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Abstract. The Community Multiscale Air Quality Model
(CMAQ) is a local- to hemispheric-scale numerical air qual-
ity modeling system developed by the U.S. Environmental
Protection Agency (USEPA) and supported by the Commu-
nity Modeling and Analysis System (CMAS) center. CMAQ
is used for regulatory purposes by the USEPA program of-
fices and state and local air agencies and is also widely
used by the broader global research community to simu-
late and understand complex air quality processes and for
computational environmental fate and transport and climate
and health impact studies. Leveraging state-of-the-science
cloud computing resources for high-performance computing
(HPC) applications, CMAQ is now available as a fully tested,
publicly available technology stack (HPC cluster and soft-
ware stack) for two major cloud service providers (CSPs).
Specifically, CMAQ configurations and supporting materials
have been developed for use on their HPC clusters, includ-
ing extensive online documentation, tutorials and guidelines
to scale and optimize air quality simulations using their ser-
vices. These resources allow modelers to rapidly bring to-
gether CMAQ, cloud-hosted datasets, and visualization and
evaluation tools on ephemeral clusters that can be deployed
quickly and reliably worldwide. Described here are consid-

erations in CMAQ version 5.3.3 cloud use and the supported
resources for each CSP, presented through a benchmark ap-
plication suite that was developed as an example of a typ-
ical simulation for testing and verifying components of the
modeling system. The outcomes of this effort are to provide
findings from performing CMAQ simulations on the cloud
using popular vendor-provided resources, to enable the user
community to adapt this for their own needs, and to identify
specific areas of potential optimization with respect to stor-
age and compute architectures.

1 Introduction

Over the past decade, cloud computing has received a
tremendous amount of attention for its potential to enable
and simplify high-performance computing (HPC) applica-
tions. Modeling user communities can greatly benefit by hav-
ing real-time access to cloud-ready reproducible workflows
that include complex models and large datasets. Benefits can
include the reduced effort required to manage computational
resources, the ability to rapidly obtain more resources when
needed, flexible approaches for managing costs and new op-
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portunities for convenient data sharing. State-of-the-science
numerical models simulating a variety of different processes
and scales ranging from global circulation models to regional
and high-resolution weather prediction workloads have been
demonstrated to perform efficiently on HPC infrastructure in
the cloud. Development groups for earth system models such
as weather, climate, ocean circulation and air quality are cur-
rently designing and deploying modeling platforms or com-
ponents that utilize different cloud environments (Campbell
et al., 2023; Powers et al., 2021; Zhuang et al., 2020; Chui et
al., 2019; Eastham et al., 2018; Chen et al., 2017).

The vast majority of such applications leverage “infras-
tructure as a code” (IaaC) or “infrastructure as a service”
(TaaS) technologies and storage options provided by different
cloud service providers, which creates the need for a flexible
approach in terms of data integration. In the context of air
quality models, cloud computing encapsulates both the data
storage and parallel computing requirements for large-scale
and high-resolution air quality simulations that frequently
rely on output generated by other models that are depen-
dent on chosen science configurations. Specifically, numeri-
cal models for simulating regional- and global-scale air qual-
ity events are developed with a core function to support a
variety of science configuration options that are enabled at
compile time in addition to a suite of run-time options. Ef-
forts needed to treat such complex system models in the soft-
ware as a service (SaaS) paradigm (Zhang et al., 2019) have
remained exploratory and not gained enough traction, as cor-
rectly applying such models to specific situations demands
a level of user control that goes beyond what is considered
“power user” and involves administrative skills and in-depth
HPC knowledge. This makes model deployment extremely
difficult to achieve through a web-based interface. While end
users have the option to use images with precompiled stan-
dardized versions of air quality models through cloud service
provider (CSP) marketplace offerings at an hourly cost, these
commercial products are designed for specific implementa-
tions and their associated base science options.

As an example, Zhuang et al. (2020) demonstrated the
scalability of GEOS-Chem to thousands of cores using the
Amazon® Web Services (AWS) ParallelCluster to achieve
similar computational and cost efficiencies of local HPC
clusters. They provided an easy-to-follow research work-
flow in an HPC cluster environment on the cloud. We ex-
tended this work by running the Community Multiscale Air
Quality Model (CMAQ) on AWS ParallelCluster and Mi-
crosoft Azure® CycleCloud and using the HPC cluster high-
level frameworks or IaaC provided by these two major cloud
providers. We provide tutorials that give end users the abil-
ity to reproducibly provision HPC clusters and software in a
way that is optimized to run CMAQ on the cloud in a turn-
key service.

