage ecosystem capacity for sulfur and/or nitrogen uptake; these critical loads were exceeded, for areas between 10 000 and 330 000 square kilometres, depending on ecosystem type: ecosystem damage will occur at 2013 emission levels.
Benjamin Fasoli, John C. Lin, David R. Bowling, Logan Mitchell, and Daniel Mendoza
Geosci. Model Dev., 11, 2813–2824, https://doi.org/10.5194/gmd-11-2813-2018, https://doi.org/10.5194/gmd-11-2813-2018, 2018
Short summary
Short summary
The Stochastic Time-Inverted Lagrangian Transport (STILT) model is used to determine the area upstream that influences the air arriving at a given location. We introduce a new framework that makes the STILT model faster and easier to deploy and improves results. We also show how the model can be applied to spatially complex measurement strategies using trace gas observations collected onboard a Salt Lake City, Utah, USA, light-rail train.
Ayodeji Akingunola, Paul A. Makar, Junhua Zhang, Andrea Darlington, Shao-Meng Li, Mark Gordon, Michael D. Moran, and Qiong Zheng
Atmos. Chem. Phys., 18, 8667–8688, https://doi.org/10.5194/acp-18-8667-2018, https://doi.org/10.5194/acp-18-8667-2018, 2018
Short summary
Short summary
We examine the manner in which air-quality models simulate lofting of buoyant plumes of emissions from stacks (plume rise) and the impact of the level of detail in algorithms simulating particles' variation in size (particle size distribution). The most commonly used plume rise algorithm underestimates the height of plumes compared to observations, while a revised algorithm has much better performance. A 12-bin size distribution reduced the forecast 2-bin size distribution bias error by 32 %.
Richard P. Fiorella, Ryan Bares, John C. Lin, James R. Ehleringer, and Gabriel J. Bowen
Atmos. Chem. Phys., 18, 8529–8547, https://doi.org/10.5194/acp-18-8529-2018, https://doi.org/10.5194/acp-18-8529-2018, 2018
Short summary
Short summary
Fossil fuel combustion produces water; where fossil fuel combustion is concentrated in urban areas, this humidity source may represent ~ 10 % of total humidity. In turn, this water vapor addition may alter urban meteorology, though the contribution of combustion vapor is difficult to measure. Using stable water isotopes, we estimate that up to 16 % of urban humidity may arise from combustion when the atmosphere is stable during winter, and develop recommendations for application in other cities.
Stephanie C. Pugliese, Jennifer G. Murphy, Felix R. Vogel, Michael D. Moran, Junhua Zhang, Qiong Zheng, Craig A. Stroud, Shuzhan Ren, Douglas Worthy, and Gregoire Broquet
Atmos. Chem. Phys., 18, 3387–3401, https://doi.org/10.5194/acp-18-3387-2018, https://doi.org/10.5194/acp-18-3387-2018, 2018
Short summary
Short summary
We developed the Southern Ontario CO2 Emissions (SOCE) inventory, which identifies the spatial and temporal distribution (2.5 km and hourly, respectively) of CO2 emissions from seven source sectors. When the SOCE inventory was used with a chemistry transport model, we found strong agreement between modelled and measured mixing ratios. We were able to quantify that natural gas combustion contributes > 80 % of CO2 emissions at nighttime while on-road emissions contribute > 70 % during the day.
Xin Qiu, Irene Cheng, Fuquan Yang, Erin Horb, Leiming Zhang, and Tom Harner
Atmos. Chem. Phys., 18, 3457–3467, https://doi.org/10.5194/acp-18-3457-2018, https://doi.org/10.5194/acp-18-3457-2018, 2018
Short summary
Short summary
We developed emissions databases for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region and evaluated the emissions databases by comparing CALPUFF-modelled concentrations with monitored data. Model–measurement agreement improved near oil sands mines due to updated PAC emissions from tailings ponds. Modelled concentrations were underestimated at remote sites and for alkylated PACs suggesting that the emissions of PACs particularly alkylated compounds are underestimated.
Cynthia H. Whaley, Paul A. Makar, Mark W. Shephard, Leiming Zhang, Junhua Zhang, Qiong Zheng, Ayodeji Akingunola, Gregory R. Wentworth, Jennifer G. Murphy, Shailesh K. Kharol, and Karen E. Cady-Pereira
Atmos. Chem. Phys., 18, 2011–2034, https://doi.org/10.5194/acp-18-2011-2018, https://doi.org/10.5194/acp-18-2011-2018, 2018
Short summary
Short summary
Using a modified air quality forecasting model, we have found that a significant fraction (> 50 %) of ambient ammonia comes from re-emission from plants and soils in the broader Athabasca Oil Sands region and much of Alberta and Saskatchewan. We also found that about 20 % of ambient ammonia in Alberta and Saskatchewan came from forest fires in the summer of 2013. The addition of these two processes improved modelled ammonia, which was a motivating factor in undertaking this research.
Huanbo Wang, Mi Tian, Yang Chen, Guangming Shi, Yuan Liu, Fumo Yang, Leiming Zhang, Liqun Deng, Jiayan Yu, Chao Peng, and Xuyao Cao
Atmos. Chem. Phys., 18, 865–881, https://doi.org/10.5194/acp-18-865-2018, https://doi.org/10.5194/acp-18-865-2018, 2018
Xinxin Ye, Thomas Lauvaux, Eric A. Kort, Tomohiro Oda, Sha Feng, John C. Lin, Emily Yang, and Dien Wu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1022, https://doi.org/10.5194/acp-2017-1022, 2017
Revised manuscript not accepted
Short summary
Short summary
Rapid global urbanization and significant fossil fuel consumption by cities emphasize the necessity of achieving independent and accurate quantification of the carbon emissions from urban areas. In this paper, we assess the potential of using total column CO2 concentration observed from satellite to quantify fossil-fuel carbon emissions from cities. This study could give insights into the capability of satellite observations on monitoring of the emissions on local scale.
