Articles | Volume 17, issue 18
https://doi.org/10.5194/gmd-17-7001-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-7001-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Christos I. Efstathiou
Institute for the Environment, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
currently at: Physicians, Scientist, and Engineers for Healthy Energy, Oakland, CA 94612, USA
Elizabeth Adams
Institute for the Environment, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Carlie J. Coats
Institute for the Environment, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Robert Zelt
Research Computing, Information Technology Services, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Mark Reed
Research Computing, Information Technology Services, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
John McGee
Research Computing, Information Technology Services, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Kristen M. Foley
Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
Fahim I. Sidi
Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
David C. Wong
Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
Steven Fine
formerly at: Office of Air and Radiation, U.S. Environmental Protection Agency, Washington, DC 20460, USA
retired
Saravanan Arunachalam
CORRESPONDING AUTHOR
Institute for the Environment, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Related authors
No articles found.
Yuzhi Jin, Jiandong Wang, Chao Liu, David C. Wong, Golam Sarwar, Kathleen M. Fahey, Shang Wu, Jiaping Wang, Jing Cai, Zeyuan Tian, Zhouyang Zhang, Jia Xing, Aijun Ding, and Shuxiao Wang
Atmos. Chem. Phys., 25, 2613–2630, https://doi.org/10.5194/acp-25-2613-2025, https://doi.org/10.5194/acp-25-2613-2025, 2025
Short summary
Short summary
Black carbon (BC) affects climate and the environment, and its aging process alters its properties. Current models, like WRF-CMAQ, lack full accounting for it. We developed the WRF-CMAQ-BCG model to better represent BC aging by introducing bare and coated BC species and their conversion. The WRF-CMAQ-BCG model introduces the capability to simulate BC mixing states and bare and coated BC wet deposition, and it improves the accuracy of BC mass concentration and aerosol optics.
Diego Guizzardi, Monica Crippa, Tim Butler, Terry Keating, Rosa Wu, Jacek W. Kamiński, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Rachel Hoesly, Marilena Muntean, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Annie Duhamel, Tabish Ansari, Kristen Foley, Guannan Geng, Yifei Chen, and Qiang Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-601, https://doi.org/10.5194/essd-2024-601, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
The global air pollution emission mosaic HTAP_v3.1 is the state-of-the-art database for addressing the evolution of a set of policy-relevant air pollutants over the past 2 decades. The inventory is made by the harmonization and blending of seven regional inventories, gapfilled using the most recent release of EDGAR (EDGARv8). By incorporating the best available local information, the HTAP_v3.1 mosaic inventory can be used for policy-relevant studies at both regional and global levels.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Heather Simon, Christian Hogrefe, Andrew Whitehill, Kristen M. Foley, Jennifer Liljegren, Norm Possiel, Benjamin Wells, Barron H. Henderson, Lukas C. Valin, Gail Tonnesen, K. Wyat Appel, and Shannon Koplitz
Atmos. Chem. Phys., 24, 1855–1871, https://doi.org/10.5194/acp-24-1855-2024, https://doi.org/10.5194/acp-24-1855-2024, 2024
Short summary
Short summary
We assess observed and modeled ozone weekend–weekday differences in the USA from 2002–2019. A subset of urban areas that were NOx-saturated at the beginning of the period transitioned to NOx-limited conditions. Multiple rural areas of California were NOx-limited for the entire period but become less influenced by local day-of-week emission patterns in more recent years. The model produces more NOx-saturated conditions than the observations but captures trends in weekend–weekday ozone patterns.
Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Yunyao Li, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo
Geosci. Model Dev., 16, 4659–4676, https://doi.org/10.5194/gmd-16-4659-2023, https://doi.org/10.5194/gmd-16-4659-2023, 2023
Short summary
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
Christian Hogrefe, Jesse O. Bash, Jonathan E. Pleim, Donna B. Schwede, Robert C. Gilliam, Kristen M. Foley, K. Wyat Appel, and Rohit Mathur
Atmos. Chem. Phys., 23, 8119–8147, https://doi.org/10.5194/acp-23-8119-2023, https://doi.org/10.5194/acp-23-8119-2023, 2023
Short summary
Short summary
Under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in the widely used CMAQ model. The results illustrate how these tools can provide insights into similarities and differences between the two CMAQ dry deposition options that affect simulated pollutant budgets and ecosystem impacts from atmospheric pollution.
