Articles | Volume 17, issue 18
https://doi.org/10.5194/gmd-17-7001-2024
https://doi.org/10.5194/gmd-17-7001-2024
Development and technical paper
 | 
19 Sep 2024
Development and technical paper |  | 19 Sep 2024

Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community

Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam

Related authors

Evaluation of gas-particle partitioning in a regional air quality model for organic pollutants
Christos I. Efstathiou, Jana Matejovičová, Johannes Bieser, and Gerhard Lammel
Atmos. Chem. Phys., 16, 15327–15345, https://doi.org/10.5194/acp-16-15327-2016,https://doi.org/10.5194/acp-16-15327-2016, 2016
Short summary
Bidirectional air–sea exchange and accumulation of POPs (PAHs, PCBs, OCPs and PBDEs) in the nocturnal marine boundary layer
Gerhard Lammel, Franz X. Meixner, Branislav Vrana, Christos I. Efstathiou, Jiři Kohoutek, Petr Kukučka, Marie D. Mulder, Petra Přibylová, Roman Prokeš, Tatsiana P. Rusina, Guo-Zheng Song, and Manolis Tsapakis
Atmos. Chem. Phys., 16, 6381–6393, https://doi.org/10.5194/acp-16-6381-2016,https://doi.org/10.5194/acp-16-6381-2016, 2016
Short summary

Related subject area

Atmospheric sciences
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024,https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024,https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024,https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024,https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024,https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary

Cited articles

Adams, E.: CMAQ Model Version 5.3.3 Input Data – 12/22/2015 – 01/31/2016 12km CONUS2 (12US2), UNC Dataverse, V1 [data set], https://doi.org/10.15139/S3/CFU9UL, 2024. 
Adams, L. and Efstathiou, C.: CMASCenter/cyclecloud-cmaq: CMAQ on Azure Tutorial Version 5.3.3 (v5.33), Zenodo [code], https://doi.org/10.5281/zenodo.10696804, 2024a. 
Adams, E. and Efstathiou, C.: CMAQv5.3.3 on Azure Tutorial, https://cyclecloud-cmaq.readthedocs.io/en/cmaqv5.3.3/, last access: 20 June 2024b. 
Adams, L., Foley, K., and Efstathiou, C.: CMASCenter/pcluster-cmaq: CMAQ on AWS Tutorial Version 5.3.3 (v5.33), Zenodo [code], https://doi.org/10.5281/zenodo.10696908, 2024b. 
Adams, E., Foley, K., and Efstathiou, C.: CMAQv5.3.3 on AWS Tutorial, https://pcluster-cmaq.readthedocs.io/en/cmaqv5.3.3/, last access: 20 June 2024b. 
Download
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.