Articles | Volume 18, issue 12
https://doi.org/10.5194/gmd-18-3623-2025
https://doi.org/10.5194/gmd-18-3623-2025
Development and technical paper
 | 
19 Jun 2025
Development and technical paper |  | 19 Jun 2025

A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis

Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao

Related authors

Measurement Report: Collocated speciation and potential mechanisms of gaseous adsorption for integrated filter-based sampling and analysis of water-soluble organic molecular markers in the atmosphere
Wei Feng, Xiangyu Zhang, Zhijuan Shao, Guofeng Shen, Hong Liao, Yuhang Wang, and Mingjie Xie
EGUsphere, https://doi.org/10.5194/egusphere-2025-2106,https://doi.org/10.5194/egusphere-2025-2106, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Evolution of Aerosol Particle Number Size Distribution in Statistical Thermodynamic Equilibrium During New Particle Formation and Growth
Gang Zhao, Ping Tian, Chunxiang Ye, Weili Lin, Yicheng Gao, Jie Sun, Yi Chen, Fengjun Shen, and Tong Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3012,https://doi.org/10.5194/egusphere-2025-3012, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Impacts of reductions in anthropogenic aerosols and greenhouse gases toward carbon neutrality on dust pollution
Shicheng Yan, Yang Yang, Lili Ren, Hailong Wang, Pinya Wang, Lei Chen, Jianbin Jin, and Hong Liao
EGUsphere, https://doi.org/10.5194/egusphere-2025-2950,https://doi.org/10.5194/egusphere-2025-2950, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Accelerated impact of airborne glaciogenic seeding of stratiform clouds by turbulence
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
Atmos. Chem. Phys., 25, 7581–7596, https://doi.org/10.5194/acp-25-7581-2025,https://doi.org/10.5194/acp-25-7581-2025, 2025
Short summary
South Asia anthropogenic ammonia emission inversion through assimilating IASI observations
Ji Xia, Yi Zhou, Li Fang, Yingfei Qi, Dehao Li, Hong Liao, and Jianbing Jin
Atmos. Chem. Phys., 25, 7071–7086, https://doi.org/10.5194/acp-25-7071-2025,https://doi.org/10.5194/acp-25-7071-2025, 2025
Short summary

Cited articles

Akritidis, D., Zanis, P., Georgoulias, A. K., Papakosta, E., Tzoumaka, P., and Kelessis, A.: Implications of COVID-19 restriction measures in urban air quality of Thessaloniki, Greece: A machine learning approach, Atmosphere-Basel, 12, 1500, https://doi.org/10.3390/atmos12111500, 2021. 
Asadollahfardi, G., Madinejad, M., Aria, S. H., and Motamadi, V.: Predicting Particulate Matter (PM2.5) Concentrations in the Air of Shahr-e Ray City, Iran, by Using an Artificial Neural Network, Environmental Quality Management, 25, 71–83, 2016. 
Bartell, S. M., Longhurst, J., Tjoa, T., Sioutas, C., and Delfino, R. J.: Particulate air pollution, ambulatory heart rate variability, and cardiac arrhythmia in retirement community residents with coronary artery disease, Environ. Health Persp., 121, 1135–1141, 2013. 
Brauer, M., Amann, M., Burnett, R. T., Cohen, A., Dentener, F., Ezzati, M., Henderson, S. B., Krzyzanowski, M., Martin, R. V., and Van Dingenen, R.: Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution, Environ. Sci. Technol., 46, 652–660, 2012. 
Cheng, N., Cheng, B., Li, S., and Ning, T.: Effects of meteorology and emission reduction measures on air pollution in Beijing during heating seasons, Atmos. Pollut. Res., 10, 971–979, 2019. 
Download
Short summary
This study combines machine learning with concentration-weighted trajectory analysis to quantify regional transport PM2.5. From 2013–2020, local emissions dominated Beijing's pollution events. The Air Pollution Prevention and Control Action Plan reduced regional transport pollution, but the eastern region showed the smallest decrease. Beijing should prioritize local emission reduction while considering the east region's contributions in future strategies.
Share