Yuan You, Ralf M. Staebler, Samar G. Moussa, Yushan Su, Tony Munoz, Craig Stroud, Junhua Zhang, and Michael D. Moran
Atmos. Chem. Phys., 17, 14119–14143, https://doi.org/10.5194/acp-17-14119-2017, https://doi.org/10.5194/acp-17-14119-2017, 2017
Short summary
Short summary
A novel approach for traffic emission measurements is shown to have the capacity to provide high-time-resolution accurate concentrations of key air pollutants. A top-down method for quantifying real-world emission rates produced vehicular emission factor estimates for carbon monoxide that agreed well with bottom-up values. Significant ammonia and hydrogen cyanide emissions were observed. The main factors modulating the concentrations were turbulent mixing and traffic density.
Vitali Fioletov, Chris A. McLinden, Shailesh K. Kharol, Nickolay A. Krotkov, Can Li, Joanna Joiner, Michael D. Moran, Robert Vet, Antoon J. H. Visschedijk, and Hugo A. C. Denier van der Gon
Atmos. Chem. Phys., 17, 12597–12616, https://doi.org/10.5194/acp-17-12597-2017, https://doi.org/10.5194/acp-17-12597-2017, 2017
Henrique F. Duarte, Brett M. Raczka, Daniel M. Ricciuto, John C. Lin, Charles D. Koven, Peter E. Thornton, David R. Bowling, Chun-Ta Lai, Kenneth J. Bible, and James R. Ehleringer
Biogeosciences, 14, 4315–4340, https://doi.org/10.5194/bg-14-4315-2017, https://doi.org/10.5194/bg-14-4315-2017, 2017
Short summary
Short summary
We evaluate the Community Land Model (CLM4.5) against observations at an old-growth coniferous forest site that is subjected to water stress each summer. We found that, after calibration, CLM was able to reasonably simulate the observed fluxes of energy and carbon, carbon stocks, carbon isotope ratios, and ecosystem response to water stress. This study demonstrates that carbon isotopes can expose structural weaknesses in CLM and provide a key constraint that may guide future model development.
Huiting Mao, Dolly Hall, Zhuyun Ye, Ying Zhou, Dirk Felton, and Leiming Zhang
Atmos. Chem. Phys., 17, 11655–11671, https://doi.org/10.5194/acp-17-11655-2017, https://doi.org/10.5194/acp-17-11655-2017, 2017
Short summary
Short summary
Mercury (Hg) is a global pollutant hazardous to human and ecosystem health, and its emission control is imperative. Anthropogenic mercury emissions have been reduced by 78 % in the United States from 1990 to 2014. However, no clearly defined trend was observed in Hg concentrations at urban locations such as the one in this study. This indicates that other factors may have dominated over anthropogenic emission control. The implications of this study could hence be highly policy relevant.
Jun Tao, Leiming Zhang, Junji Cao, and Renjian Zhang
Atmos. Chem. Phys., 17, 9485–9518, https://doi.org/10.5194/acp-17-9485-2017, https://doi.org/10.5194/acp-17-9485-2017, 2017
Short summary
Short summary
In this study, studies on PM2.5 chemical composition, source apportionment and its impact on aerosol optical properties across China are thoroughly reviewed, and historical emission control policies in China and their effectiveness in reducing PM2.5 are discussed.
Leiming Zhang, Seth Lyman, Huiting Mao, Che-Jen Lin, David A. Gay, Shuxiao Wang, Mae Sexauer Gustin, Xinbin Feng, and Frank Wania
Atmos. Chem. Phys., 17, 9133–9144, https://doi.org/10.5194/acp-17-9133-2017, https://doi.org/10.5194/acp-17-9133-2017, 2017
Short summary
Short summary
Future research needs are proposed for improving the understanding of atmospheric mercury cycling. These include refinement of mercury emission estimations, quantification of dry deposition and air–surface exchange, improvement of the treatment of chemical mechanisms in chemical transport models, increase in the accuracy of oxidized mercury measurements, better interpretation of atmospheric mercury chemistry data, and harmonization of network operation.
Yunfei Wu, Xiaojia Wang, Jun Tao, Rujin Huang, Ping Tian, Junji Cao, Leiming Zhang, Kin-Fai Ho, Zhiwei Han, and Renjian Zhang
Atmos. Chem. Phys., 17, 7965–7975, https://doi.org/10.5194/acp-17-7965-2017, https://doi.org/10.5194/acp-17-7965-2017, 2017
Short summary
Short summary
As black carbon (BC) aerosols play an important role in the climate and environment, the size distribution of refractory BC (rBC) was investigated. On this basis, the source of rBC was further analyzed. The local traffic exhausts contributed greatly to the rBC in urban areas. However, its contribution decreased significantly in the polluted period compared to the clean period, implying the increasing contribution of other sources, e.g., coal combustion or biomass burning, in the polluted period.
John C. Lin, Derek V. Mallia, Dien Wu, and Britton B. Stephens
Atmos. Chem. Phys., 17, 5561–5581, https://doi.org/10.5194/acp-17-5561-2017, https://doi.org/10.5194/acp-17-5561-2017, 2017
Short summary
Short summary
Mountainous areas can potentially serve as regions where the key greenhouse gas, carbon dioxide (CO2), can be absorbed from the atmosphere by vegetation, through photosynthesis. Variations in atmospheric CO2 can be used to understand the amount of biospheric fluxes in general. However, CO2 measured in mountains can be difficult to interpret due to the impact from complex atmospheric flows. We show how mountaintop CO2 data can be interpreted by carrying out a series of atmospheric simulations.
Irene Cheng and Leiming Zhang
Atmos. Chem. Phys., 17, 4711–4730, https://doi.org/10.5194/acp-17-4711-2017, https://doi.org/10.5194/acp-17-4711-2017, 2017
Short summary
Short summary
Geographical and long-term (1983–2011) trends in air concentrations and wet deposition of inorganic ions and aerosol and precipitation acidity were analyzed at 31 sites in Canada. Declines in atmospheric ammonium, nitrate, and sulfate were consistent with decreasing emissions of NH3, NOx, and SO2. A decline in nitrate and sulfate wet deposition was also observed. Wet scavenging was further studied by estimating scavenging ratios and relative contributions of gases and aerosols to wet deposition.