Monica Crippa, Diego Guizzardi, Tim Butler, Terry Keating, Rosa Wu, Jacek Kaminski, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Harrison Suchyta, Marilena Muntean, Efisio Solazzo, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Fabio Monforti-Ferrario, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Tabish Ansari, and Kristen Foley
Earth Syst. Sci. Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023, https://doi.org/10.5194/essd-15-2667-2023, 2023
Short summary
Short summary
This study responds to the global and regional atmospheric modelling community's need for a mosaic of air pollutant emissions with global coverage, long time series, spatially distributed data at a high time resolution, and a high sectoral resolution in order to enhance the understanding of transboundary air pollution. The mosaic approach to integrating official regional emission inventories with a global inventory based on a consistent methodology ensures policy-relevant results.
Havala O. T. Pye, Bryan K. Place, Benjamin N. Murphy, Karl M. Seltzer, Emma L. D'Ambro, Christine Allen, Ivan R. Piletic, Sara Farrell, Rebecca H. Schwantes, Matthew M. Coggon, Emily Saunders, Lu Xu, Golam Sarwar, William T. Hutzell, Kristen M. Foley, George Pouliot, Jesse Bash, and William R. Stockwell
Atmos. Chem. Phys., 23, 5043–5099, https://doi.org/10.5194/acp-23-5043-2023, https://doi.org/10.5194/acp-23-5043-2023, 2023
Short summary
Short summary
Chemical mechanisms describe how emissions from vehicles, vegetation, and other sources are chemically transformed in the atmosphere to secondary products including criteria and hazardous air pollutants. The Community Regional Atmospheric Chemistry Multiphase Mechanism integrates gas-phase radical chemistry with pathways to fine-particle mass. New species were implemented, resulting in a bottom-up representation of organic aerosol, which is required for accurate source attribution of pollutants.
Michael S. Walters and David C. Wong
Geosci. Model Dev., 16, 1179–1190, https://doi.org/10.5194/gmd-16-1179-2023, https://doi.org/10.5194/gmd-16-1179-2023, 2023
Short summary
Short summary
A typical numerical simulation that associates with a large amount of input and output data, applying popular compression software, gzip or bzip2, on data is one good way to mitigate data storage burden. This article proposes a simple technique to alter input, output, or input and output by keeping a specific number of significant digits in data and demonstrates an enhancement in compression efficiency on the altered data but maintains similar statistical performance of the numerical simulation.
Sarah E. Benish, Jesse O. Bash, Kristen M. Foley, K. Wyat Appel, Christian Hogrefe, Robert Gilliam, and George Pouliot
Atmos. Chem. Phys., 22, 12749–12767, https://doi.org/10.5194/acp-22-12749-2022, https://doi.org/10.5194/acp-22-12749-2022, 2022
Short summary
Short summary
We assess Community Multiscale Air Quality (CMAQ) model simulations of nitrogen and sulfur deposition over US climate regions to evaluate the model ability to reproduce long-term deposition trends and total deposition budgets. A measurement–model fusion technique is found to improve estimates of wet deposition. Emission controls set by the Clean Air Act successfully decreased oxidized nitrogen deposition across the US; we find increasing amounts of reduced nitrogen to the total nitrogen budget.
Jiandong Wang, Jia Xing, Shuxiao Wang, Rohit Mathur, Jiaping Wang, Yuqiang Zhang, Chao Liu, Jonathan Pleim, Dian Ding, Xing Chang, Jingkun Jiang, Peng Zhao, Shovan Kumar Sahu, Yuzhi Jin, David C. Wong, and Jiming Hao
Atmos. Chem. Phys., 22, 5147–5156, https://doi.org/10.5194/acp-22-5147-2022, https://doi.org/10.5194/acp-22-5147-2022, 2022
Short summary
Short summary
Aerosols reduce surface solar radiation and change the photolysis rate and planetary boundary layer stability. In this study, the online coupled meteorological and chemistry model was used to explore the detailed pathway of how aerosol direct effects affect secondary inorganic aerosol. The effects through the dynamics pathway act as an equally or even more important route compared with the photolysis pathway in affecting secondary aerosol concentration in both summer and winter.