Furthermore, the increase in availability of large datasets
in the cloud through vehicles such as NOAA’s Big Data Pro-
gram and NOAA Open Data Dissemination (Simonson et al.,
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2022; NOAA’s Big Data Program, 2023), Community Mod-
eling and Analysis System (CMAS)’s Data Warehouse on
AWS (CMAS’s Data Warehouse on AWS, 2023), and GEOS-
Chem registry of open data (GEOS-Chem registry of open
data, 2023) is another incentive to develop cloud solutions
for air quality models that provide more leverage to the end
user. Such initiatives are critical for the mission and growth
of cloud modeling, and CSPs have acknowledged and ad-
dressed the emerging need of data democratization by waiv-
ing fees or providing free credits to facilitate access by scien-
tists and average non-technical users of information systems.
Tools such as AWS ParallelCluster and Azure CycleCloud
are services that extend the power of IaaS by mimicking on-
site HPC setups and provide an even more dynamically scal-
able environment that enables CMAQ modelers to step be-
yond the limits of single virtual machines (VMs), using the
Simple Linux Utility Resource Management (Slurm) (Yoo et
al., 2003) batch scheduler in a way that enables auto-scaling
of the compute nodes, simplifying the cluster deployment
and management. It is important to emphasize that Paral-
lelCluster and Azure CycleCloud extend the capability from
simply being able to run on a VM hosted in the cloud to a
turn-key batch scheduling HPC tightly coupled cluster envi-
ronment that is dedicated to the end user.

The Community Multiscale Air Quality Model (CMAQ)
(Byun and Schere, 2006; Foley et al., 2010; Appel et al.,
2017, 2021) is an open-source modeling system that con-
sists of a family of programs for conducting air quality sim-
ulations and is being actively developed. The Community
Modeling and Analysis System (CMAS) center facilitates
community model development by hosting, developing and
distributing software such as CMAQ); hosting the CMAS
Center Forum (CMAS Center Forum, 2024) to facilitate the
exchange of information related to code and datasets and
troubleshooting; and providing outreach and support through
new user training, annual conferences and workshops on spe-
cific topics. In many cases, one or more factors are increas-
ing resource requirements for CMAQ simulations, including
the addition of more complex algorithms to CMAQ, simula-
tions of longer time periods or larger domains, and modeling
grids with finer resolutions. For institutions that use tradi-
tional HPC centers, despite the evolution of job managers, re-
sources frequently come with allocation time limits and long
queue times. Even if groups can afford to acquire and main-
tain appropriate computing capacity, such an approach may
not be cost-effective, especially if the capacity is not fully uti-
lized. By leveraging cloud infrastructure, CMAQ users can
pay monthly on-demand fees to perform model simulations
on clusters managed by commercial providers without hav-
ing to pay large up-front costs to purchase computer clusters
or hire staff to maintain them. This can be extremely useful in
enhancing computationally demanding research and air qual-
ity forecasting at an international scale, in many cases offer-
ing unprecedented expansion of such capabilities for devel-
oping nations. Another advantage of this approach is timely
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access to cutting-edge processors that otherwise would re-
quire disproportionate wait time, resources and effort to ob-
tain. Similarly, scalability can be expanded in real time and
with minimal effort.

The purpose of this study is to demonstrate the efforts re-
quired to bring CMAQ version 5.3.3 (US EPA Office of Re-
search and Development, 2021) to the cloud and perform air
quality simulations efficiently and affordably, leveraging ex-
isting and publicly available datasets. In the following sec-
tions, we describe several key aspects of this work:

— develop benchmark test suites that can address and
replicate the needs of a typical CMAQ user

— streamline the CMAQ installation process in Amazon’s
AWS and Microsoft Azure

— demonstrate running CMAQ on the cloud and estimate
associated costs, making suggestions on different op-
tions available to the modeling community

— perform benchmark tests with different HPC clusters
and their underlying VMs and networking and storage
options while keeping track of the performance and as-
sociated costs

— make recommendations that would help reduce CMAQ
simulation times specific to the cloud platform

— provide instructions for obtaining and using input
datasets from the CMAS Data Warehouse under the
AWS Open Data Sponsorship Program which waives
data egress costs.

The methodologies used in this study are available as hands-
on tutorials, with details for a variety of HPC systems on dif-
ferent CSPs, guides and recommendations for specific user
needs (see the links under “HPC cluster deployment op-
tions™).

2 CMAQ workflow and cloud benchmark suite

Air quality modeling systems such as CMAQ rely heavily
on the parameterization and simulation output from numeri-
cal weather prediction (NWP) systems in an offline coupling
manner facilitated by preprocessing tools. Initial and bound-
ary conditions for regional- to urban-scale simulations can be
defined by the user to be either static or the result of nested
downscaling from a coarser domain model application (i.e.,
Hemispheric CMAQ). A common CMAQ workflow involves

1. developing meteorological fields with the Weather Re-
search and Forecasting (WRF) model (Skamarock et al.,
2021)

2. processing WRF output using the Meteorology—
Chemistry Interface Processor (MCIP) (Otte and Pleim,
2010)
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3. developing emissions inputs using the Sparse Matrix
Operator KErnel (SMOKE) modeling system (Houyoux
et al., 2000)

4. developing other inputs such as initial and boundary
conditions using preprocessors

5. performing air quality simulations using the complete
set of inputs

6. assessing the successful completion of the simulation
and verifying the model output and

7. analysis of the results to address the purpose of the sim-
ulation (e.g., regulatory or research issues).

Cloud storage enables reproducible workflows by having
both model and datasets publicly available and directly ac-
cessed by the run scripts.