Xiaohong Xu, Yanyin Liao, Irene Cheng, and Leiming Zhang
Atmos. Chem. Phys., 17, 1381–1400, https://doi.org/10.5194/acp-17-1381-2017, https://doi.org/10.5194/acp-17-1381-2017, 2017
Short summary
Short summary
This study addresses two issues related to source–receptor analysis of speciated atmospheric mercury: (1) comparing PMF and PCA and (2) testing different approaches in data selection for PMF modeling.
L. Paige Wright, Leiming Zhang, and Frank J. Marsik
Atmos. Chem. Phys., 16, 13399–13416, https://doi.org/10.5194/acp-16-13399-2016, https://doi.org/10.5194/acp-16-13399-2016, 2016
Short summary
Short summary
The current knowledge concerning mercury dry deposition is reviewed, including dry deposition algorithms used in chemical transport models and at monitoring sites, measurement methods and studies for quantifying dry deposition of oxidized mercury, and measurement studies of litterfall and throughfall mercury. Over all the regions, dry deposition, estimated as the sum of litterfall and throughfall minus open-field wet deposition, is more dominant than wet deposition for Hg deposition.
Huiting Mao, Irene Cheng, and Leiming Zhang
Atmos. Chem. Phys., 16, 12897–12924, https://doi.org/10.5194/acp-16-12897-2016, https://doi.org/10.5194/acp-16-12897-2016, 2016
Short summary
Short summary
Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of TGM/GEM, GOM, and PBM in environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. Remaining questions/issues and recommendations were provided for future research.
Brett Raczka, Henrique F. Duarte, Charles D. Koven, Daniel Ricciuto, Peter E. Thornton, John C. Lin, and David R. Bowling
Biogeosciences, 13, 5183–5204, https://doi.org/10.5194/bg-13-5183-2016, https://doi.org/10.5194/bg-13-5183-2016, 2016
Short summary
Short summary
We use carbon isotopes of CO2 to improve the performance of a land surface model, a component with earth system climate models. We found that isotope observations can provide important information related to the exchange of carbon and water from vegetation driven by environmental stress from low atmospheric moisture and nitrogen limitation. It follows that isotopes have a unique potential to improve model performance and provide insight into land surface model development.
Vitali E. Fioletov, Chris A. McLinden, Nickolay Krotkov, Can Li, Joanna Joiner, Nicolas Theys, Simon Carn, and Mike D. Moran
Atmos. Chem. Phys., 16, 11497–11519, https://doi.org/10.5194/acp-16-11497-2016, https://doi.org/10.5194/acp-16-11497-2016, 2016
Short summary
Short summary
We introduce the first space-based catalogue of SO2 emission sources seen by OMI. The inventory contains about 500 sources. They account for about a half of all SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr−1 and not detected by OMI. The sources are grouped by type (volcanoes, power plants, oil- and gas-related sources, and smelters) and country. The catalogue presented herein can be used for verification of available SO2 emission inventories.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 16, 11465–11475, https://doi.org/10.5194/acp-16-11465-2016, https://doi.org/10.5194/acp-16-11465-2016, 2016
Short summary
Short summary
Atmospheric NH3 plays an important role in forming secondary aerosols and has a direct impact on sensitive ecosystems. This study aims to study its long-term variation and find that the long-term trend can be affected by climate change as well as other anthropogenic factors, depending on sites. A large percentage increase of atmospheric NH3 at remote American sites is surprising and may cause a potential threat to sensitive ecosystems in the future.
Xiaodong Zhang, Tao Huang, Leiming Zhang, Yanjie Shen, Yuan Zhao, Hong Gao, Xiaoxuan Mao, Chenhui Jia, and Jianmin Ma
Atmos. Chem. Phys., 16, 6949–6960, https://doi.org/10.5194/acp-16-6949-2016, https://doi.org/10.5194/acp-16-6949-2016, 2016
Short summary
Short summary
This paper assesses long-term trend of biogenic isoprene emissions in the Three-North Shelter Forest Program, also known as "the Green Great Wall", the largest artificial afforestation in the human history. Results show that the TNRSF has altered the long-term emission trend in north China from a decreasing to an increasing trend from 1982 to 2010. Isoprene emission fluxes have increased in many places of the TNRSF over the last 3 decades due to the growing trees and vegetation coverage.
Anna Karion, Colm Sweeney, John B. Miller, Arlyn E. Andrews, Roisin Commane, Steven Dinardo, John M. Henderson, Jacob Lindaas, John C. Lin, Kristina A. Luus, Tim Newberger, Pieter Tans, Steven C. Wofsy, Sonja Wolter, and Charles E. Miller
Atmos. Chem. Phys., 16, 5383–5398, https://doi.org/10.5194/acp-16-5383-2016, https://doi.org/10.5194/acp-16-5383-2016, 2016
Short summary
Short summary
Northern high-latitude carbon sources and sinks, including those resulting from degrading permafrost, are thought to be sensitive to the rapidly warming climate. Here we use carbon dioxide and methane measurements from a tower near Fairbanks AK to investigate regional Alaskan fluxes of CO2 and CH4 for 2012–2014.