Amir H. Souri, Kelly Chance, Juseon Bak, Caroline R. Nowlan, Gonzalo González Abad, Yeonjin Jung, David C. Wong, Jingqiu Mao, and Xiong Liu
Atmos. Chem. Phys., 21, 18227–18245, https://doi.org/10.5194/acp-21-18227-2021, https://doi.org/10.5194/acp-21-18227-2021, 2021
Short summary
Short summary
The global pandemic is believed to have an impact on emissions of air pollutants such as nitrogen dioxide (NO2) and formaldehyde (HCHO). This study quantifies the changes in the amount of NOx and VOC emissions via state-of-the-art inverse modeling technique using satellite observations during the lockdown 2020 with respect to a baseline over Europe, which in turn, it permits unraveling atmospheric processes being responsible for ozone formation in a less cloudy month.
Kai Wang, Yang Zhang, Shaocai Yu, David C. Wong, Jonathan Pleim, Rohit Mathur, James T. Kelly, and Michelle Bell
Geosci. Model Dev., 14, 7189–7221, https://doi.org/10.5194/gmd-14-7189-2021, https://doi.org/10.5194/gmd-14-7189-2021, 2021
Short summary
Short summary
The two-way coupled WRF-CMAQ model accounting for complex chemistry–meteorology feedbacks has been applied to the long-term predictions of regional meteorology and air quality over the US. The model results show superior performance and importance of chemistry–meteorology feedbacks when compared to the offline coupled WRF and CMAQ simulations, which suggests that feedbacks should be considered along with other factors in developing future model applications to inform policy making.
Shuping Zhang, Golam Sarwar, Jia Xing, Biwu Chu, Chaoyang Xue, Arunachalam Sarav, Dian Ding, Haotian Zheng, Yujing Mu, Fengkui Duan, Tao Ma, and Hong He
Atmos. Chem. Phys., 21, 15809–15826, https://doi.org/10.5194/acp-21-15809-2021, https://doi.org/10.5194/acp-21-15809-2021, 2021
Short summary
Short summary
Six heterogeneous HONO chemistry updates in CMAQ significantly improve HONO concentration. HONO production is primarily controlled by the heterogeneous reactions on ground and aerosol surfaces during haze. Additional HONO chemistry updates increase OH and production of secondary aerosols: sulfate, nitrate, and SOA.
Benjamin N. Murphy, Christopher G. Nolte, Fahim Sidi, Jesse O. Bash, K. Wyat Appel, Carey Jang, Daiwen Kang, James Kelly, Rohit Mathur, Sergey Napelenok, George Pouliot, and Havala O. T. Pye
Geosci. Model Dev., 14, 3407–3420, https://doi.org/10.5194/gmd-14-3407-2021, https://doi.org/10.5194/gmd-14-3407-2021, 2021
Short summary
Short summary
The algorithms for applying air pollution emission rates in the Community Multiscale Air Quality (CMAQ) model have been improved to better support users and developers. The new features accommodate emissions perturbation studies that are typical in atmospheric research and output a wealth of metadata for each model run so assumptions can be verified and documented. The new approach dramatically enhances the transparency and functionality of this critical aspect of atmospheric modeling.
K. Wyat Appel, Jesse O. Bash, Kathleen M. Fahey, Kristen M. Foley, Robert C. Gilliam, Christian Hogrefe, William T. Hutzell, Daiwen Kang, Rohit Mathur, Benjamin N. Murphy, Sergey L. Napelenok, Christopher G. Nolte, Jonathan E. Pleim, George A. Pouliot, Havala O. T. Pye, Limei Ran, Shawn J. Roselle, Golam Sarwar, Donna B. Schwede, Fahim I. Sidi, Tanya L. Spero, and David C. Wong
Geosci. Model Dev., 14, 2867–2897, https://doi.org/10.5194/gmd-14-2867-2021, https://doi.org/10.5194/gmd-14-2867-2021, 2021
Short summary
Short summary
This paper details the scientific updates in the recently released CMAQ version 5.3 (and v5.3.1) and also includes operational and diagnostic evaluations of CMAQv5.3.1 against observations and the previous version of the CMAQ (v5.2.1). This work was done to improve the underlying science in CMAQ. This article is used to inform the CMAQ modeling community of the updates to the modeling system and the expected change in model performance from these updates (versus the previous model version).