Traditionally, every CMAQ release is distributed with a
lightweight test case that includes all inputs necessary for
the user to confirm a successful installation and completion
of a multi-day simulation. Similarly, a newly standardized
test case, referred to as the cloud benchmark suite (CBS),
was developed to evaluate CMAQ’s performance on cloud
HPC environments. Benchmark suite simulations were de-
signed considering different user needs and data availability
to construct a well-established bundle of inputs and outputs
that can be further scaled and customized to meet specific
scalable requirements.

The hardware configuration necessary to run CMAQ de-
pends on the domain size, grid resolution, complexity of
physics and chemistry parameterization, number of variables
and layers saved to the concentration and diagnostic files, and
simulation duration. Since typical input and output datasets
for CMAQ include 3D descriptions of the dynamical and
chemical state of the simulated atmosphere, these datasets
could require several gigabytes of disk storage per simula-
tion day.

Given these considerations, a 2d CBS for the contiguous
United States (CONUS) was constructed with the aim to be
representative of a commonly used domain over a time frame
that can be used to fully test the CMAQ system. Typical re-
quirements for a CONUS 12 km x 12 km horizontal grid res-
olution are provided in Table 1 below, while Fig. 1 shows a
map created with ArcGIS with the domain’s coverage. (Ar-
cGIS Pro, 2024).

All simulations used a modified version of CMAQ ver-
sion 5.3.3 with the CB6 chemical mechanism and aerosol
module 7 (cb6r3_ae7_aq). The Detailed Emissions Scaling,
Isolation and Diagnostic (DESID) module was also used
to reduce the emissions of a specific emission stream for
a specific region within the domain to highlight this new
emission-scaling capability offered within CMAQ (Murphy
et al., 2021). Further details are provided later in this pa-
per. Datasets are typically created in the NetCDF data for-
mat (Unidata, 2023), which allows for sharing on the cloud
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following programming methods that leverage the power
of Models-3/EDSS Input/Output Applications Programming
Interface (The BAMS/EDSS/Models-3 I/O API, 2023). Fig-
ure 2 shows a subset of the CONUS domain depicting the re-
duction in concentration of NO, over the northeastern USA
due to scaling of the point-source emissions from electric
generating units (PT_EGU) in New York by 75 % (baseline
minus sensitivity case emissions), achieved directly using the
DESID module. This VERDI plot illustrates the resolution
of the grid as compared to the state boundary lines (VERDI,
2024). The storage space requirements are defined based on
the need to perform multiple sets of identical runs while
changing the number of cores used to run CMAQ for single-
node and parallel HPC clusters using OpenMPI (Gabriel et
al., 2004) to evaluate scalability and to accommodate the ad-
ditional disk space required for base and sensitivity runs.

Benchmark runs were performed with two output options:
the first using a fully enabled concentration (CONC) output
option (37 variables, 36 layers) and the second with a reduced
number of variables and layers saved to the output concentra-
tion (CONC file) (12 variables, 1 layer). The scaling bench-
marks used the reduced file option because the I/O APl in its
current version is not parallelized, and using the full-output
file may have negatively impacted the compute portion of
scaling.

Figure 3 shows the flowchart created with LucidChart
of how to run CMAQ, with the chemical transport model
(CTM) scientific processes color coded to match the bench-
mark timing equivalent found in the main log file in Figs. 8-
12 (Lucidchart, 2024).

3 CMAQ experimental design for CSPs
3.1 CMAQ software stack

Model and prerequisite libraries. Installing and setting up
CMAQ on different CSPs with comparable Linux operating
systems follow the general method depicted in the schematic
of Fig. 4. Step-by-step instructions to install the software
stack using automated C-shell scripts are provided in the on-
line tutorials. In addition, the tutorial covers the preparation
of the benchmark data and provides run scripts for launching
CMAQ through the job manager. To facilitate an even bet-
ter approach, publicly available snapshots of the “/shared”
volume that contains the software stack are provided for
each CMAQ version and hardware release. This allows new
users to build clusters and quickly run CMAQ on HPC sys-
tems on the cloud. Additionally, it allows users to directly
invoke existing precompiled libraries as modules, allowing
for multiple applications and versions to be used and speed-
ing up model workflows and modifications (https://modules.
readthedocs.io/en/latest/, last access: 20 June 2024).
Depending on networking and storage options, users may
need to add specific drivers and/or file system clients/layers
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Table 1. CMAQ configuration and storage needs for the CONUS
case benchmark suite.

CMAQ version 5.3.3 with code modifications to fix

cloud-specific bugs

(0N} Linux, processor 64-bit x86
(Ubuntu on AWS, AlmaLinux on
Azure)

Memory > 1 GB RAM per CPU core

Storage Disk space requirement for the
2d benchmark suite is 250 GB:
44 GB input data and 170 GB out-
put data (output files included con-
centrations for all species, all lay-
ers) (CBS_full) or 18 GB output
data (for CONC file limited to 12

species, 1 layer) (CBS_limited)

Domain (no. 396 x 246 x 35
columns X no.

rows X no. layers)

Horizontal domain res- 12km x 12km
olution

Temporal resolution of Hourly

output

Temporal duration 2d

Chemical mechanism cb6r3_ae7_aq

to the list of installed modules. In parallel file system cases
like Lustre, a client that is OS-specific needs to be present
and linked to a storage account associated with the cluster to
proceed for Azure CycleCloud. AWS offers a built-in Lus-
tre implementation for most of their VMs including Paral-
lelCluster. Azure VM images with embedded Lustre clients
linked to a Lustre volume, currently in a public beta testing
phase, were made available for our benchmark cases.

