Articles | Volume 18, issue 19
https://doi.org/10.5194/gmd-18-6885-2025
https://doi.org/10.5194/gmd-18-6885-2025
Development and technical paper
 | 
07 Oct 2025
Development and technical paper |  | 07 Oct 2025

Implementation of an intermediate-complexity snow-physics scheme (ISBA-Explicit Snow) into a sea ice model (SI3): 1D thermodynamic coupling and validation

Théo Brivoal, Virginie Guemas, Martin Vancoppenolle, Clément Rousset, and Bertrand Decharme

Related authors

Insights into the North Hemisphere daily snowpack at high resolution from the new Crocus–ERA5 product
Silvana Ramos Buarque, Bertrand Decharme, Alina L. Barbu, and Laurent Franchisteguy
Earth Syst. Sci. Data, 17, 7227–7249, https://doi.org/10.5194/essd-17-7227-2025,https://doi.org/10.5194/essd-17-7227-2025, 2025
Short summary
A process-based modeling of soil organic matter physical properties for land surface models – Part 1: Soil mixture theory
Bertrand Decharme
Geosci. Model Dev., 18, 9349–9384, https://doi.org/10.5194/gmd-18-9349-2025,https://doi.org/10.5194/gmd-18-9349-2025, 2025
Short summary
Sphagnum and Herbaceous Net Ecosystem Exchanges in a Pyrenean Peatland: A Long-Term Study Using the ISBA Model
Raphael Garisoain, Christine Delire, Bertrand Decharme, and Laure Gandois
EGUsphere, https://doi.org/10.5194/egusphere-2025-5248,https://doi.org/10.5194/egusphere-2025-5248, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Winter sea ice edge shaped by Antarctic Circumpolar Current pathways
Hugues Goosse, Stephy Libera, Alberto C. Naveira Garabato, Benjamin Richaud, Alessandro Silvano, and Martin Vancoppenolle
The Cryosphere, 19, 5763–5779, https://doi.org/10.5194/tc-19-5763-2025,https://doi.org/10.5194/tc-19-5763-2025, 2025
Short summary
Heterogeneous future Arctic Ocean primary productivity changes projected in CMIP6
Léna L. Champiot-Bayard, Lester L. Kwiatkowski, and Martin M. Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-4296,https://doi.org/10.5194/egusphere-2025-4296, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary

Cited articles

Anderson, E. A.: A Point Energy and Mass Balance Model of a Snow Cover, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Office of Hydrology, 172 pp., 1976. 
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res.-Oceans, 104, 15669–15677, https://doi.org/10.1029/1999JC900100, 1999. 
Bitz, C. M., Holland, M. M., Weaver, A. J., and Eby, M.: Simulating the ice-thickness distribution in a coupled climate model, J. Geophys. Res.-Oceans, 106, 2441–2463, https://doi.org/10.1029/1999JC000113, 2001. 
Bohren, C. F. and Barkstrom, B. R.: Theory of the optical properties of snow, J. Geophys. Res., 79, 4527–4535, https://doi.org/10.1029/JC079i030p04527, 1974. 
Bohren, C. F. and Beschta, R. L.: Snowpack albedo and snow density, Cold Reg. Sci. Technol., 1, 47–50, https://doi.org/10.1016/0165-232X(79)90018-1, 1979. 
Download
Short summary
Snow in polar regions is key to sea ice formation and the Earth's climate, but current climate models simplify snow cover on sea ice. This study integrates an intermediate-complexity snow-physics scheme into a sea ice model designed for climate applications. We show that modeling the temporal changes in properties such as the density and thermal conductivity of the snow layers leads to a more accurate representation of heat transfer between the underlying sea ice and the atmosphere.
Share