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Abstract. Fine particulate matter (PM2.5) is closely linked
to human health, with its sources generally divided into lo-
cal emissions and regional transport. This study combined
concentration-weighted trajectory (CWT) analysis with the
HYSPLIT trajectory ensemble to obtain hourly resolution
pollutant source results. The Extreme Gradient Boosting
(XGBoost) model was then employed to simulate local emis-
sions and ambient PM2.5 in Beijing from 2013 to 2020. The
results revealed that clean air masses influencing the Beijing
area mainly originated from the north and east regions, ex-
hibiting a strong winter and weak summer pattern. Following
the implementation of the Air Pollution Prevention and Con-
trol Action Plan (Action Plan) by the Chinese government
in 2017, pollution in Beijing decreased significantly, with

the most substantial reduction in regional transport pollution
events occurring in the west region during summer. Regional
transport pollution events were most frequent in spring, up to
1.8 times higher than in winter. Pollutants mainly originated
from the west and south regions, while polluted air masses
from the east showed the least reduction, and the proportion
of pollution sources from this region was gradually increas-
ing. The COVID-19 restrictions might have reduced PM2.5
concentrations in 2020. From 2013 to 2020, local emissions
were the main contributors to pollution events in Beijing. The
Action Plan has more effectively reduced pollution caused
by regional transport, particularly during autumn and winter.
This finding underscores the importance of Beijing prioritiz-
ing local emission reduction while also considering potential
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contributions from the east region to effectively mitigate pol-
lution events.

1 Introduction

Ambient fine particulate matter (PM2.5, with particle aero-
dynamic diameter ≤ 2.5 µm) is influenced by both natural
sources, such as dust, volcanic eruptions, tsunamis, and for-
est fires, and anthropogenic emissions, including fuel com-
bustion, transportation, and industrial production. Anthro-
pogenic emissions dominate the long-term trend of air pol-
lution (Zhang et al., 2019; Cheng et al., 2019). Numerous
epidemiological studies have found that PM2.5 can signifi-
cantly damage human health by exacerbating respiratory and
cardiovascular diseases (Bartell et al., 2013; Brauer et al.,
2012; Pascal et al., 2014) and also has an impact on weather
and climate change (Wang et al., 2014; Smith et al., 2020;
Kalisoras et al., 2024). China’s rapid and energy-intensive
development over the past several decades has led to severe
air pollution and negative public health impacts (Huang et al.,
2014; Geng et al., 2021). Consequently, controlling pollution
and reducing PM2.5 concentrations have become urgent is-
sues in China. While meteorological variations caused about
16 % of the ambient PM2.5 decline during 2013–2017 (Zhang
et al., 2019), the uncertainty in reducing PM2.5 through mete-
orological conditions is substantial, and the magnitude of the
decrease is not dominated by human actions. Thus, the pri-
mary means of controlling PM2.5 relies on reducing anthro-
pogenic emissions. To address this issue, the Chinese gov-
ernment implemented the Air Pollution Prevention and Con-
trol Action Plan (denoted “Action Plan”) from 2013 to 2017
and the Blue-Sky Protection Campaign from 2018 to 2020,
which effectively controlled anthropogenic emissions and re-
duced ambient PM2.5 concentrations (Zhang et al., 2019; Du
et al., 2022).

The concentration of PM2.5 can be attributed to local emis-
sions and regional transport. Several methods, such as the
HYSPLIT model (Draxler and Rolph, 2010), can be used
to distinguish pollutant sources. Wu et al. (2021) used the
HYSPLIT model to simulate the 24 h backward trajectory
in Zhoushan and identified continental air masses that spent
more than 5 % of the previous 24 h over the continent region,
while the remaining air masses were identified as oceanic-
influenced air masses. Ding et al. (2019) employed a back-
ward trajectory ensemble to analyze the sources of air masses
in Beijing during the study period, finding that air masses
with high concentrations of black carbon (BC) mass mainly
came from the south and southeast regions. Cluster analy-
sis on backward trajectories can be used to obtain the main
direction of aerosols over a period of time, allowing for the
analysis and determination of dominant air mass directions.
For instance, Li et al. (2022) divided the sources of air masses
in the Wuhan area from October to November 2019 into short

transport distance, northbound air masses, and regional trans-
port from the northeast and some coastal areas.

