Articles | Volume 18, issue 3
https://doi.org/10.5194/gmd-18-605-2025
https://doi.org/10.5194/gmd-18-605-2025
Model description paper
 | 
04 Feb 2025
Model description paper |  | 04 Feb 2025

HIDRA3: a deep-learning model for multipoint ensemble sea level forecasting in the presence of tide gauge sensor failures

Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan

Related authors

Application of the HIDRA2 deep-learning model for sea level forecasting along the Estonian coast of the Baltic Sea
Amirhossein Barzandeh, Matjaž Ličer, Marko Rus, Matej Kristan, Ilja Maljutenko, Jüri Elken, Priidik Lagemaa, and Rivo Uiboupin
Ocean Sci., 21, 1315–1327, https://doi.org/10.5194/os-21-1315-2025,https://doi.org/10.5194/os-21-1315-2025, 2025
Short summary
HIDRA-D: deep-learning model for dense sea level forecasting using sparse altimetry and tide gauge data
Marko Rus, Matjaž Ličer, and Matej Kristan
EGUsphere, https://doi.org/10.5194/egusphere-2025-3187,https://doi.org/10.5194/egusphere-2025-3187, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
HIDRA2: deep-learning ensemble sea level and storm tide forecasting in the presence of seiches – the case of the northern Adriatic
Marko Rus, Anja Fettich, Matej Kristan, and Matjaž Ličer
Geosci. Model Dev., 16, 271–288, https://doi.org/10.5194/gmd-16-271-2023,https://doi.org/10.5194/gmd-16-271-2023, 2023
Short summary

Related subject area

Oceanography
PIBM 1.0: an individual-based model for simulating phytoplankton acclimation, diversity, and evolution in the ocean
Iria Sala and Bingzhang Chen
Geosci. Model Dev., 18, 4155–4182, https://doi.org/10.5194/gmd-18-4155-2025,https://doi.org/10.5194/gmd-18-4155-2025, 2025
Short summary
An effective communication topology for performance optimization: a case study of the finite-volume wave modeling (FVWAM)
Renbo Pang, Fujiang Yu, Yuanyong Gao, Ye Yuan, Liang Yuan, and Zhiyi Gao
Geosci. Model Dev., 18, 4119–4136, https://doi.org/10.5194/gmd-18-4119-2025,https://doi.org/10.5194/gmd-18-4119-2025, 2025
Short summary
GREAT v1.0: Global Real-time Early Assessment of Tsunamis
Usama Kadri, Ali Abdolali, and Maxim Filimonov
Geosci. Model Dev., 18, 3487–3507, https://doi.org/10.5194/gmd-18-3487-2025,https://doi.org/10.5194/gmd-18-3487-2025, 2025
Short summary
Using automatic calibration to improve the physics behind complex numerical models: an example from a 3D lake model using Delft3D (v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025,https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary
Improvements to the Met Office's global ocean–sea ice forecasting system including model and data assimilation changes
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc'h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
Geosci. Model Dev., 18, 3405–3425, https://doi.org/10.5194/gmd-18-3405-2025,https://doi.org/10.5194/gmd-18-3405-2025, 2025
Short summary

Cited articles

Bajo, M., Ferrarin, C., Umgiesser, G., Bonometto, A., and Coraci, E.: Modelling the barotropic sea level in the Mediterranean Sea using data assimilation, Ocean Sci., 19, 559–579, https://doi.org/10.5194/os-19-559-2023, 2023. a
Barth, A., Alvera-Azcárate, A., Licer, M., and Beckers, J.-M.: DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations, Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020, 2020. a
Barzandeh, A., Rus, M., Ličer, M., Maljutenko, I., Elken, J., Lagemaa, P., and Uiboupin, R.: Evaluating the application of deep-learning ensemble sea level and storm surge forecasting in the Baltic Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17233, https://doi.org/10.5194/egusphere-egu24-17233, 2024. a
Bernier, N. B. and Thompson, K. R.: Deterministic and ensemble storm surge prediction for Atlantic Canada with lead times of hours to ten days, Ocean Model., 86, 114–127, https://doi.org/10.1016/j.ocemod.2014.12.002, 2015. a
Braakmann-Folgmann, A., Roscher, R., Wenzel, S., Uebbing, B., and Kusche, J.: Sea level anomaly prediction using recurrent neural networks, arXiv [preprint], https://doi.org/10.48550/arXiv.1710.07099, 2017. a
Download
Short summary
HIDRA3 is a deep-learning model for predicting sea levels and storm surges, offering significant improvements over previous models and numerical simulations. It utilizes data from multiple tide gauges, enhancing predictions even with limited historical data and during sensor outages. With its advanced architecture, HIDRA3 outperforms current state-of-the-art models by achieving a mean absolute error of up to 15 % lower, proving effective for coastal flood forecasting under diverse conditions.
Share