Data transfer options. AWS VMs have the AWS Com-
mand Line Interface (CLI) that is used to copy data from the
S3 buckets available to the public through the AWS Open
Data Sponsorship Program. For the case of Azure, users are
provided instructions to install and use the AWS CLI and
a csh script to copy the data from the CMAS Data Ware-
house on the AWS Open Data S3 bucket to the storage op-
tion being used. Data could also be copied from non-public
S3 buckets to which the user has access privileges. An alter-
native is to link the S3 bucket to Lustre on AWS or create
blob storage on Azure and connect that blob storage to Lus-
tre directly to speed up access to input data. Azure users may
want to use datasets from Microsoft’s Al for Earth Data Sets
(https://microsoft.github.io/AlforEarthDataSets/, last access:
20 June 2024).
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Figure 1. Cloud benchmark suite modeling domain (“12US2”; 396 columns by 246 rows by 35 vertical layers) for the CONUS at a

12km x 12 km horizontal grid spacing is shown as the bold rectangle.

HPC cluster deployment options. Step-by-step guidance
for each CSP and the workflow used to run the benchmark
has been documented and provided in the following tutorials
(Azure:  https://cyclecloud-cmagq.readthedocs.io/en/latest/,
last access: 20 June 2024; AWS: https://pcluster-cmagq.
readthedocs.io/en/latest/, last access: 20 June 2024). A
verbose section was included in the run script structure
to allow for recording architecture and OS-specific pa-
rameters in the log files, including higher-precision time
tracking of each model process. Recommendations for
optimal MPI process placement using the Slurm Workload
Manager with pinning on Azure HB-series VMs were estab-
lished for CycleCloud applications (https://techcommunity.
microsoft.com/t5/azure-high-performance-computing/
optimal-mpi-process-placement-for-azure-hb-series-vms/
ba-p/2450663, last access: 20 June 2024). Process place-
ment was also used for ParallelCluster applications on AWS,
optimized for the Hpc6a series. In the process outlined in
Fig. 4, we have also included code profiling tools (e.g.,
ARM® MAP — https://www.linaroforge.com/, last access:
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20 June 2024) which allow for a better understanding
of code performance and optimization opportunities for
various applications/problem sizes. In Figs. 5 and 6, we
present overview schematics of the single VM and cluster
configuration in each CSP. With respect to storage options,
we chose the naming convention /lustre to refer to running
CMAQ and saving the output on a Lustre parallel file
system on AWS and Azure, “/shared” for using Elastic
Block Store (EBS) on AWS and built-in network file system
(NFS) volume with default configuration on Azure, and
“/data” for Azure’s external NFS share option (for more
information see https://learn.microsoft.com/en-us/azure/
storage/common/nfs-comparison, last access: 20 June 2024,
and https://docs.aws.amazon.com/parallelcluster/latest/
ug/SharedStorage-v3.html, last access: 20 June 2024). In
general, storage implementations are CSP-specific and
have different performance characteristics and fine-tuning
options.

HPC cluster monitoring options. The AWS Cloud-
Watch (https://aws.amazon.com/cloudwatch, last access:
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Figure 2. Spatial plot of differences in NO; concentrations when power plant emissions in New York were reduced by 25 %. Lines represent
the 12 km x 12 km model grid, while the x and y axes represent the row and column numbers of the model grid cells for the CONUS domain
shown in Fig. 1.
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Figure 3. CMAQ flowchart (CTM science driver processes are color coded to match timings captured in Figs. 8-12).
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Post-processing tools
VERDI visualization tools
R Language and packages
QA/QC scripts

Step 3

CMAQ model

Run scripts for different systems/configuration options Step 2

csh, git, and other basic tools
gcc/hpx compilers
netcdf
1/0 API
OpenMPI
SLURM

Step 1

Figure 4. Multi-step approach in installing CMAQ prerequisites,
model code, postprocessing, and other visualization and evaluation
tools of the software stack.

20 June 2024) web page interface was used to monitor
and compare the throughput of the I/O on the EBS and
Lustre file systems using the full-output 37 variables and
all layers in the CONC file. The Azure Monitor Met-
rics (https://learn.microsoft.com/en-us/azure/azure-monitor/
essentials/data-platform-metrics, last access: 20 June 2024)
web page interface was used to compare the latency and
throughput of the I/O on the shared and Lustre file systems
using the cloud benchmark suite (CBS_full).