The HYSPLIT model results are mainly used to view air
mass trajectories, making it difficult to directly determine the
sources of pollutants. Potential source contribution function
(PSCF) and concentration-weighted trajectory (CWT) analy-
ses based on backward trajectories can be used to identify the
sources of pollutants through conditional probability results.
Hu et al. (2020) used weighted PSCF to analyze the sources
of air masses with different levels of pollution in Beijing and
found that polluted air masses from the southwest were an
important source of high-level advection during the study
period, while light pollution was often accompanied by the
regional transport originating from the northeast region. Wu
et al. (2025) used CWT to analyze the sources of pollution
in Zhoushan and found that pollutants in Zhoushan are influ-
enced by both local emissions and regional transport. There
are no obvious high pollution areas, while in other seasons,
PM2.5 mainly originates from southern Jiangsu and Shang-
hai. However, these studies relied on standard HYSPLIT tra-
jectory results, which have lower temporal resolution, limit-
ing the accuracy of pollutant source identification.

The Lagrangian air pollution dispersion model, Numerical
Atmospheric-dispersion Modelling Environment (NAME)
(Jones et al., 2007), can determine the source of polluted air
masses by simulating particulate concentrations within each
grid point using Monte Carlo methods, followed by 3-D tra-
jectories of plume basins. Liu et al. (2020) used the NAME
model to study the sources of air masses in Beijing during the
winter of 2019 and divided them into local emissions and re-
gional transport to analyze the convective mixing process of
BC under the influence of local emissions. However, due to
limitations in computing resources, the NAME model is dif-
ficult to use for obtaining long-term emission source analysis
results.

Multiple methods can be used to predict PM2.5 concen-
trations, such as statistical models (e.g., linear mixed-effect
models and generalized additive models) (Fang et al., 2016;
Ma et al., 2016); chemical transport model (CTM)-based
algorithms (Geng et al., 2015; Kong et al., 2021); physi-
cal models (Lin et al., 2018); and recently emerging ma-
chine learning models, including Extreme Gradient Boost-
ing (XGBoost) and random forest (Liang et al., 2020; Wei
et al., 2021; Xiao et al., 2018; Xue et al., 2019; Huang et
al., 2021). Geng et al. (2021) used satellite observations of
aerosol optical depth (AOD) and meteorological data com-
bined with the XGBoost model to explore the long-term vari-
ations of PM2.5 caused by changes in meteorological condi-
tions from 2000 to 2018. Kleine Deters et al. (2017) demon-
strated the relevance of statistical models based on machine
learning for predicting PM2.5 concentrations from meteoro-
logical data. This method of predicting aerosol concentra-
tions using only meteorological data has been widely used
(Asadollahfardi et al., 2016; Zeng et al., 2021). For instance,
Grange et al. (2018) used meteorological data, synoptic-scale
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weather patterns, and time variables to explain daily PM10
concentrations in Switzerland. In summary, machine learn-
ing models have achieved high accuracy in estimating and
predicting PM2.5 concentrations and have high use value, and
the rise of machine learning methods has also provided fea-
sibility for quantifying the contribution of regionally trans-
ported air masses.

In this study, we combined CWT analysis with the HYS-
PLIT trajectory ensemble to obtain hourly resolution PM2.5
source results and used this approach to distinguish be-
tween local emissions and regional transport. This approach
addresses the limitations of CWT methods combined with
standard HYSPLIT trajectory results, which are unable to
achieve hourly time resolution, and models such as NAME,
which require significant computational resources. Predictive
XGBoost models were developed for Beijing using meteo-
rological data and time variables to explain PM2.5 concen-
trations. By training the XGBoost model with PM2.5 domi-
nated by local emissions, which are separately distinguished
by CWT, and generalizing the findings to all study periods,
the concentration of locally emitted PM2.5 (local) can be
obtained. Similarly, ambient observed PM2.5 (ambient) can
be determined by training the XGBoost model with ambient
PM2.5 data. The contribution of regional transport to PM2.5
in Beijing can be quantified by comparing the ambient and
local PM2.5 concentrations.