Lei Zhang, Shuxiao Wang, Qingru Wu, Fengyang Wang, Che-Jen Lin, Leiming Zhang, Mulin Hui, Mei Yang, Haitao Su, and Jiming Hao
Atmos. Chem. Phys., 16, 2417–2433, https://doi.org/10.5194/acp-16-2417-2016, https://doi.org/10.5194/acp-16-2417-2016, 2016
C. G. Nolte, K. W. Appel, J. T. Kelly, P. V. Bhave, K. M. Fahey, J. L. Collett Jr., L. Zhang, and J. O. Young
Geosci. Model Dev., 8, 2877–2892, https://doi.org/10.5194/gmd-8-2877-2015, https://doi.org/10.5194/gmd-8-2877-2015, 2015
Short summary
Short summary
This study is the most comprehensive evaluation of CMAQ inorganic
aerosol size-composition distributions conducted to date. We compare two
methods of inferring PM2.5 concentrations from the model: (1) based on
the sum of the masses in the fine aerosol modes, as is most commonly
done in CMAQ model evaluation; and (2) computed using the simulated size
distributions. Differences are generally less than 1 microgram/m3, and
are largest over the eastern USA during the summer.
I. Cheng, X. Xu, and L. Zhang
Atmos. Chem. Phys., 15, 7877–7895, https://doi.org/10.5194/acp-15-7877-2015, https://doi.org/10.5194/acp-15-7877-2015, 2015
Short summary
Short summary
Current knowledge of receptor-based studies using speciated atmospheric mercury is reviewed and recommendations for future research needs are provided.
Z. Y. Wu, L. Zhang, X. M. Wang, and J. W. Munger
Atmos. Chem. Phys., 15, 7487–7496, https://doi.org/10.5194/acp-15-7487-2015, https://doi.org/10.5194/acp-15-7487-2015, 2015
Short summary
Short summary
In this study, we have developed a modified micrometeorological gradient method (MGM), although based on existing micrometeorological theory, to estimate O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top. The new method provides an alternative approach in monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies and is expected to be useful for the scientific community.
C. Viatte, K. Strong, J. Hannigan, E. Nussbaumer, L. K. Emmons, S. Conway, C. Paton-Walsh, J. Hartley, J. Benmergui, and J. Lin
Atmos. Chem. Phys., 15, 2227–2246, https://doi.org/10.5194/acp-15-2227-2015, https://doi.org/10.5194/acp-15-2227-2015, 2015
Short summary
Short summary
Seven tropospheric species (CO, HCN, C2H6, C2H2, CH3OH, HCOOH, and H2CO) released by biomass burning events transported to the high Arctic were monitored with two sets of FTIR measurements, located at Eureka (Nunavut, Canada) and Thule (Greenland), from 2008 to 2012. We compared these data sets with the MOZART-4 chemical transport model to help improve its simulations in the Arctic. Emission factors of these biomass burning products were derived and compared to the literature.
L. Zhang, I. Cheng, D. Muir, and J.-P. Charland
Atmos. Chem. Phys., 15, 1421–1434, https://doi.org/10.5194/acp-15-1421-2015, https://doi.org/10.5194/acp-15-1421-2015, 2015
Short summary
Short summary
This study analyzed air and precipitation concentrations of 43 polycyclic aromatic compounds (PACs) collected in the Athabasca oil sands region. A database has been built for the parameter scavenging ratio, which is defined as the ratio of the concentration of PACs in precipitation to that in air. A better understanding of the potential differences between gas and particulate scavenging and between snow and rain scavenging has been achieved.
J. Tao, J. Gao, L. Zhang, R. Zhang, H. Che, Z. Zhang, Z. Lin, J. Jing, J. Cao, and S.-C. Hsu
Atmos. Chem. Phys., 14, 8679–8699, https://doi.org/10.5194/acp-14-8679-2014, https://doi.org/10.5194/acp-14-8679-2014, 2014
Z. J. Lin, Z. S. Zhang, L. Zhang, J. Tao, R. J. Zhang, J. J. Cao, S. J. Fan, and Y. H. Zhang
Atmos. Chem. Phys., 14, 7631–7644, https://doi.org/10.5194/acp-14-7631-2014, https://doi.org/10.5194/acp-14-7631-2014, 2014
D. Wen, L. Zhang, J. C. Lin, R. Vet, and M. D. Moran
Geosci. Model Dev., 7, 1037–1050, https://doi.org/10.5194/gmd-7-1037-2014, https://doi.org/10.5194/gmd-7-1037-2014, 2014
P. A. Makar, R. Nissen, A. Teakles, J. Zhang, Q. Zheng, M. D. Moran, H. Yau, and C. diCenzo
Geosci. Model Dev., 7, 1001–1024, https://doi.org/10.5194/gmd-7-1001-2014, https://doi.org/10.5194/gmd-7-1001-2014, 2014
X. Wang, L. Zhang, and M. D. Moran
Geosci. Model Dev., 7, 799–819, https://doi.org/10.5194/gmd-7-799-2014, https://doi.org/10.5194/gmd-7-799-2014, 2014
E. Galarneau, P. A. Makar, Q. Zheng, J. Narayan, J. Zhang, M. D. Moran, M. A. Bari, S. Pathela, A. Chen, and R. Chlumsky
Atmos. Chem. Phys., 14, 4065–4077, https://doi.org/10.5194/acp-14-4065-2014, https://doi.org/10.5194/acp-14-4065-2014, 2014
L. Zhang and Z. He
Atmos. Chem. Phys., 14, 3729–3737, https://doi.org/10.5194/acp-14-3729-2014, https://doi.org/10.5194/acp-14-3729-2014, 2014
X. H. Yao and L. Zhang
Biogeosciences, 10, 7913–7925, https://doi.org/10.5194/bg-10-7913-2013, https://doi.org/10.5194/bg-10-7913-2013, 2013
K. A. Luus, Y. Gel, J. C. Lin, R. E. J. Kelly, and C. R. Duguay
Biogeosciences, 10, 7575–7597, https://doi.org/10.5194/bg-10-7575-2013, https://doi.org/10.5194/bg-10-7575-2013, 2013
S. Chen, X. Qiu, L. Zhang, F. Yang, and P. Blanchard
Atmos. Chem. Phys., 13, 11287–11293, https://doi.org/10.5194/acp-13-11287-2013, https://doi.org/10.5194/acp-13-11287-2013, 2013
L. Zhang, X. Wang, M. D. Moran, and J. Feng
Atmos. Chem. Phys., 13, 10005–10025, https://doi.org/10.5194/acp-13-10005-2013, https://doi.org/10.5194/acp-13-10005-2013, 2013
J.-F. Lamarque, F. Dentener, J. McConnell, C.-U. Ro, M. Shaw, R. Vet, D. Bergmann, P. Cameron-Smith, S. Dalsoren, R. Doherty, G. Faluvegi, S. J. Ghan, B. Josse, Y. H. Lee, I. A. MacKenzie, D. Plummer, D. T. Shindell, R. B. Skeie, D. S. Stevenson, S. Strode, G. Zeng, M. Curran, D. Dahl-Jensen, S. Das, D. Fritzsche, and M. Nolan
Atmos. Chem. Phys., 13, 7997–8018, https://doi.org/10.5194/acp-13-7997-2013, https://doi.org/10.5194/acp-13-7997-2013, 2013