3.2 CSP computation options

The first step to begin using the cloud is to engage a cloud
service provider (CSP) and create an account. This is the
user’s responsibility, and CSPs have direct dedicated support
to address specific user needs. Cloud-based CMAQ setups
were developed and are currently available on two CSPs:
Amazon (AWS) and Microsoft (Azure). Typical CMAQ
modeling workflows on the cloud can be divided into two
general approaches: provisioning a single virtual machine
and provisioning a dynamic multi-node cluster system. As
multiprocessing architectures have evolved, many vendors
are offering single VMs with more than 100 CPU cores, mak-
ing them ideal for flexibly allocating and managing resources
for computational simulations while limiting the effort re-
quired to compile and maintain the code and scripts. Clusters
can be created in a multi-node framework following a similar
approach once access and the availability of the total amount
of resources are granted by the CSP.

After a thorough initial testing of the model code with a
wide spectrum of hardware options offered by cloud vendors
for HPC applications, we established the best-performing ar-
chitecture configurations described in Table 2 as the hard-
ware stack test bed for final benchmarking in this study.
Amazon’s Hpc6a instances are powered by two 48-core
third-generation AMD EPYC 7003 series processors built on
7 nm process nodes for increased efficiency, 384 GB of mem-
ory and 256 MB of L3 cache with a total of 96 cores. AWS
Nitro System offloads the hypervisor to a dedicated card that
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also provides high-speed networking and high-speed Elas-
tic Block Store (EBS) services, allowing all 96 cores of the
AMD chip to be used for simulations (AWS, 2023). Azure’s
HB120v3 server features two 64-core AMD EPYC 7V73X
processors for a total of 128 physical cores, while each sec-
tion contains 8 processor cores with uniform access to a
96 MB L3 cache/section. The Azure HB120v3 was designed
to reserve 8§ cores for the hypervisor and provides the remain-
ing 120 cores for the application. Modern processors such as
AMD’s EPYC series employ non-uniform memory access, a
multiprocessing (multi-die) architecture in which each pro-
cessor is attached to its own local memory (called a NUMA
domain) but can also access memory attached to another pro-
cessor. To maximize the performance for each AMD chip it
is important to balance the amount of L3 cache and memory
bandwidth per core at the job level. This means that the bind-
ing of a process or thread to a specific core, known as CPU
pinning or processor affinity, will now have to include addi-
tional steps for NUMA topology optimization (Podzimek et
al., 2015; Ghatrehsamani et al., 2020).

3.3 Networking options

In the tutorials and code implementations, we employed
CSP-specific advanced networking options that reflect the
available hardware options, enabling the 100 Gbs~! Elas-
tic Fabric Adapter (EFA) on AWS and the 200 Gbs~! high-
dynamic-range (HDR) InfiniBand on Azure to support the
level of high-performance computing required by CMAQ.

3.4 Storage options

For storage, the real-time allocation of bandwidth and in-
put/output operations per second (IOPS) differs between
cloud vendors and should be examined independently at the
application level by the user. In the examples investigated in
this study, the user has access to four CSP-specific types of
storage:

1. the fastest built-in local storage using nonvolatile mem-
ory express solid-state drives (NVMe SSDs) that are in-
cluded with default single-VM provisioning

2. network file systems tied to the user/enterprise account
accessible using the network file system (NFS) for
Azure and elastic file system (EFS) for AWS, attached
to the head node in a cluster environment or directly to
a VM

3. unique services such as AWS’s Elastic Block Store
(EBS) which are designed for per-instance blocks for
certain compute cloud frameworks such as single AWS
elastic cloud (EC2) and Azure’s NetApp Files (ANF)

4. fully managed high-performance file system such as
Lustre developed for HPC cluster environments (also

Geosci. Model Dev., 17, 7001-7027, 2024
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tested with single VMs) — Lustre implementations of-
fering improved performance and allowing for multiple
compute servers to connect to the Lustre host, where
several servers are responsible for handling the transfer.

Cloud HPC configuration summary. We explored all the
above options to have a complete set of solutions for differ-
ent model cases and user needs that can be formulated around
the cloud benchmark suite. In the standard CMAQ imple-
mentation, input is read by all available cores, while output
is handled by only one of them. While the model performed
as expected with single VMs, the code base had to be mod-
ified to correct issues with NFS-mounted storage in cluster
environments that utilize more than ~ 180 cores. The code
changes did not have an impact on the model results. If a par-
allel file system is present (i.e., Lustre, BeeGFS), users have
the option to configure CMAQ with the parallel I/O algo-
rithm (Wong, 2024). Such implementations for CMAQ have
been explored in previous versions of the model code base,
and performance was investigated in more I/O-demanding,
higher spatially resolved simulations (Wong et al., 2015) that
need to be thoroughly tested on the cloud with current com-
pilers and hardware and were not considered at this stage of
model benchmarking. It is, however, important to note that
CMAQ input and output file sizes are highly dependent on
the domain size and output file configuration options that can
be simulation-specific, and users are encouraged to perform
further analysis for their unique modeling application needs.
Table 3 summarizes the different storage options that were
included in the final set of benchmarks. This list does not in-
clude certain storage solutions such as Azure NetApp Files
(ANF), common internet file shares (CIFS) and the BeeGFS
parallel file system, as these options either were deemed too
expensive or created challenges when benchmarking CMAQ;
e.g., CIFS does not allow for file links, ANF was more ex-
pensive for the CMAQ paradigm compared to other offerings
from Microsoft, and BeeGFS is not available as a service and
needs additional server setup and tuning. The cluster config-
urations are described in Figs. 5 and 6 as they demonstrate
how the HPC resources on the cloud are dynamically provi-
sioned by the ParallelCluster and CycleCloud user interface.
Figure 5 shows that the user logs into a head node on AWS
and submits a CMAQ run using the SLURM scheduler. The
HPC6a compute nodes are deployed only when CMAQ is
running, with the number of nodes deployed specified by the
SLURM commands within the run script. The other details
of the configuration of the compute cluster including the type
of head node, type of compute node, and type of networking
and storage available are specified in the YAML file that was
used to create the cluster. As shown in Fig. 6, the user also
logs into a head node on Microsoft Azure, with the number
of compute nodes provisioned when the CMAQ job is run-
ning within the SLURM queue. The selection of head node,
compute node, networking and storage type is made through
a web interface to the Azure CycleCloud user interface (UI).