2 Materials and methods

2.1 Site and instrumentation

The PM2.5 data (Fig. 1a) were obtained from in situ air
quality monitoring conducted by the China National En-
vironmental Monitoring Center from 2013 to 2020. The
monitoring station is located in Haidian Wanliu (39.96° N,
116.29° E), situated in the central urban area of Beijing. Me-
teorological data, including temperature, relative humidity,
pressure, precipitation, wind speed, and planetary boundary
layer height (PBLH), were sourced from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) ERA5
hourly reanalysis dataset (https://cds.climate.copernicus.eu/
datasets, last access: 13 June 2025). In this study, a year was
divided into four quarters: spring (March, April, and May),
summer (June, July, and August), autumn (September, Oc-
tober, and November), and winter (December, January, and
February).

2.2 Air mass source

The air mass trajectory data were obtained from the
1°× 1° horizontal and vertical wind fields of the Global
Data Assimilation System (GDAS) reanalysis products (ftp:
//arlftp.arlhq.noaa.gov/pub/archives/gdas1, last access: 13
June 2025), which are available every 3 h. The HYSPLIT
trajectory ensemble was used to generate 27 equally prob-

able 24 h backward air mass trajectories for the target point
(39.96° N, 116.29° E; 250 m a.s.l.) in every hour using PyS-
plit (Cross, 2015). Given the equal probability of air masses
being transported to the target point for each trajectory in
the HYSPLIT trajectory ensemble, a conditional probability
CWT analysis was applied to determine the hourly source
area of pollution.

In the CWT analysis method, each grid point is assigned a
weight, and the contribution of each grid point to the pollu-
tant concentration at the target site is calculated using the air
mass residence time and pollutant concentration (Hopke et
al., 1993; Polissar et al., 1999; Xu and Akhtar, 2010) (Eq. 1).
The grid point resolution was set to 0.25°× 0.25° for this
study. In Eq. (1), Cij is the average weighted concentration
at grid point (i,j ), l is the trajectory index, M represents the
total number of trajectories, Cl is the PM2.5 concentration
corresponding to the target site, and τij l is the residence time
of trajectory l passing through the grid point. In calculation,
the number of trajectories falling on each grid point is used
instead of the residence time.

Cij =

∑M
l=1Cl × τij l∑M
l=1τij l

(1)

To reduce the effect of small values of nij , the CWT val-
ues were multiplied by an arbitrary weight function W(ni,j )
to better reflect the uncertainty in the values for these grids
(Eq. 2).

W(ni,j )=


1.00, 3nave < nij

0.70, 1.5nave < nij ≤ 3nave

0.4, nave < nij ≤ 1.5nave

0.17, nij ≤ nave,

(2)

where nij represents the number of trajectories that fall
within the grid point, and nave represents the average num-
ber of trajectories passing through each grid point.

The potential source contribution to PM2.5 at the target
site was investigated by categorizing the backward air masses
into five different source regions centered around Beijing: lo-
cal (which is a region around central Beijing, 39.4–41° N,
115.3–117.5° E), north region (the northern plateau at 41–
43° N, 108–117.5° E), west region (the western plateau at
34–41° N, 108–115.3° E), south region (the southern plain
at 34–39.4° N, 115.3–120° E), and east region (the eastern
plain at 39.4–43° N, 117.5–120° E). The concentration is in-
tegrated over each grid point in each segregated region ob-
tained from the CWT analysis, and the contributions of each
air mass fraction are obtained. The region with the high-
est contribution is used to determine the dominant source
of air masses in Beijing at each time, classifying the overall
air mass sources into local emissions (Fig. 1g) and regional
transport (Fig. 1h). It is important to note that local emission
periods were also influenced by persistent regional transport,
and vice versa.
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Figure 1. Temporal evolution of parameters used in the XGBoost model: (a) PM2.5; (b) U -wind, V -wind, and total precipitation; (c) 2 m
minimum temperature and surface pressure; (d) 2 m maximum temperature and planetary boundary layer height; (e) 2 m temperature and
relative humidity; (f) air mass fraction in contributing sources derived from the concentration-weighted trajectory (CWT) model for a 1 d
backward trajectory. The red vertical line with arrows indicates the implementation of environmental regulations. Typical examples of the
CWT model analysis are shown for (g) a local emission period (25 August 2013) and (h) a regional transport period (15 July 2013).

