Articles | Volume 19, issue 1
https://doi.org/10.5194/gmd-19-389-2026
https://doi.org/10.5194/gmd-19-389-2026
Model description paper
 | 
14 Jan 2026
Model description paper |  | 14 Jan 2026

Advanced modeling of gas chemistry and aerosol dynamics with SSH-aerosol v2.0

Karine Sartelet, Zhizhao Wang, Youngseob Kim, Victor Lannuque, and Florian Couvidat

Related authors

Modelling gaseous and particulate secondary compounds formation during atmospheric degradation of 2-amino-2-methyl-1-propanol (AMP)
Daphné Ladet, Yelva Roustan, Karine Sartelet, and Olivier Duclaux
EGUsphere, https://doi.org/10.5194/egusphere-2025-4472,https://doi.org/10.5194/egusphere-2025-4472, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Numerical investigations on the modelling of ultrafine particles in SSH-aerosol-v1.3a: size resolution and redistribution
Oscar Jacquot and Karine Sartelet
Geosci. Model Dev., 18, 3965–3984, https://doi.org/10.5194/gmd-18-3965-2025,https://doi.org/10.5194/gmd-18-3965-2025, 2025
Short summary
Population exposure to outdoor NO2, black carbon, and ultrafine and fine particles over Paris with multi-scale modelling down to the street scale
Soo-Jin Park, Lya Lugon, Oscar Jacquot, Youngseob Kim, Alexia Baudic, Barbara D'Anna, Ludovico Di Antonio, Claudia Di Biagio, Fabrice Dugay, Olivier Favez, Véronique Ghersi, Aline Gratien, Julien Kammer, Jean-Eudes Petit, Olivier Sanchez, Myrto Valari, Jérémy Vigneron, and Karine Sartelet
Atmos. Chem. Phys., 25, 3363–3387, https://doi.org/10.5194/acp-25-3363-2025,https://doi.org/10.5194/acp-25-3363-2025, 2025
Short summary
To what extent is the description of streets important in estimating local air quality: a case study over Paris
Alexis Squarcioni, Yelva Roustan, Myrto Valari, Youngseob Kim, Karine Sartelet, Lya Lugon, Fabrice Dugay, and Robin Voitot
Atmos. Chem. Phys., 25, 93–117, https://doi.org/10.5194/acp-25-93-2025,https://doi.org/10.5194/acp-25-93-2025, 2025
Short summary
Development of a detailed gaseous oxidation scheme of naphthalene for secondary organic aerosol (SOA) formation and speciation
Victor Lannuque and Karine Sartelet
Atmos. Chem. Phys., 24, 8589–8606, https://doi.org/10.5194/acp-24-8589-2024,https://doi.org/10.5194/acp-24-8589-2024, 2024
Short summary

Cited articles

Ascher, U. and Petzold, L.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Society for Industrial and Applied Mathematics, Philadelphia, ISBN 978-0-89871-412-8, 1998. a
Aumont, B., Szopa, S., and Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach, Atmos. Chem. Phys., 5, 2497–2517, https://doi.org/10.5194/acp-5-2497-2005, 2005. a
Bird, R. B., Stewart, W. E., and Lightfoot, E. N.: Transport Phenomena, Revised 2nd Edn., John Wiley & Sons, Inc., ISBN 0-471-41077-2, 2006. a
Camredon, M., Aumont, B., Lee-Taylor, J., and Madronich, S.: The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation, Atmos. Chem. Phys., 7, 5599–5610, https://doi.org/10.5194/acp-7-5599-2007, 2007. a, b
Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S. P., Mathur, R., Roselle, S. J., and Weber, R. J.: CMAQ Model Performance Enhanced When In-Cloud Secondary Organic Aerosol is Included: Comparisons of Organic Carbon Predictions with Measurements, Environ. Sci. and Technol., 42, 8798–8802, https://doi.org/10.1021/es801192n, 2008. a
Download
Short summary
The model simulates the evolution of primary and secondary pollutants via gas-phase chemistry, aerosol dynamics (including ultrafine particles), and intra-particle reactions. It uses a sectional approach for size and composition, includes a wall-loss module, and links gas-phase mechanisms of different complexity to secondary organic aerosol formation. Representation of particle phase composition allows viscosity and non-ideality to be taken into account.
Share