Cited articles
Adams, E.: CMAQ Model Version 5.3.3 Input Data – 12/22/2015 – 01/31/2016 12km CONUS2 (12US2), UNC Dataverse, V1 [data set], https://doi.org/10.15139/S3/CFU9UL, 2024.
Adams, L. and Efstathiou, C.: CMASCenter/cyclecloud-cmaq: CMAQ on Azure Tutorial Version 5.3.3 (v5.33), Zenodo [code], https://doi.org/10.5281/zenodo.10696804, 2024a.
Adams, E. and Efstathiou, C.: CMAQv5.3.3 on Azure Tutorial, https://cyclecloud-cmaq.readthedocs.io/en/cmaqv5.3.3/, last access: 20 June 2024b.
Adams, L., Foley, K., and Efstathiou, C.: CMASCenter/pcluster-cmaq: CMAQ on AWS Tutorial Version 5.3.3 (v5.33), Zenodo [code], https://doi.org/10.5281/zenodo.10696908, 2024b.
Adams, E., Foley, K., and Efstathiou, C.: CMAQv5.3.3 on AWS Tutorial, https://pcluster-cmaq.readthedocs.io/en/cmaqv5.3.3/, last access: 20 June 2024b.
Amazon® CloudWatch: https://aws.amazon.com/cloudwatch/, last access: 22 March 2024.
Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., Bash, J. O., Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell, W. T., Pouliot, G. A., Sarwar, G., Fahey, K. M., Gantt, B., Gilliam, R. C., Heath, N. K., Kang, D., Mathur, R., Schwede, D. B., Spero, T. L., Wong, D. C., and Young, J. O.: Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1, Geosci. Model Dev., 10, 1703–1732, https://doi.org/10.5194/gmd-10-1703-2017, 2017.
Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy, B. N., Napelenok, S. L., Nolte, C. G., Pleim, J. E., Pouliot, G. A., Pye, H. O. T., Ran, L., Roselle, S. J., Sarwar, G., Schwede, D. B., Sidi, F. I., Spero, T. L., and Wong, D. C.: The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation, Geosci. Model Dev., 14, 2867–2897, https://doi.org/10.5194/gmd-14-2867-2021, 2021.
ArcGIS Pro: ArcGIS Online, http://www.arcgis.com, last access: 20 June 2024.
Arm® Ltd.: Arm® MAP, https://www.linaroforge.com/ (last access: 22 March 2024), 2022.
AWS: The security design of AWS Nitro system, https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf, last access: 21 February 2023.
Azure Monitor™: https://learn.microsoft.com/en-us/azure/azure-monitor/overview, last access: 22 March 2024.
Bash, J.: EPA, Parse timing Rscripts, GitHub [code], https://github.com/CMASCenter/cyclecloud-cmaq/tree/main/qa_scripts, last access: 27 August 2024.
Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59, 51–77, https://doi.org/10.1115/1.2128636, 2006.
Campbell, P. C., Jiang, W., Moon, Z., Zinn, S., and Tang, Y.: NOAA's Global Forecast System Data in the Cloud for Community Air Quality Modeling, Atmosphere, 14, 1110, https://doi.org/10.3390/atmos14071110, 2023.
Chang, W. Y., Abu-Amara, H., and Sanford, J. F.: Transforming Enterprise Cloud Services, Springer, Dordrecht, 133–187, https://doi.org/10.1007/978-90-481-9846-7_4, 2010.
Chen, X., Huang, X., Jiao, C., Flanner, M. G., Raeker, T., and Palen, B.: Running climate model on a commercial cloud computing environment: A case study using Community Earth System Model (CESM) on Amazon® AWS, Comput. Geosci., 98, 21–25, https://doi.org/10.1016/j.cageo.2016.09.014, 2017.
Chui, T. C. Y., Siuta, D., West, G., Modzelewski, H., Schigas, R., and Stull, R.: On producing reliable and affordable numerical weather forecasts on public cloud-computing infrastructure, J. Atmos. Ocean. Tech., 36, 491–509, https://doi.org/10.1175/jtech-d-18-0142.1, 2019.
CMAS Center Forum: https://forum.cmascenter.org/, last access: 30 August 2024.
CMAS's Data Warehouse on AWS: https://registry.opendata.aws/cmas-data-warehouse/, last access: 21 February 2023.