2.3 Deriving the long-term local emission and ambient
PM2.5

An XGBoost model is employed to derive the local and am-
bient PM2.5 results. The hyperparameters used in the model
for local (ambient) conditions include a maximum number
of boosting iterations of 6067 (13 421), a learning rate of
0.1, a maximum tree depth of 7 (11), a minimum sum of
instance weight needed in a child of 5 (3), a subsampling
ratio of 0.8 (0.6) for training instances, and a subsampling
ratio of 0.8 for columns when constructing each tree. The
input parameters for the XGBoost model comprise meteoro-
logical variables (temperature, relative humidity, wind speed,
surface pressure, and precipitation) and temporal parameters
(year, month, day of the week, and day of the year), as ref-

erenced from Xu et al. (2023). Additionally, PBLH, which
has been shown to significantly impact pollutant concentra-
tions in previous observational (Su et al., 2018; Miao and
Liu, 2019; Miao et al., 2019) and machine learning stud-
ies (Xiao et al., 2021; Li et al., 2017b; Shen et al., 2018),
was included as an input parameter. Based on the XGBoost
learning results, the most sensitive parameters for both local
and ambient PM2.5 are RH, wind field, surface pressure, and
PBLH (Fig. S1 in the Supplement). For the machine learning
process, data from 2013 to 2019 were used for training the
XGBoost models, while the 8613 data points measured from
1 January to 31 December 2020 were used for model testing
(Fig. S2). Note that the 2020 analysis results may contain
some uncertainties due to the impact of COVID-19.
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The relatively small proportion of high-concentration
PM2.5 can lead to underestimation of high-concentration
events in the model results (Wei et al., 2020). To address
this issue, a high PM2.5 indicator was defined as a daily av-
erage PM2.5 concentration exceeding the monthly average
plus twice the standard deviation. In this study, original high
PM2.5 indicators accounted for 6 % of the data points during
the period dominated by local and ambient PM2.5. To bal-
ance the proportion of high-concentration PM2.5 in the entire
database, the Synthetic Minority Over-sampling Technique
(SMOTE) (Torgo, 2011) was applied during data prepro-
cessing. SMOTE artificially generates new synthetic samples
along the line between high-concentration data points and
their selected nearest neighbors, effectively oversampling the
high-concentration data. As a result, the proportion of high
PM2.5 indicators increased to 21 % and 22 % for local and
ambient PM2.5, respectively.

Hyperparameter optimization and performance evaluation
of the model were conducted using 5-fold cross-validation
(CV), while early stopping with a patience of 10 rounds was
employed to prevent overfitting (Akritidis et al., 2021; Zhang
et al., 2020). In this approach, 20 % of the data is randomly
selected for model validation, while the remaining 80 % is
used for training. This process is repeated five times, ensur-
ing that each record is used once as validation data. The co-
efficient of determination (r2) was employed to assess the
correlation between the XGBoost model predictions and ob-
served values, while the root mean square error (RMSE) was
used as a performance evaluation statistic. After obtaining
the relation between the input parameters and PM2.5, we are
able to derive the hourly local and ambient PM2.5 once all
long-term parameters are input (Fig. S4).

