Articles | Volume 17, issue 18
https://doi.org/10.5194/gmd-17-7029-2024
https://doi.org/10.5194/gmd-17-7029-2024
Model evaluation paper
 | 
19 Sep 2024
Model evaluation paper |  | 19 Sep 2024

Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0

Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith

Related authors

Zooming In: SCREAM at 100 m Using Regional Refinement over the San Francisco Bay Area
Jishi Zhang, Peter Bogenschutz, Mark Taylor, and Philip Cameron-Smith
EGUsphere, https://doi.org/10.5194/egusphere-2025-2223,https://doi.org/10.5194/egusphere-2025-2223, 2025
Short summary
Prescribing the aerosol effective radiative forcing in the Simple Cloud-Resolving E3SM Atmosphere Model v1
Naser Mahfouz, Hassan Beydoun, Johannes Mülmenstädt, Noel Keen, Adam C. Varble, Luca Bertagna, Peter Bogenschutz, Andrew Bradley, Matthew W. Christensen, T. Conrad Clevenger, Aaron Donahue, Jerome Fast, James Foucar, Jean-Christophe Golaz, Oksana Guba, Walter Hannah, Benjamin Hillman, Robert Jacob, Wuyin Lin, Po-Lun Ma, Yun Qian, Balwinder Singh, Christopher Terai, Hailong Wang, Mingxuan Wu, Kai Zhang, Andrew Gettelman, Mark Taylor, L. Ruby Leung, Peter Caldwell, and Susannah Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2025-1868,https://doi.org/10.5194/egusphere-2025-1868, 2025
Short summary
Leveraging regional mesh refinement to simulate future climate projections for California using the Simplified Convection-Permitting E3SM Atmosphere Model Version 0
Jishi Zhang, Peter Bogenschutz, Qi Tang, Philip Cameron-smith, and Chengzhu Zhang
Geosci. Model Dev., 17, 3687–3731, https://doi.org/10.5194/gmd-17-3687-2024,https://doi.org/10.5194/gmd-17-3687-2024, 2024
Short summary
Improving the representation of shallow cumulus convection with the simplified-higher-order-closure–mass-flux (SHOC+MF v1.0) approach
Maria J. Chinita, Mikael Witte, Marcin J. Kurowski, Joao Teixeira, Kay Suselj, Georgios Matheou, and Peter Bogenschutz
Geosci. Model Dev., 16, 1909–1924, https://doi.org/10.5194/gmd-16-1909-2023,https://doi.org/10.5194/gmd-16-1909-2023, 2023
Short summary
Combining regional mesh refinement with vertically enhanced physics to target marine stratocumulus biases as demonstrated in the Energy Exascale Earth System Model version 1
Peter A. Bogenschutz, Hsiang-He Lee, Qi Tang, and Takanobu Yamaguchi
Geosci. Model Dev., 16, 335–352, https://doi.org/10.5194/gmd-16-335-2023,https://doi.org/10.5194/gmd-16-335-2023, 2023
Short summary

Related subject area

Atmospheric sciences
Optimized dynamic mode decomposition for reconstruction and forecasting of atmospheric chemistry data
Meghana Velagar, Christoph Keller, and J. Nathan Kutz
Geosci. Model Dev., 18, 4667–4684, https://doi.org/10.5194/gmd-18-4667-2025,https://doi.org/10.5194/gmd-18-4667-2025, 2025
Short summary
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025,https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
SynRad v1.0: a radar forward operator to simulate synthetic weather radar observations from volcanic ash clouds
Vishnu Nair, Anujah Mohanathan, Michael Herzog, David G. Macfarlane, and Duncan A. Robertson
Geosci. Model Dev., 18, 4417–4432, https://doi.org/10.5194/gmd-18-4417-2025,https://doi.org/10.5194/gmd-18-4417-2025, 2025
Short summary

Cited articles

Bales, R. C., Battles, J. J., Chen, Y., Conklin, M. H., Holst, E., O’Hara, K. L., Saksa, P., and Stewart, W.: Forests and water in the Sierra Nevada: Sierra Nevada watershed ecosystem enhancement project, Sierra Nevada Research Institute report, Vol. 11, https://forests.berkeley.edu/sites/forests.berkeley.edu/files/146199.pdf (last access: 13 September 2024), 2011. 
Benedict, J. J., Clement, A. C., and Medeiros, B.: Atmospheric blocking and other large-scale precursor patterns of landfalling atmospheric rivers in the North Pacific: A CESM2 study, J. Geophys. Res.-Atmos., 124, 11330–11353, https://doi.org/10.1029/2019JD030790, 2019. 
Bogenschutz, P.: Code and Data for Atmospheric River Induced Precipitation in California as Simulated by the Regionally Refined Simple Convective Resolving E3SM Atmosphere Model Version 0, Zenodo [data set], https://doi.org/10.5281/zenodo.10836035, 2024. 
Bogenschutz, P. and Krueger, S. K.: A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models, J. Adv. Model. Earth Sy., 5, 195–211, https://doi.org/10.1002/jame.20018, 2013. 
Bogenschutz, P. A., Yamaguchi, T., and Lee, H.-H.: The Energy Exascale Earth System Model simulations With high vertical resolution in the lower troposphere, J. Adv. Model. Earth Sy., 13, e2020MS002239, https://doi.org/10.1029/2020MS002239, 2021. 
Download
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Share