I. Cheng, L. Zhang, P. Blanchard, J. Dalziel, and R. Tordon
Atmos. Chem. Phys., 13, 6031–6048, https://doi.org/10.5194/acp-13-6031-2013, https://doi.org/10.5194/acp-13-6031-2013, 2013
E. Solazzo, R. Bianconi, G. Pirovano, M. D. Moran, R. Vautard, C. Hogrefe, K. W. Appel, V. Matthias, P. Grossi, B. Bessagnet, J. Brandt, C. Chemel, J. H. Christensen, R. Forkel, X. V. Francis, A. B. Hansen, S. McKeen, U. Nopmongcol, M. Prank, K. N. Sartelet, A. Segers, J. D. Silver, G. Yarwood, J. Werhahn, J. Zhang, S. T. Rao, and S. Galmarini
Geosci. Model Dev., 6, 791–818, https://doi.org/10.5194/gmd-6-791-2013, https://doi.org/10.5194/gmd-6-791-2013, 2013
G. Kos, A. Ryzhkov, A. Dastoor, J. Narayan, A. Steffen, P. A. Ariya, and L. Zhang
Atmos. Chem. Phys., 13, 4839–4863, https://doi.org/10.5194/acp-13-4839-2013, https://doi.org/10.5194/acp-13-4839-2013, 2013
Related subject area
Atmospheric sciences
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
The CHIMERE chemistry-transport model v2023r1
tobac v1.5: introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing meteorological phenomena
Merged Observatory Data Files (MODFs): an integrated observational data product supporting process-oriented investigations and diagnostics
Simulation of marine stratocumulus using the super-droplet method: numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.1
Modeling of PAHs From Global to Regional Scales: Model Development and Investigation of Health Risks from 2013 to 2018 in China
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization
Can TROPOMI NO2 satellite data be used to track the drop in and resurgence of NOx emissions in Germany between 2019–2021 using the multi-source plume method (MSPM)?
A spatiotemporally separated framework for reconstructing the sources of atmospheric radionuclide releases
A parameterization scheme for the floating wind farm in a coupled atmosphere–wave model (COAWST v3.7)
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-129, https://doi.org/10.5194/gmd-2024-129, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Orbital-radar is a Python tool transferring sub-orbital radar data (ground-based, airborne, and forward-simulated NWP) into synthetical space-borne cloud profiling radar data mimicking the platform characteristics, e.g. EarthCARE or CloudSat CPR. The novelty of orbital-radar is the simulation platform characteristic noise floors and errors. By this long time data sets can be transformed into synthetic observations for Cal/Valor sensitivity studies for new or future satellite missions.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
Geosci. Model Dev., 17, 5167–5189, https://doi.org/10.5194/gmd-17-5167-2024, https://doi.org/10.5194/gmd-17-5167-2024, 2024
Short summary
Short summary
We investigate numerical convergence properties of a particle-based numerical cloud microphysics model (SDM) and a double-moment bulk scheme for simulating a marine stratocumulus case, compare their results with model intercomparison project results, and present possible explanations for the different results of the SDM and the bulk scheme. Aerosol processes can be accurately simulated using SDM, and this may be an important factor affecting the behavior and morphology of marine stratocumulus.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1437, https://doi.org/10.5194/egusphere-2024-1437, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can well reproduce the distribution of PAHs. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change of BaP is less than PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although "the Action Plan" has been implemented.
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024, https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Nathan P. Arnold
Geosci. Model Dev., 17, 5041–5056, https://doi.org/10.5194/gmd-17-5041-2024, https://doi.org/10.5194/gmd-17-5041-2024, 2024
Short summary
Short summary
Earth system models often represent the land surface at smaller scales than the atmosphere, but surface–atmosphere coupling uses only aggregated surface properties. This study presents a method to allow heterogeneous surface properties to modify boundary layer updrafts. The method is tested in single column experiments. Updraft properties are found to reasonably covary with surface conditions, and simulated boundary layer variability is enhanced over more heterogeneous land surfaces.
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024, https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NOx) is produced by sources such as industry and traffic and is directly linked to negative impacts on health and the environment. The current construction of emission inventories to keep track of NOx emissions is slow and time-consuming. Satellite measurements provide a way to quickly and independently estimate emissions. In this study, we apply a consistent methodology to derive NOx emissions over Germany and illustrate the value of having such a method for fast projections.
Yuhan Xu, Sheng Fang, Xinwen Dong, and Shuhan Zhuang
Geosci. Model Dev., 17, 4961–4982, https://doi.org/10.5194/gmd-17-4961-2024, https://doi.org/10.5194/gmd-17-4961-2024, 2024
Short summary
Short summary
Recent atmospheric radionuclide leakages from unknown sources have posed a new challenge in nuclear emergency assessment. Reconstruction via environmental observations is the only feasible way to identify sources, but simultaneous reconstruction of the source location and release rate yields high uncertainties. We propose a spatiotemporally separated reconstruction strategy that avoids these uncertainties and outperforms state-of-the-art methods with respect to accuracy and uncertainty ranges.