3 Results and discussion

3.1 Evaluation of the XGBoost PM2.5 prediction model

During the model testing process, the XGBoost model re-
sults for ambient PM2.5 (Fig. 2a2) demonstrated an r2 of
0.74 and an RMSE of 20 µgm−3 when compared to observa-
tions. The XGBoost model results for local PM2.5 exhibited
an r2 of 0.78 and an RMSE of 21 µgm−3. An analysis of the
PM2.5 frequency distribution in Beijing revealed an agree-
ment between the XGBoost model results and observations
for both ambient and local PM2.5. The error between XG-
Boost learning results and actual observed PM2.5 values is
mainly concentrated in the low concentration stage. This may
be attributed to the significant reduction in anthropogenic ac-
tivities during the COVID-19 lockdown periods, which led to
a decrease in actual PM2.5 levels, making it challenging for
XGBoost to learn (Fig. 2b1 and b2). As illustrated in Fig. S3,
local and ambient PM2.5 in Beijing display a distinct sea-
sonal variation, with higher values in winter and lower val-
ues in summer. However, the transport of clean air masses

from the north diminishes the seasonal variation character-
istics of ambient PM2.5 in Beijing, making winter pollution
less prominent compared to other seasons.

Figure S4 reveals that ambient pollution events (PM2.5 >

75 µgm−3) in Beijing are primarily influenced by air masses
originating from the south and west, particularly under the
control of westward air masses. Numerous studies have in-
dicated that air masses originating from the western region
significantly contribute to regional pollution events in Bei-
jing (Streets et al., 2007; Tian et al., 2019; Liu et al., 2020).
With the exception of December (Fig. 3b1), westward air
masses often bring higher monthly average PM2.5 to Beijing.
Air masses originating from the south region can also trans-
port more pollutants to Beijing (Fig. S4). However, unlike
the high-frequency polluted air masses from the west, south-
ward air masses are associated with higher PM2.5 concentra-
tions, particularly during autumn and winter (Fig. 3c1). This
phenomenon can be attributed to the higher pollution levels
in Hebei and Shandong provinces compared to Beijing dur-
ing these seasons, as verified by AOD observations from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
on the Aqua satellites over eastern China (Zhang and Reid,
2010; Hu et al., 2018) (Fig. S5). Notably, in contrast to west-
ward transport, air masses from the south region in February
predominantly exhibited a cleaning effect on Beijing, even
before 2017 (Fig. S4b). This can be explained by the oc-
currence of these transport processes during or shortly after
the Spring Festival, a period characterized by extremely low
anthropogenic emissions, resulting in lower ambient PM2.5
compared to local emissions in the megacity of Beijing. Fol-
lowing the implementation of the Action Plan, the polluted
air masses from the south region transitioned from carrying
higher PM2.5 to levels close to local emission concentrations
in Beijing, leading to a more equal contribution to pollution
and clean events in the area (Fig. S6c1).

3.2 Impact of clean air masses from transported
regions on PM2.5 in Beijing

In this study, clean air masses are defined as those associ-
ated with ambient PM2.5 in the Beijing area that are lower
than the concentrations resulting from local emissions, as il-
lustrated below the dashed line in Fig. 3a1–d1. This study re-
veals that clean air masses predominantly originate from the
east and north regions during the period 2013–2020, which
is consistent with previous studies (Zhang et al., 2018; Hu
et al., 2020). Clean air masses from different directions ex-
hibit similar seasonal variations in their ability to reduce lo-
cally emitted pollution in Beijing, with a strong reduction
effect in winter and a weaker effect in summer (Fig. 3a2–
d2). This phenomenon is closely related to the seasonal vari-
ations in pollutant emissions. Due to the combined influ-
ence of increased residential emissions from heating activ-
ities and meteorological conditions in Beijing during autumn
and winter, local PM2.5 in Beijing presents higher concentra-
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Figure 2. Comparison of XGBoost model estimates and observations for (a1) ambient PM2.5 and (a2) local PM2.5 using testing data.
Frequency distributions of PM2.5 observations (black lines) and XGBoost model predictions (red lines) for (b1) ambient PM2.5 and (b2) local
PM2.5 using testing data.

tions. Consequently, the influx of clean air masses results in
a more pronounced reduction in PM2.5 during these seasons.
The weaker attenuation effect of PM2.5 transported from the
south region during December and January can be attributed
to the high-frequency and high-concentration pollution con-
tributions from air masses originating in this region during
this period.