Cohan, D. and Napelenok, S.: Air Quality Response Modeling for Decision Support, Atmosphere,, 2, 2030407, https://doi.org/10.3390/atmos2030407, 2011.
Eastham, S. D., Long, M. S., Keller, C. A., Lundgren, E., Yantosca, R. M., Zhuang, J., Li, C., Lee, C. J., Yannetti, M., Auer, B. M., Clune, T. L., Kouatchou, J., Putman, W. M., Thompson, M. A., Trayanov, A. L., Molod, A. M., Martin, R. V., and Jacob, D. J.: GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications, Geosci. Model Dev., 11, 2941–2953, https://doi.org/10.5194/gmd-11-2941-2018, 2018.
Foley, K.: EPA, Model-to-Model Comparison Rscript, https://github.com/CMASCenter/pcluster-cmaq/tree/main/qa_scripts/rscripts, last access: 27 August 2024.
Foley, K. M., Roselle, S. J., Appel, K. W., Bhave, P. V., Pleim, J. E., Otte, T. L., Mathur, R., Sarwar, G., Young, J. O., Gilliam, R. C., Nolte, C. G., Kelly, J. T., Gilliland, A. B., and Bash, J. O.: Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7, Geosci. Model Dev., 3, 205–226, https://doi.org/10.5194/gmd-3-205-2010, 2010.
Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H., Daniel, D. J., Graham, R. L., and Woodall, T. S.: Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation, in: Proceedings, 11th European PVM/MPI Users' Group Meeting, 19–22 September 2004, Budapest, Hungary, 97–104, 2004.
GEOS-Chem registry of open data: https://registry.opendata.aws/geoschem-input-data/, last access: 21 February 2023.
Ghatrehsamani, D., Denninnart, C., Bacik, J., and Salehi, M. A.: The Art of CPU-Pinning: Evaluating and Improving the Performance of Virtualization and Containerization Platforms, 49th Int Conf Parallel Process – Icpp, 1–11, https://doi.org/10.1145/3404397.3404442, 2020.
Gilliam, R. C., Herwehe, J. A., Bullock Jr., O. R., Pleim, J. E., Ran, L., Campbell, P. C., and Foroutan, H.: Establishing the suitability of the Model for Prediction Across Scales for global retrospective air quality modeling, J. Geophys. Res.-Atmos., 126, e2020JD033588, https://doi.org/10.1029/2020JD033588, 2021.
Houyoux, M. R., Vukovich, J. M., Coats, C. J., Wheeler, N. J. M., and Kasibhatla, P. S.: Emission inventory development and processing for the Seasonal Model for Regional Air Quality (SMRAQ) project, J. Geophys. Res.-Atmos., 105, 9079–9090, https://doi.org/10.1029/1999JD900975, 2000.
Kwon, M.: Open Source Diagrams Library, https://diagrams.mingrammer.com/, last access: 20 June 2024.
Lucidchart: Publishing Lucidchart diagrams in academic journals and citation, https://community.lucid.co/product-questions-3/publishing-lucidchart-diagrams-in-academic-journals-and-citation-5969, last access: 27 August 2024.
Mell, P. and Grance, T.: The NIST Definition of Cloud Computing, Special Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD, 2011.
Murphy, B. N., Nolte, C. G., Sidi, F., Bash, J. O., Appel, K. W., Jang, C., Kang, D., Kelly, J., Mathur, R., Napelenok, S., Pouliot, G., and Pye, H. O. T.: The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module in the Community Multiscale Air Quality (CMAQ) modeling system version 5.3.2, Geosci. Model Dev., 14, 3407–3420, https://doi.org/10.5194/gmd-14-3407-2021, 2021.
NOAA's Big Data Program: https://ncics.org/data/noaa-big-data-project/, last access: 21 February 2023.
Otte, T. L. and Pleim, J. E.: The Meteorology-Chemistry Interface Processor (MCIP) for the CMAQ modeling system: updates through MCIPv3.4.1, Geosci. Model Dev., 3, 243–256, https://doi.org/10.5194/gmd-3-243-2010, 2010.
Podzimek, A., Bulej, L., Chen, L. Y., Binder, W., and Tuma, P.: Analyzing the Impact of CPU Pinning and Partial CPU Loads on Performance and Energy Efficiency, Ieee Acm Int Symp, 1–10, https://doi.org/10.1109/ccgrid.2015.164, 2015.
