Articles | Volume 17, issue 18
https://doi.org/10.5194/gmd-17-7001-2024
https://doi.org/10.5194/gmd-17-7001-2024
Development and technical paper
 | 
19 Sep 2024
Development and technical paper |  | 19 Sep 2024

Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community

Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam

Related authors

Evaluation of gas-particle partitioning in a regional air quality model for organic pollutants
Christos I. Efstathiou, Jana Matejovičová, Johannes Bieser, and Gerhard Lammel
Atmos. Chem. Phys., 16, 15327–15345, https://doi.org/10.5194/acp-16-15327-2016,https://doi.org/10.5194/acp-16-15327-2016, 2016
Short summary
Bidirectional air–sea exchange and accumulation of POPs (PAHs, PCBs, OCPs and PBDEs) in the nocturnal marine boundary layer
Gerhard Lammel, Franz X. Meixner, Branislav Vrana, Christos I. Efstathiou, Jiři Kohoutek, Petr Kukučka, Marie D. Mulder, Petra Přibylová, Roman Prokeš, Tatsiana P. Rusina, Guo-Zheng Song, and Manolis Tsapakis
Atmos. Chem. Phys., 16, 6381–6393, https://doi.org/10.5194/acp-16-6381-2016,https://doi.org/10.5194/acp-16-6381-2016, 2016
Short summary

Related subject area

Atmospheric sciences
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025,https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Identifying lightning processes in ERA5 soundings with deep learning
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025,https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025,https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025,https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary

Cited articles

Adams, E.: CMAQ Model Version 5.3.3 Input Data – 12/22/2015 – 01/31/2016 12km CONUS2 (12US2), UNC Dataverse, V1 [data set], https://doi.org/10.15139/S3/CFU9UL, 2024. 
Adams, L. and Efstathiou, C.: CMASCenter/cyclecloud-cmaq: CMAQ on Azure Tutorial Version 5.3.3 (v5.33), Zenodo [code], https://doi.org/10.5281/zenodo.10696804, 2024a. 
Adams, E. and Efstathiou, C.: CMAQv5.3.3 on Azure Tutorial, https://cyclecloud-cmaq.readthedocs.io/en/cmaqv5.3.3/, last access: 20 June 2024b. 
Adams, L., Foley, K., and Efstathiou, C.: CMASCenter/pcluster-cmaq: CMAQ on AWS Tutorial Version 5.3.3 (v5.33), Zenodo [code], https://doi.org/10.5281/zenodo.10696908, 2024b. 
Adams, E., Foley, K., and Efstathiou, C.: CMAQv5.3.3 on AWS Tutorial, https://pcluster-cmaq.readthedocs.io/en/cmaqv5.3.3/, last access: 20 June 2024b. 
Download
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Share