Due to a significant reduction in anthropogenic emissions
after 2017, the attenuation of PM2.5 concentrations by clean
air masses from all directions was significantly lower than
before 2017 (Fig. S7a2–d2). Compared to the period prior to
2017, the mean attenuation of PM2.5 concentrations in Bei-
jing decreased by 3, 10, 3, and 7 µgm−3 (p < 0.01) for air
masses originating from the north, west, south, and east re-
gions, respectively.

3.3 Variations in Beijing PM2.5 concentrations under
transport-induced pollution events

Transport-induced pollution events in Beijing are defined as
the occurrence of ambient PM2.5 exceeding both local PM2.5
and the light pollution standard (75 µgm−3). Figure 4a1–

d1 demonstrate that the monthly variation of PM2.5 in Bei-
jing generally follows a unimodal pattern, with higher val-
ues in winter and lower values in summer, except when un-
der the influence of eastern air mass transport. This phe-
nomenon is closely related to the seasonal variations in
anthropogenic emissions in China and the characteristics
of climate change (Renhe et al., 2014; Li et al., 2017a;
Zhang et al., 2015). The overall PM2.5 in Beijing under
the influence of eastward pollution air masses exhibits a bi-
modal distribution, with frequent high-concentration pollu-
tion events occurring in January and October. Even after the
effective control of anthropogenic emissions in 2017, a sec-
ond peak of high-concentration pollution persists in Octo-
ber (Fig. 4d2). Figure 4a2–d2 illustrate the effectiveness of
the Action Plan in controlling pollutant concentrations in the
Beijing area. Since 2017, PM2.5 in Beijing has been signif-
icantly lower than the values observed before 2017 during
transport-induced pollution events. Moreover, during Jan-
uary and from June to September, there were periods when
the regional transport of polluted air masses from a fixed di-
rection did not contribute to pollution events in Beijing.
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Figure 3. Monthly variations of the difference between ambient and local PM2.5 from the (a1) north, (b1) west, (c1) south, and (d1) east
regions. Right panels (a2–d2) show monthly variations of PM2.5 reductions caused by regional transport for the corresponding source
regions in the left panels (a1–d1). The upper and lower boundaries represent the 75th and 25th percentiles, respectively, while the solid
origin represents the average value.

An analysis of the proportion of transport-induced pollu-
tion events from different regions to Beijing (Fig. 5) shows
that after the implementation of the Action Plan in 2017, the
number of pollution events dominated by regional transport
decreased significantly. From spring to winter, the largest de-
crease in transport-induced pollution events occurred in the
north, west, west, and south regions in each season, with the
lowest decrease occurring in the east region during winter.

The temporal variation in the number of transport-induced
pollution events from different regions (Fig. S8) revealed that
air masses transported from the west region contributed to the
most frequent pollution events in each season except sum-
mer. The highest number of events occurred in spring 2016
(322), autumn 2016 (375), and winter 2017 (308). Summer
transport-induced pollution events were mainly influenced
by polluted air masses transported from the south, with a
gradual decrease in the number of events over the years.
Although pollution events in Beijing primarily occur in au-
tumn and winter, this study found that after 2017, the season

when Beijing was most affected by transport-induced pollu-
tion events was spring, contributing a total of 685 pollution
events, while autumn and winter contributed 266 and 392
events, respectively. The impact of polluted air masses on
summer transport was minimal, with only 215 occurrences.

Figure 5a shows that in spring, transport-induced pollu-
tion events in Beijing were mainly dominated by polluted
air masses transported from the west and south. The high-
est proportion of regional transport events from the west
occurred in 2016, reaching 68 %, while the highest pro-
portion of southward transport-induced pollution events oc-
curred in 2017 (with the exception of 2020, which may
have been influenced by the COVID-19 pandemic). The in-
creased frequency of pollution air masses transported from
the south after 2017 can be attributed to the effective control
of anthropogenic emissions, resulting in a decrease in PM2.5
transported from various regions, especially from westward
sources (Fig. S8a). The decrease in the proportion of pollu-
tion events transported from the west, which originally ac-
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Figure 4. Monthly variations of transport-induced PM2.5 pollution (ambient PM2.5 exceeding local PM2.5 and 75 µgm−3) from the
(a1) north, (b1) west, (c1) south, and (d1) east regions. Right panels (a2–d2) show monthly variations of transport-induced PM2.5 pol-
lution before (black) and after (red) 2017 for the corresponding source regions in the left panels (a1–d1). The upper and lower boundaries
represent the 75th and 25th percentiles, respectively, while the solid origin represents the average result.

counted for a large proportion, led to an increase in the con-
tribution of remaining incoming air masses to Beijing.