Geosci. Model Dev., 17, 7001-7027, 2024
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4 Results
4.1 Single-node VM timing analysis

The CMAQ simulation will write two types of log files:
a main log file and processor-specific log files for each
core/process. Model performance was evaluated using the
main log files that include timings for the major science
modules at each time step: vertical diffusion (VDIFF), COU-
PLE (converts units and couples or decouples concentration
values with the density and Jacobian for transport), hori-
zontal advection (HADYV), vertical advection (ZADV), hori-
zontal diffusion (HDIFF), DECOUPLE, photolysis (PHOT),
cloud process (CLDPROC), chemistry (CHEM) and aerosol
(AERO). Horizontal advection is the most time consuming
of the processes within CMAQ. This is most likely due to
communication between processors during advection, which
requires information from neighboring cells to calculate ad-
vective fluxes. This is domain-dependent, and there can be
domains where the computational demand is very large (e.g.,
applications like Model Prediction Across Scales (MPAS);
Gilliam et al., 2021) so that one may not see this trend till
one uses thousands of cores. In short, more cores result in
less work per core, but more time is needed for each core
to communicate with each other. At the end of each sim-
ulation hour, species concentrations are output along with
the timings printed for the output process (data output). It
should be noted that this output process timing does not fully
capture the total I/O time including initializing and shut-
ting down the model (i.e., close all files, deallocate arrays).
This unaccounted time component is derived from the differ-
ence between the total wall time (elapsed real time) and the
sum of the sub-processes and was labeled as OTHER in the
parse_timing R plots (Bash, 2024).

Model scalability is the measure of a system’s ability to
increase (or decrease) performance (and cost) in response
to changes in system processing power, in our case deter-
mined by the specific resources (cores, memory, storage, and
network protocols and bandwidth), and relies on MPI im-
plementation and integration with the job manager (Slurm).
Results from the benchmark case simulations performed in
a single-node EPYC VM of Microsoft Azure are presented
in Fig. 7. Figure 7 demonstrates good performance and ef-
ficiency scaling with both local and NFS solid-state drive
(SSD) storage options and some degree of a leveling off ob-
served above 96 cores. As expected, the fastest local NVMe
solution performs better than the same system with differ-
ent storage options. Since NVMe is included in the default
configuration, it is also the cheapest solution for a testing
phase, and despite its fixed volume it is sufficient for the
benchmark domain and simple user needs (i.e., benchmark-
ing, code development, testing). For larger domains and sim-
ulation periods, the SSD over NFS is a preferred solution
that allows for larger volumes of data to be attached. Fig-
ure 8 provides a cloud benchmark case performance com-

https://doi.org/10.5194/gmd-17-7001-2024
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Table 2. Overview of system configurations and technical capabilities for the two HPC systems that were used for benchmarking.

HPC test system description

Cloud service provider
Service name

VM name

Processor

CPU cores available
CPU speed (MHz)
Memory (GiB)

L3 cache memory (MB)

Network bandwidth (Gbs™1)

Microsoft Azure

CycleCloud
Standard_HB120rs_v3

AMD EPYC 7V73X

120

1846

461

96

200 (NVIDIA HDR InfiniBand)

Amazon Web Services
ParallelCluster

hpc6a.48xlarge

AMD EPYC 7R13

96

2650

384

192

100 (Elastic Fabric Adapter — EFA)

Table 3. Overview of storage options for the two HPC systems that were used for benchmarking.

Storage options

Cloud service provider

Microsoft Azure

Amazon Web Services

Service name

CycleCloud

ParallelCluster

Storage option 1 (/local)

Local NVMe SSDs in RAID 0 (2-
960 GB NVMe - block)

NA

Storage option 2 (/shared)

Built-in NFS: P30 tier; provisioned
IOPS: 5000; provisioned throughput:

Elastic Block Storage (EBS) — general
purpose volumes (gp3);

200MB s~ ! TiB~!

provisioned IOPS: 3000; provisioned
throughput: 1000 MiB s~

Storage option 3 (/data) NFS file share:

max IOPS 4024; NA

burst IOPS: 10000; throughput rate:

203MB s~ !

Storage option 4 (/lustre)
performance profile —
150MBs~! TiB—;

Lustre 250 — size 128 TB:

performance profile —
250 MBs~! TiB~!

