Articles | Volume 17, issue 18
https://doi.org/10.5194/gmd-17-7157-2024
https://doi.org/10.5194/gmd-17-7157-2024
Model description paper
 | 
25 Sep 2024
Model description paper |  | 25 Sep 2024

Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0

Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne

Related authors

The distribution and abundance of planktonic foraminifera under summer sea ice in the Arctic Ocean
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
Biogeosciences, 22, 2261–2286, https://doi.org/10.5194/bg-22-2261-2025,https://doi.org/10.5194/bg-22-2261-2025, 2025
Short summary
A niche for diverse cable bacteria in continental margin sediments overlain by oxygen-deficient waters
Caroline P. Slomp, Martijn Hermans, Niels A. G. M. van Helmond, Silke Severmann, James McManus, Marit R. van Erk, and Sairah Malkin
EGUsphere, https://doi.org/10.5194/egusphere-2025-817,https://doi.org/10.5194/egusphere-2025-817, 2025
Short summary
The Hydrological Archetypes of Wetlands
Abigail E. Robinson, Anna Scaini, Francisco J. Peña, Peter A. Hambäck, Christoph Humborg, and Fernando Jaramillo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3248,https://doi.org/10.5194/egusphere-2024-3248, 2024
Short summary
Observations of strong turbulence and mixing impacting water exchange between two basins in the Baltic Sea
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023,https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Revisiting the applicability and constraints of molybdenum- and uranium-based paleo redox proxies: comparing two contrasting sill fjords
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences, 20, 5003–5028, https://doi.org/10.5194/bg-20-5003-2023,https://doi.org/10.5194/bg-20-5003-2023, 2023
Short summary

Cited articles

Asplund, M. E., Bonaglia, S., Boström, C., Dahl, M., Deyanova, D., Gagnon, K., Gullström, M., Holmer, M., and Björk, M.: Methane Emissions From Nordic Seagrass Meadow Sediments, Front. Mar. Sci., 8, 811533, https://doi.org/10.3389/fmars.2021.811533, 2022. 
Atkins, M. L., Santos, I. R., and Maher, D. T.: Seasonal exports and drivers of dissolved inorganic and organic carbon, carbon dioxide, methane and δ13C signatures in a subtropical river network, Sci. Total Environ., 575, 545–563, https://doi.org/10.1016/j.scitotenv.2016.09.020, 2017. 
Axell, L. B.: On the variability of Baltic Sea deepwater mixing, J. Geophys. Res.-Oceans, 103, 21667–21682, https://doi.org/10.1029/98JC01714, 1998. 
Bange, H. W., Bartell, U. H., Rapsomanikis, S., and Andreae, M. O.: Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane, Global Biogeochem. Cycles, 8, 465–480, https://doi.org/10.1029/94GB02181, 1994. 
Bayer, T. K., Gustafsson, E., Brakebusch, M., and Beer, C.: Future Carbon Emission From Boreal and Permafrost Lakes Are Sensitive to Catchment Organic Carbon Loads, J. Geophys. Res.-Biogeo., 124, 1827–1848, https://doi.org/10.1029/2018JG004978, 2019. 
Download
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Share