Shaokun Deng, Shengmu Yang, Shengli Chen, Daoyi Chen, Xuefeng Yang, and Shanshan Cui
Geosci. Model Dev., 17, 4891–4909, https://doi.org/10.5194/gmd-17-4891-2024, https://doi.org/10.5194/gmd-17-4891-2024, 2024
Short summary
Short summary
Global offshore wind power development is moving from offshore to deeper waters, where floating offshore wind turbines have an advantage over bottom-fixed turbines. However, current wind farm parameterization schemes in mesoscale models are not applicable to floating turbines. We propose a floating wind farm parameterization scheme that accounts for the attenuation of the significant wave height by floating turbines. The results indicate that it has a significant effect on the power output.
Cited articles
Aksoyoglu, S., Keller, J., Barmpadimos, I., Oderbolz, D., Lanz, V. A., Prévôt, A. S. H., and Baltensperger, U.: Aerosol modelling in Europe with a focus on Switzerland during summer and winter episodes, Atmos. Chem. Phys., 11, 7355–7373, https://doi.org/10.5194/acp-11-7355-2011, 2011.
Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res., 110, D10307, https://doi.org/10.1029/2004JD005659, 2005.
Appel, K. W., Bhave, P. V., Gilliland, A. B., Sarwar, G., and Roselle, S. J.: Evaluation of the Community Multiscale Air Quality (CMAQ) model version 4.5: Sensitivities impacting model performance; Part II – particulate matter, Atmos. Environ., 42, 6057–6066, 2008.
ApSimon, H. M., Barker, B. M., and Kayin, S.: Modelling studies of the atmospheric release and transport of ammonia in anticyclonic episodes, Atmos. Environ., 28, 665–678, https://doi.org/10.1016/1352-2310(94)90043-4, 1994.
Asman, W. A. H.: Modelling the atmospheric transport and deposition of ammonia and ammonium: an overview with special reference to Denmark, Atmos. Environ., 35, 1969–1983, https://doi.org/10.1016/S1352-2310(00)00548-3, 2001.
Asman, W. A. H. and van Jaarsveld, J. A.: A variable-resolution transport model applied for \chem{NH_x} in Europe, Atmos. Environ., 26A, 445–464, https://doi.org/10.1016/0960-1686(92)90329-J, 1992.
Asman, W. A. H., Sutton, M. A., and Schjørring, J. A. N. K.: Ammonia: emission, atmospheric transport and deposition, New Phytologist, 139, 27–48, https://doi.org/10.1046/j.1469-8137.1998.00180.x, 1998.
Ayres, J., Bittman, S., Sheppard, S., and Girdhar, S.: Sources of ammonia emissions, in: Canadian Atmospheric Assessment of Agricultural Ammonia, edited by: Lillyman, C. and Buset, K., 112–130. National Agri-Environmental Standards Technical Series Report No. 4–1, 2008.
Berge, H.: New temporal variation of ammonia emissions, in Benedictow et al.: Transboundary acidification, eutrophication and ground level ozone in Europe in 2008, Joint MSC-W & CCC & CEIP Report, Norwegian Meteorological Institute, 2010.
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, 2006.
Brandt, J., Silver, J. D., Frohn, L. M., Geels, C., Gross, A., Hansen, A. B., Hansen, K. M., Hedegaard, G. B., Skj\o{}th, C. A., Villadsen, H., Zare, A., and Christensen, J. H.: An integrated model study for Europe and North America using the Danish Eulerian Hemispheric Model with focus on intercontinental transport of air pollution, Atmos. Environ., 53, 156–176, https://doi.org/10.1016/j.atmosenv.2012.01.011, 2012.
Charlson, R. J. and Rodhe, H.: Factors controlling the acidity of natural rainwater, Nature, 295, 683–685, 1982.
Cheng, Y. H. and Tsai, C. J.: Evaporation loss of ammonium nitrate particles during filter sampling, J. Aerosol Sci., 28, 1553–1567, 1997.
Coats, C.: The EDSS/Models-3 I/O API: User Manual, Baron Advanced Meteorological Systems, available at: http://www.baronams.com/products/ioapi (last access: 30 June 2012), 2003.
de Leeuw, G., Skj\o{}th, C. A., Hertel, O., Jickells, T., Spokes, L., Vignati, E., Frohn, L., Frydendall, J., Schulz, M., Tamm, S., S\o{}rensen, L. L., and Kunz, G. J.: Deposition of nitrogen into the North Sea, Atmos. Environ., 37, Supplement 1, 145–165, https://doi.org/10.1016/S1352-2310(03)00246-2, 2003.
Draxler, R. R. and Hess, G. D.: Description of the HYSPLIT 4 modeling system, NOAA Technical Memorandum ERL ARL-224, 1997.
EMEP: Transboundary photooxidant air pollution in Europe. Calculations of tropospheric ozone and comparison with observations, EMEP/MSC-W Report 2/98, Oslo, Norway, 1998.
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010.
Gear, C. W.: Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1971.
Gery, M. W., Whitten, G. Z., Killus, J. P., and Dodge, M. C.: A photochemical kinetics mechanism for urban and regional scale computer modeling, J. Geophys. Res., 94, 12925–12956, 1989.
Granier, C., Guenther, A., Lamarque, J., Mieville, A., Muller, J., Olivier, J., Orlando, J., Peters, J., Petron, G., Tyndall, G., and Wallens, S.: POET, a database of surface emissions of ozone precursors, available at: http://www.aero.jussieu.fr/projet/ACCENT/POET.php (last access: 30 June 2012), 2005.
Gyldenk\oe{}rne, S., Ambelas Skj\o{}th, C., Hertel, O., and Ellermann, T.: A dynamical ammonia emission parameterization for use in air pollution models, J. Geophys. Res., 110, D07108, https://doi.org/10.1029/2004JD005459, 2005.