Powers, J. G., Werner, K. K., Gill, D. O., Lin, Y.-L., and Schumacher, R. S.: Cloud Computing Efforts for the Weather Research and Forecasting Model, B. Am. Meteorol. Soc., 102, E1261–E1274, https://doi.org/10.1175/bams-d-20-0219.1, 2021.
Simonson, A., Brown, O., Dissen, J., Kearns, E. J., Szura, K., and Brannock, J.: Big Data Analytics in Earth, Atmospheric, and Ocean Sciences, Special Publ, 65–94, https://doi.org/10.1002/9781119467557.ch4, 2022.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D., and Huang, X.: A Description of the Advanced Research WRF Model Version 4.3, No. NCAR/TN-556+STR, https://doi.org/10.5065/1dfh-6p97, 2021.
Skipper, T. N., D'Ambro, E. L., Wiser, F. C., McNeill, V. F., Schwantes, R. H., Henderson, B. H., Piletic, I. R., Baublitz, C. B., Bash, J. O., Whitehill, A. R., Valin, L. C., Mouat, A. P., Kaiser, J., Wolfe, G. M., St. Clair, J. M., Hanisco, T. F., Fried, A., Place, B. K., and Pye, H. O. T.: Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM), EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-1680, 2024.
The BAMS/EDSS/Models-3 I/O API: User Manual, Related Programs, and Examples: https://www.cmascenter.org/ioapi/documentation/all_versions/html/, last access: 21 February 2023.
Unidata: Network Common Data Form (NetCDF). https://doi.org/10.5065/D6H70CW6, last access: 14 October 2023.
US EPA Office of Research and Development: CMAQ (5.3.3), Zenodo [code], https://doi.org/10.5281/zenodo.5213949, 2021.
Visualization Environment for Rich Data Interpretation (VERDI): https://www.cmascenter.org/verdi/, last access: 30 August 2024.
Wong, D.: EPA, CMAQ User's Guide Appendix D, https://github.com/USEPA/CMAQ/blob/main/DOCS/Users_Guide/Appendix/CMAQ_UG_appendixD_parallel_implementation.md, last access: 20 June 2024.
Wong, D. C., Pleim, J., Mathur, R., Binkowski, F., Otte, T., Gilliam, R., Pouliot, G., Xiu, A., Young, J. O., and Kang, D.: WRF-CMAQ two-way coupled system with aerosol feedback: software development and preliminary results, Geosci. Model Dev., 5, 299–312, https://doi.org/10.5194/gmd-5-299-2012, 2012.
Wong, D. C., Yang, C. E., Fu, J. S., Wong, K., and Gao, Y.: An approach to enhance pnetCDF performance in environmental modeling applications, Geosci. Model Dev., 8, 1033–1046, https://doi.org/10.5194/gmd-8-1033-2015, 2015.
Yoo, A. B., Jette, M. A., and Grondona, M.: SLURM: Simple Linux Utility for Resource Management, in: Job Scheduling Strategies for Parallel Processing, edited by: Feitelson, D., Rudolph, L., and Schwiegelshohn, U., JSSPP 2003, Lecture Notes in Computer Science, vol. 2862, Springer, Berlin, Heidelberg, https://doi.org/10.1007/10968987_3, 2003.
Yuan, M.: Cloud Computing in Ocean and Atmospheric Sciences, Academic Press, 385–391, https://doi.org/10.1016/b978-0-12-803192-6.00020-7, 2016.
Zhang, C., Di, L., Sun, Z., Lin, L., Yu, E. G., and Gaigalas, J.: Exploring cloud-based Web Processing Service: A case study on the implementation of CMAQ as a Service, Environ. Model. Softw., 113, 29–41, https://doi.org/10.1016/j.envsoft.2018.11.019, 2019.
Zhuang, J., Jacob, D. J., Lin, H., Lundgren, E. W., Yantosca, R. M., Gaya, J. F., Sulprizio, M. P., and Eastham, S. D.: Enabling High-Performance Cloud Computing for Earth Science Modeling on Over a Thousand Cores: Application to the GEOS-Chem Atmospheric Chemistry Model, J. Adv. Model. Earth Sy., 12, e2020MS002064, https://doi.org/10.1029/2020ms002064, 2020.
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
We present a summary of enabling high-performance computing of the Community Multiscale Air...