Articles | Volume 18, issue 5
https://doi.org/10.5194/gmd-18-1661-2025
https://doi.org/10.5194/gmd-18-1661-2025
Development and technical paper
 | 
12 Mar 2025
Development and technical paper |  | 12 Mar 2025

FootNet v1.0: development of a machine learning emulator of atmospheric transport

Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner

Related authors

High-resolution greenhouse gas flux inversions using a machine learning surrogate model for atmospheric transport
Nikhil Dadheech, Tai-Long He, and Alexander J. Turner
Atmos. Chem. Phys., 25, 5159–5174, https://doi.org/10.5194/acp-25-5159-2025,https://doi.org/10.5194/acp-25-5159-2025, 2025
Short summary
Inverse modelling of Chinese NOx emissions using deep learning: integrating in situ observations with a satellite-based chemical reanalysis
Tai-Long He, Dylan B. A. Jones, Kazuyuki Miyazaki, Kevin W. Bowman, Zhe Jiang, Xiaokang Chen, Rui Li, Yuxiang Zhang, and Kunna Li
Atmos. Chem. Phys., 22, 14059–14074, https://doi.org/10.5194/acp-22-14059-2022,https://doi.org/10.5194/acp-22-14059-2022, 2022
Short summary
A comparative analysis for a deep learning model (hyDL-CO v1.0) and Kalman filter to predict CO concentrations in China
Weichao Han, Tai-Long He, Zhaojun Tang, Min Wang, Dylan Jones, and Zhe Jiang
Geosci. Model Dev., 15, 4225–4237, https://doi.org/10.5194/gmd-15-4225-2022,https://doi.org/10.5194/gmd-15-4225-2022, 2022
Short summary
The Environment and Climate Change Canada Carbon Assimilation System (EC-CAS v1.0): demonstration with simulated CO observations
Vikram Khade, Saroja M. Polavarapu, Michael Neish, Pieter L. Houtekamer, Dylan B. A. Jones, Seung-Jong Baek, Tai-Long He, and Sylvie Gravel
Geosci. Model Dev., 14, 2525–2544, https://doi.org/10.5194/gmd-14-2525-2021,https://doi.org/10.5194/gmd-14-2525-2021, 2021
Short summary

Cited articles

Baker, D. F., Doney, S. C., and Schimel, D. S.: Variational data assimilation for atmospheric CO2, Tellus B, 58, 359–365, https://doi.org/10.1111/j.1600-0889.2006.00218.x, 2006. a
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., and Manikin, G. S.: A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh, Mon. Weather Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-D-15-0242.1, 2016. a
Dadheech, N., He, T.-L., and Turner, A. J.: High-resolution greenhouse gas flux inversions using a machine learning surrogate model for atmospheric transport, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2918, 2024. a, b
Dobbins, R.: Atmospheric Motion and Air Pollution: An Introduction for Students of Engineering and Science, A Wiley-interscience publication, Wiley, ISBN 9780471216759, https://books.google.com/books?id=kDhSAAAAMAAJ (last access: 6 March 2025), 1979. a
Dowell, D. C., Alexander, C. R., James, E. P., Weygandt, S. S., Benjamin, S. G., Manikin, G. S., Blake, B. T., Brown, J. M., Olson, J. B., Hu, M., Smirnova, T. G., Ladwig, T., Kenyon, J. S., Ahmadov, R., Turner, D. D., Duda, J. D., and Alcott, T. I.: The High-Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part I: Motivation and System Description, Weather Forecast., 37, 1371–1395, https://doi.org/10.1175/WAF-D-21-0151.1, 2022. a
Download
Short summary
It is computationally expensive to infer greenhouse gas (GHG) emissions using atmospheric observations. This is partly due to the detailed model used to represent atmospheric transport. We demonstrate how a machine learning (ML) model can be used to simulate high-resolution atmospheric transport. This type of ML model will help estimate GHG emissions using dense observations, which are becoming increasingly common with the proliferation of urban monitoring networks and geostationary satellites.
Share