Hanna, S. R.: Applications in air pollution modeling, in: Atmospheric Turbulence and Air Pollution Modeling, edited by: Nieuwstadt, F. T. M. and van Dop, H., D. Reidel, Norwell, Mass., 358 pp., 1982.
Hertel, O., Christensen, J., Runge, E. H., Asman, W. A. H., Berkowicz, R., Hovmand, M. F., and Hov, O.: Development and Testing of A New Variable Scale Air-Pollution Model – ACDEP, Atmos. Environ., 29, 1267–1290, https://doi.org/10.1016/1352-2310(95)00067-9, 1995.
Hertel, O., Skj\o{}th, C. A., Frohn, L. M., Vignati, E., Frydendall, J., de Leeuw, G., Schwarz, U., and Reis, S.: Assessment of the atmospheric nitrogen and sulphur inputs into the North Sea using a Lagrangian model, Phys. Chem. Earth, 27, 1507–1515, https://doi.org/10.1016/S1474-7065(02)00153-5, 2002.
Hertel, O., Skj\o{}th, C. A., Brandt, J., Christensen, J. H., Frohn, L. M., and Frydendall, J.: Operational mapping of atmospheric nitrogen deposition to the Baltic Sea, Atmos. Chem. Phys., 3, 2083–2099, https://doi.org/10.5194/acp-3-2083-2003, 2003.
Hicks, B. B.: A climatology of wet deposition scavenging ratios for the United States, Atmos. Environ., 39, 1585–1596, 2005.
Hoffmann, M. R. and Calvert, J. G.: Chemical transformation modules for Eulerian acid deposition models: Vol. II. The aqueous-phase chemistry, Acid Deposition Modeling Project, National Center for Atmospheric Research, 1985.
Kryza, M., Dore, A. J., Blas, M., and Sobik, M.: Modelling deposition and air concentration of reduced nitrogen in Poland and sensitivity to variability in annual meteorology, J. Environ. Manage., 92, 1225–1236, https://doi.org/10.1016/j.jenvman.2010.12.008, 2011.
Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis, K. J., and Grainger, C. A.: A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-inverted Lagrangian Transport (STILT) Model, J. Geophys. Res., 108, 4493, https://doi.org/10.1029/2002JD003161, 2003.
Makar, P. A., Moran, M. D., Zheng, Q., Cousineau, S., Sassi, M., Duhamel, A., Besner, M., Davignon, D., Crevier, L.-P., and Bouchet, V. S.: Modelling the impacts of ammonia emissions reductions on North American air quality, Atmos. Chem. Phys., 9, 7183–7212, https://doi.org/10.5194/acp-9-7183-2009, 2009.
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jovi, D., Woollen, J., Rogers, E., Berbery, E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., and Shi, W.: North American regional reanalysis, B. Am. Meteorol. Soc., 97, 343–360, 2006.
Morris, J. T.: Effects of nitrogen loading on wetland ecosystems with particular reference to atmospheric deposition, Ann. Rev. Ecol. Syst., 22, 257–279, 1991.
Mozurkewich, M.: The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity, and particle size, Atmos. Environ., 27, 261–270, 1993.
Nenes, A., Pandis, S. N., and Pilinis, C.: Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models, Atmos. Environ., 33, 1553–1560, 1999.
Nopmongcol, U., Koo, B., Tai, E., Jung, J., Piyachaturawat, P., Emery, C., Yarwood, G., Pirovano, G., Mitsakou, C., and Kallos, G.: Modeling Europe with CAMx for the Air Quality Model Evaluation International Initiative (AQMEII), Atmos. Environ., 53, 177–185, 2012.
Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444, https://doi.org/10.5194/acp-7-4419-2007, 2007.
Pouliot, G., Pierce, T., Denier van der Gon, H., Schaap, M., Moran, M., and Nopmongcol, U.: Comparing emission inventories and model-ready emission datasets between Europe and North America for the AQMEII project, Atmos. Environ., 53, 4–14, https://doi.org/10.1016/j.atmosenv.2011.12.041, 2012.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical Recipies: the art of scientific computing, Cambridge University Press, New York, 1992.
Redington, A. L. and Derwent, R. G.: Calculation of sulphate and nitrate aerosol concentrations over Europe using a Lagrangian dispersion model. Atmos. Environ., 36, 4425–4439, https://doi.org/10.1016/S1352-2310(02)00420-X, 2002.
Reis, S., Skj\o{}th, C. A., Vienoa, M., Geels, C., Steinle, S., Lang, M., and Sutton, M.: Why time and space matters – arguments for the improvement of temporal emission profiles for atmospheric dispersion modeling of air pollutant emissions, MODSIM2011 Congress, 12–16 December 2011, Perth, Australia http://www.mssanz.org.au/modsim2011/E1/reis.pdf, 2011.
Rolph, G. D., Draxler, R. R., and Pena, R. G.: Modeling sulfur concentrations and depositions in the United States during ANATEX, Atmos. Environ., 26, 73–93, 1992.
Rolph, G. D., Draxler, R. R., and Pena, R. G.: The use of model-derived and observed precipitation in long-term sulfur concentration and deposition modeling, Atmos. Environ., 27, 2017–2037, 1993.
Sakurai, T., Fujita, S. I., Hayami, H., and Furuhashi, N.: A study of atmospheric ammonia by means of modeling analysis in the Kanto region of Japan. Atmos. Environ., 39, 203–210, https://doi.org/10.1016/j.atmosenv.2004.09.051, 2005.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd Edn., J. Wiley, New York, 2006.
Singles, R. J., Sutton, M. A., and Weston, K. J.: A multi-layer model to describe the atmospheric transport and deposition of ammonia in Great Britain, Atmos. Environ., 32, 393–399, https://doi.org/10.1016/S1352-2310(97)83467-X, 1998.
Sirois, A.: Temporal variation of oxides of sulphur and nitrogen in ambient air in eastern Canada: 1979–1994, Tellus, 49B, 270–291, 1997.
