Articles | Volume 18, issue 12
https://doi.org/10.5194/gmd-18-3623-2025
https://doi.org/10.5194/gmd-18-3623-2025
Development and technical paper
 | 
19 Jun 2025
Development and technical paper |  | 19 Jun 2025

A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis

Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao

Related authors

Seasonal Variability and Cloud-Type Effects on Secondary Organic Aerosol Formation During Cloud Events at a Mountainous Site in Southeastern China
Yi Zhang, Weiqi Xu, Yan Li, Guohua Zhang, Dantong Liu, Ye Kuang, Yu Zhang, Wei Zhou, Xiaocong Peng, Bojiang Su, Weihong Huang, Zijun Zhang, Liu Yang, Yangzhou Wu, Siyuan Li, Shitong Zhao, Lanzhong Liu, Xiaole Pan, Zifa Wang, Xinhui Bi, Mikael Ehn, Douglas R. Worsnop, and Yele Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-5835,https://doi.org/10.5194/egusphere-2025-5835, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Vertically resolved formation mechanisms of fine particulate nitrate in Asian megacities: integrated lidar – aircraft observations and process analysis
Yutong Tian, Ting Yang, Hongyi Li, Ping Tian, Yifan Song, Jiancun He, Yining Tan, Yele Sun, and Zifa Wang
Atmos. Chem. Phys., 25, 17581–17594, https://doi.org/10.5194/acp-25-17581-2025,https://doi.org/10.5194/acp-25-17581-2025, 2025
Short summary
Aircraft-based observation of volatile organic compounds (VOCs) over the North China Plain
Yibo Huangfu, Ziyang Liu, Bin Yuan, Sihang Wang, Xianjun He, Wei Zhou, Fei Wang, Ping Tian, Wei Xiao, Yuanmou Du, Jiujiang Sheng, and Min Shao
Atmos. Chem. Phys., 25, 17613–17628, https://doi.org/10.5194/acp-25-17613-2025,https://doi.org/10.5194/acp-25-17613-2025, 2025
Short summary
Impacts of reductions in anthropogenic aerosols and greenhouse gases toward carbon neutrality on dust pollution over the Northern Hemisphere dust belt
Shicheng Yan, Yang Yang, Lili Ren, Hailong Wang, Pinya Wang, Lei Chen, Jianbin Jin, and Hong Liao
Atmos. Chem. Phys., 25, 16877–16893, https://doi.org/10.5194/acp-25-16877-2025,https://doi.org/10.5194/acp-25-16877-2025, 2025
Short summary
Measurement report: Collocated speciation and potential mechanisms of gaseous adsorption for integrated filter-based sampling and analysis of water-soluble organic molecular markers in the atmosphere
Wei Feng, Xiangyu Zhang, Zhijuan Shao, Guofeng Shen, Hong Liao, Yuhang Wang, and Mingjie Xie
Atmos. Chem. Phys., 25, 16697–16711, https://doi.org/10.5194/acp-25-16697-2025,https://doi.org/10.5194/acp-25-16697-2025, 2025
Short summary

Cited articles

Akritidis, D., Zanis, P., Georgoulias, A. K., Papakosta, E., Tzoumaka, P., and Kelessis, A.: Implications of COVID-19 restriction measures in urban air quality of Thessaloniki, Greece: A machine learning approach, Atmosphere-Basel, 12, 1500, https://doi.org/10.3390/atmos12111500, 2021. 
Asadollahfardi, G., Madinejad, M., Aria, S. H., and Motamadi, V.: Predicting Particulate Matter (PM2.5) Concentrations in the Air of Shahr-e Ray City, Iran, by Using an Artificial Neural Network, Environmental Quality Management, 25, 71–83, 2016. 
Bartell, S. M., Longhurst, J., Tjoa, T., Sioutas, C., and Delfino, R. J.: Particulate air pollution, ambulatory heart rate variability, and cardiac arrhythmia in retirement community residents with coronary artery disease, Environ. Health Persp., 121, 1135–1141, 2013. 
Brauer, M., Amann, M., Burnett, R. T., Cohen, A., Dentener, F., Ezzati, M., Henderson, S. B., Krzyzanowski, M., Martin, R. V., and Van Dingenen, R.: Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution, Environ. Sci. Technol., 46, 652–660, 2012. 
Cheng, N., Cheng, B., Li, S., and Ning, T.: Effects of meteorology and emission reduction measures on air pollution in Beijing during heating seasons, Atmos. Pollut. Res., 10, 971–979, 2019. 
Download
Short summary
This study combines machine learning with concentration-weighted trajectory analysis to quantify regional transport PM2.5. From 2013–2020, local emissions dominated Beijing's pollution events. The Air Pollution Prevention and Control Action Plan reduced regional transport pollution, but the eastern region showed the smallest decrease. Beijing should prioritize local emission reduction while considering the east region's contributions in future strategies.
Share