Before 2017, transport-induced pollution events in Beijing
during summer were mainly affected by polluted air masses
from the south region. Even in 2015, when the proportion of
transport-induced pollution events from the south region was
lowest during the entire period, it still accounted for 50 % of
the total number of transport-induced pollution events that
year. However, after the implementation of the Action Plan,
the proportion of transport-induced pollution events from the
south region gradually decreased to 38 %. In 2020, this pro-
portion further declined to 25 %, but this may have been af-
fected by the COVID-19 pandemic. Meanwhile, pollution air
masses originating from the east increasingly dominated the
occurrence of pollution events in Beijing.

Transport-induced pollution events in Beijing mainly orig-
inated from the west and had the highest contribution pro-
portion in autumn before 2019 (except for 2013, when the
contribution proportion was 34 %, second only to southward
air masses at 35 %). After 2019, the contribution of eastward

air masses became dominant in autumn. In winter, polluted
air masses from the west were the main source of transport-
induced pollution events. Overall, as the Action Plan gradu-
ally improved, the transport-induced pollution from the east
did not decrease significantly compared to other air mass
sources. This may be because the eastward air masses are
mostly clean. However, as the concentration of polluted air
masses from other sources decreases, the potential impact of
eastward air masses on Beijing’s transport-induced pollution
events increases. This finding may prompt Beijing to priori-
tize emission reduction in the east region when implementing
future joint prevention and control measures.

4 Conclusion

This study combined a machine learning method and
concentration-weighted trajectory (CWT) analysis to derive
local emissions and ambient observed PM2.5 in Beijing from
2013 to 2020; thus the contribution of regional transport to
PM2.5 in Beijing can be quantified. The impact of clean air
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Figure 5. Histograms depict the annual fraction of transport-induced pollution events in each direction relative to the total number of
occurrences from 2013 to 2020 during (a) spring, (b) summer, (c) autumn, and (d) winter. Pie charts illustrate the proportion of transport-
induced pollution events in each direction for each year within the corresponding seasons.

masses (defined as those with ambient PM2.5 concentrations
lower than local emissions) mainly originated from the east
and north regions. These clean air masses from different di-
rections exhibited similar seasonal variations in their ability
to reduce ambient pollution in Beijing, with a stronger reduc-
tion effect in winter and a weaker reduction effect in summer.
In addition to clean air masses, COVID-19 restrictions might
have contributed to the reduction of PM2.5 in 2020.

Except for the regional transport from the east region, the
seasonal variation of PM2.5 in Beijing under the influence of

transport-induced pollution events (ambient PM2.5 exceed-
ing both local PM2.5 and 75 µgm−3) shows a general trend
of high concentrations in winter and low concentrations in
summer. The main reason for this phenomenon is related to
the seasonal emissions of pollutants in China and the char-
acteristics of climate change. Before 2019, the west region
was the primary source of pollution events during autumn
and winter. However, starting from 2019, the east region be-
came the main contributor of polluted air masses in autumn.
Additionally, among all regions, the east region exhibited the
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smallest decrease in transport-induced pollution events after
2017.

From 2013 to 2020, local emissions were the main contrib-
utors to pollution events in Beijing. However, the Air Pollu-
tion Prevention and Control Action Plan, implemented by the
Chinese government in 2017, more effectively mitigated pol-
lutants caused by regional transport compared to local emis-
sions, particularly during autumn and winter. This finding
suggests that Beijing should prioritize reducing local emis-
sions while also accounting for potential contributions from
the east region in its future pollution prevention and control
strategies.
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