Lustre 150 — size 128 TB:

Lustre SCRATCH_2 option:

size — 1 TB;

network throughput: 200 (1300 burst)
MBs~ ! TiB~!;

240MBs~1;

disk throughput: 200MB s~ ! TiB~!
(read), 100MB s~ ! TiB~! (write)

NA: not available

parison broken down by model process component for each
storage solution within Azure and AWS. A difference in the
VM core allocation for hypervisor and background system
tasks results in a different core count available for comput-
ing between the CSPs. For direct comparison with AWS, the
system in both CSPs was optimized to utilize 96 out of the
120 available cores by employing process pinning, match-
ing the region of best scalability observed in Fig. 7. From
Fig. 8, it is evident that on Azure the Lustre file system com-
petes very well with the local SSD solutions, followed by an
additional performance difference for the NFS share (/data)
and the proportionally slower but cheaper built-in NFS stor-
age. On AWS, we could not provision a local SSD for the
hpc6a.48xlarge single VM, so benchmark tests were limited
to Lustre and EBS storage options. Results depicted in Fig. 8

Geosci. Model Dev., 17, 7001-7027, 2024

indicate that Lustre on AWS performed slightly slower com-
pared to Azure, while the EBS option was a faster and more
cost-effective solution for this CSP. However, users are ad-
vised to copy the input and output data in EBS (and local
solution on Azure) as part of their workflow, and additional
time to complete the simulation should be accounted for.

4.2 Optimization and benchmarking on multi-node
clusters

4.2.1 Process pinning for L3 cache optimization in the
EPYC processor architectures

As mentioned before, in a managed job environment, AMD

EPYC processors offer an option called “process pinning”
that can improve performance through more effective use

https://doi.org/10.5194/gmd-17-7001-2024
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Figure 7. Performance comparison of the cloud benchmark suite (CBS_limited) simulations on a single VM of Microsoft Azure utilizing
16-120 cores with a fast local SSD NVMe and premium SSD through the NFS client.
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Process Timing on /shared and /lustre using 6 nodes with 96 cpus/node on HPC6a and HB120v3 without and with pinning
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Figure 9. Effect of process pinning on /shared and /lustre and on AWS ParallelCluster (HPC6a) (576 cores) and on Azure CycleCloud
HBv120 (576 cores) on /lustre for cloud benchmark suite (CBS_limited).

of the L3 memory cache at the job submission level. This
is another configuration option that should be evaluated, es-
pecially since implementations vary between CSPs and may
change over time. Figure 8 demonstrates the effect of process
pinning on AWS and Azure. This option reduced simulation
times on both systems using Lustre and shows that this effect
can vary depending on the file system as well, with EBS vol-
ume use pointing to more substantial performance gains for
AWS. Nevertheless, both Azure and AWS users should care-
fully consider such performance gains and further evaluate
scaling under different pinning options for their domain and
configuration.

4.2.2 Results on multi-node clusters with different
storage options saving 12 variables to the
one-layer CONC file

Figure 10 demonstrates the benchmark case results from
simulations performed on Azure’s CycleCloud clusters
employing one—six nodes and two different Lustre im-
plementations, a faster (250 MB s~ TiB~') and a slower

Geosci. Model Dev., 17, 7001-7027, 2024

(150MB s~ ! TiB~ 1) tier, both of size 100 TiB and for the
NFS share and the slower built-in NFS solution, respec-
tively. Depending on the end-user cost and overall simula-
tion needs, the slower solution can be a more cost-effective
one, while the expensive option can be chosen when a faster
turnaround time is necessary. In all cases, we observed di-
minishing performance gains when utilizing more than two
nodes, with a plateau becoming apparent in the three—six-
node region. Figure 11 provides the performance breakdown
for AWS’s Lustre storage option and using the EBS (/shared)
storage option. On AWS ParallelCluster, a scratch Lustre
option (200 MB s~ TiB~!) was used. Lustre appears to be
comparable in both CSP implementations, with minor dif-
ferences that can be attributed to the size of the file system
that was provisioned (100 TiB on Azure CycleCloud, 1 TiB
on AWS ParallelCluster) and the way the file system was pa-
rameterized (including stripe size) by different CSPs. EBS
benchmarks were significantly faster, which makes it a po-
tentially better alternative to Lustre for AWS instances. On
AWS ParallelCluster, the Lustre file system is connected to

https://doi.org/10.5194/gmd-17-7001-2024
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Figure 10. Performance of the cloud benchmark suite (CBS_limited) on Microsoft Azure CycleCloud environments using file systems

(shared, data, Lustre 150 and Lustre 250) for I/O and code on /shared.

the CMAS Center Open Data S3 bucket, and only the files
that are used in the run script are copied from the S3 bucket
to Lustre. This strategy is used to identify resources as non-
blocking (non-critical) and load these only when needed, re-
ferred to as lazy loading. For the EBS benchmark, an AWS
CLI script is used to copy the data from the S3 bucket to the
EBS volume. The time taken to copy the data using the AWS
CLI is higher (~ 15 min) than the time it takes for the data
to be read from the S3 bucket by Lustre (~ 300 s), and these
timings were not included since the data were preloaded to
the file systems for these benchmarks.