Skj\o{}th, C. A., Hertel, O., and Ellermann, T.: Use of the ACDEP trajectory model in the Danish nation-wide Background Monitoring Programme, Phys. Chem. Earth, 27, 1469–1477, https://doi.org/10.1016/S1474-7065(02)00149-3, 2002.
Skj\o{}th, C. A., Hertel, O., Gyldenk\oe{}rne, S., and Ellermann, T.: Implementing a dynamical ammonia emission parameterization in the large-scale air pollution model ACDEP, J. Geophys. Res., 109, D06306, https://doi.org/10.1029/2003JD003895, 2004.
Skj\o{}th, C. A., Geels, C., Berge, H., Gyldenk\oe{}rne, S., Fagerli, H., Ellermann, T., Frohn, L. M., Christensen, J., Hansen, K. M., Hansen, K., and Hertel, O.: Spatial and temporal variations in ammonia emissions – a freely accessible model code for Europe, Atmos. Chem. Phys., 11, 5221–5236, https://doi.org/10.5194/acp-11-5221-2011, 2011.
Spellmann, J. W. and Hindmarsh, A. C.: GEARS: Solution of Ordinary Differential Equations Having a Sparse Jacobian Matrix, California University, Livermore Lawrence Livermore Laboratory, 41 pp., 1975.
Stein, A. F., Lamb, D., and Draxler, R. R.: Incorporation of detailed chemistry into a three-dimensional Lagrangian-Eulerian hybrid model: application to regional tropospheric ozone, Atmos. Environ., 34, 4361–4372, 2000.
Stelson, A. W., Friedlander, S. K., and Seinfeld, J. H.: A note on the equilibrium relationship between ammonia and nitric acid and particulate ammonium nitrate, Atmos. Environ., 13, 369–371, 1979.
Tesche, T. W., Morris, R., Tonnesen, G., McNally, D., Boylan, J., and Brewer, P.: CMAQ/CAMx annual 2002 performance evaluation over the eastern US, Atmos. Environ., 40, 4906–4919, 2006.
UNC: SMOKE V2.4 User's Manual, available at: http://www.smoke-model.org/version2.4/index.cfm (last access: 8 July 2012), 2009.
US EPA: Guidance on the use of models and other analysis for demonstrating attainment of air quality goals for ozone, PM2.5, and Regional Haze, US EPA, Research Triangle Park, NC 2771, 2007.
van Bremen, N., Burrough, P. A., Velthorst, E. J., van Dobben, H. F., de Wit, T., Ridder, T. B., and Reijnders, H. F. R.: Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall, Nature, 299, 548–550, 1982.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano Jr., A. F.: Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6, 3423–3441, https://doi.org/10.5194/acp-6-3423-2006, 2006.
Vet, R., Li, S.-M., Beaney, G., Belzer, W., Chan, E., Dann, T., Friesen, K., Hayden, K., Hou, A., Iqbal, S., Jones, K., Leithead, A., Liggio, J., Makar, P., Narayan, J., Ro, C.-U., Shaw, M., Sukloff, B., Vingarzan, R., and Qiu, W.: Chapter 6: Characterization of Ambient Ammonia, PM and Regional Deposition across Canada, in: Environment Canada, The 2008 Canadian Atmospheric Assessment of Agricultural Ammonia, Environment Canada, Gatineau, QC, Canada, 2008.
Wen, D., Lin, J. C., Meng, F., Gbor, P. K., He, Z., and Sloan, J. J.: Quantitative assessment of upstream source influences on total gaseous mercury observations in Ontario, Canada, Atmos. Chem. Phys., 11, 1405–1415, https://doi.org/10.5194/acp-11-1405-2011, 2011.
Wen, D., Lin, J. C., Millet, D. B., Stein, A. F., and Draxler, R. R.: A backward-time stochastic Lagrangian air quality model, Atmos. Environ., 54, 373–386, https://doi.org/10.1016/j.atmosenv.2012.02.042, 2012.
Wesely, M. L.: Parameterization of surface resistance to gaseous dry deposition in regional-scale numerical models, Atmos. Environ., 23, 1293–1304, 1989.
Wexler, A. S. and Clegg, S. L.: Atmospheric aerosol models for systems including the ions \chem{H^+}, \chem{NH_4^+}, \chem{Na^+}, \chem{SO_4^{2-}}, \chem{NO_3^-}, \chem{Cl^-}, \chem{Br^-}, and H2O, J. Geophys. Res., 107, 4207, https://doi.org/10.1029/2001JD000451, 2002.
Wu, S. Y., Hu, J. L., Zhang, Y., and Aneja, V. P.: Modeling atmospheric transport and fate of ammonia in North Carolina – Part II: Effect of ammonia emissions on fine particulate matter formation, Atmos. Environ., 42, 3437–3451, https://doi.org/10.1016/j.atmosenv.2007.04.022, 2008.
Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35, 549–560, 2001.
Zhang, L., Moran, M., Makar, P., Brook, J., and Gong, S.: Modelling gaseous dry deposition in AURAMS: A Unified Regional Air-quality Modelling System, Atmos. Environ., 36, 537–560, 2002.
Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082, https://doi.org/10.5194/acp-3-2067-2003, 2003.
Zhang, L., Vet, R., Wiebe, A., Mihele, C., Sukloff, B., Chan, E., Moran, M. D., and Iqbal, S.: Characterization of the size-segregated water-soluble inorganic ions at eight Canadian rural sites, Atmos. Chem. Phys., 8, 7133–7151, https://doi.org/10.5194/acp-8-7133-2008, 2008.
Zhang, X. Q. and McMurry, P. H.: Theoretical analysis of evaporative losses from impactor and filter deposits, Atmos. Environ., 21, 1779–1789, 1987.
Zhang, Y., Dore, A. J., Liu, X., and Zhang, F.: Simulation of nitrogen deposition in the North China Plain by the FRAME model, Biogeosciences, 8, 3319–3329, https://doi.org/10.5194/bgd-8-8161-2011, 2011.