4.2.3 Results on multi-node clusters with different
storage options saving 37 variables to the
all-layer CONC file

Figure 12 shows the performance of the EBS (shared) and
the Lustre file systems using 96, 192 and 288 cores on AWS
when either a limited number of output variables and one
layer or the full number of output variables and all layers
are saved to the 3D CONC file (creating and saving the

https://doi.org/10.5194/gmd-17-7001-2024

largest output file possible under the cloud benchmark case —
CBS_full).

4.3 Cost analysis of compute nodes

Table 4 shows a comparison of the compute-only costs asso-
ciated with an annual simulation based on the cloud bench-
mark suite with limited output file options. The setup was
based on two-node cluster setups for both CSPs and the op-
tion of spot-pricing that was only available for Microsoft
Azure. It should be noted that spot instances can be pre-
empted, resulting in a termination risk that the user should
be aware of when designing their implementation. The com-
pute node hpc6a.48xlarge is not provided as a spot instance,
as the on-demand price is significantly discounted (60 %).
However, Amazon does offer spot prices for other compute
nodes. This analysis used on-demand pricing options to uni-
formly evaluate both systems. Users will need to implement
code to check-point and recover from a simulation termina-
tion if they choose to use spot-pricing or be willing to restart
simulations if spot instances are terminated.

Geosci. Model Dev., 17, 7001-7027, 2024
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Process Timing on /fsx (lustre) and /ebs (shared) using 1-6 nodes with 96 cores/node on HPCBa with pinning
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Figure 11. Performance of the cloud benchmark suite (CBS_limited) on AWS ParallelCluster environments using /fsx (lustre) and /ebs

(shared) file system.

Table 4. Comparison of the compute costs for performing an annual simulation based on the cloud benchmark suite (CBS_limited) on two-
node clusters with on-demand and spot-pricing tiers. Note that these costs are indicative and do not include any other components of the

cluster (storage, head node, etc.).

Compute node Cores Nodes Pricing Cost per CBS wall  Extrapolated Days to complete annual

node (USD) time (hour) annual cost simulation of CBS
HB120v3 192 2 On-demand 3.6h~! 0.767 USD 1007 5.83
HB120v3 192 2 Spot 1.4n! 0.767 USD 392 5.83
hpc6a.48xl 192 2  On-demand 2.88h~! 0.839 USD 883 6.4

4.4 Results of using DESID module for
emission-scaling sensitivity studies

Online tutorials are available for CMAQ version 5.4 with in-
structions for running baseline and sensitivity examples us-
ing DESID. Model-to-model comparison plots using spatial
and time series analysis scripts in R and Python are also
provided and demonstrated. Figure 13 shows the model-to-
model mean spatial plots, absolute difference plot and per-
cent difference plot for ozone from a base simulation and a
sensitivity case where the DESID module was used to reduce
the emissions from power plants in New York State (Foley,
2024).

Geosci. Model Dev., 17, 7001-7027, 2024

5 Discussion
5.1 Benefits of proposed cloud-based implementation

Previous efforts of bringing CMAQ to the cloud demon-
strated the potential of packaging the model along with
other components as a standalone service optimized for
small benchmark domains and low-cost VMs (Zhang et
al., 2019). Currently, running complex, computationally de-
manding models on the cloud presents new options for op-
timizing workflow, performance and costs with access to
HPC resources. A major implication is a fast deployment
of such infrastructures with precompiled software snapshots
and preloaded data that are easy to configure and customize
according to the user needs. This work evaluates how to run
CMAQ on two CSPs using their cluster management tools

https://doi.org/10.5194/gmd-17-7001-2024
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Figure 12. Performance of the 2 d cloud benchmark suite using 1-3 nodes with 96 CPUs/nodes on AWS ParallelCluster environments using
full output (CBS_full) versus limited output (CBS_limited) on EBS (shared (s)) and Lustre (1).

(ParallelCluster and CycleCloud) and illustrates several is-
sues that should be considered for building HPC clusters on
the cloud. We observed that, despite their differences, both
AWS and Azure performed similarly and had comparable
performance to on-site HPC implementations used in earlier
phases of this work. The online tutorials provide guidance for
selecting CSP cost-effective options (compute nodes, storage
and high-performance networking) for the current CONUS
benchmark suite and can be used as a guide for benchmark-
ing more demanding CMAQ applications, such as the cou-
pled model (WRF-CMAQ) (Wong et al., 2012), the Inte-
grated Source Apportionment Method (CMAQ-ISAM) (Co-
han and Napelenok, 2011), or simulations with higher hori-
zontal or vertical grid resolution.

5.2 Impact of storage options and process pinning on
CSPs

The choice of a storage option is shown to have an impor-

tant impact on simulation run times. Figure 7 shows the best
performance on NVMe drives, which are only available on

https://doi.org/10.5194/gmd-17-7001-2024

single virtual machines. To fully utilize the potential of HPC
solutions, the Lustre storage option is advisable for the Azure
ecosystem. For AWS, EBS offers a cost-effective alternative
to Lustre. However additional data transfers may be required
(e.g., copying input and output data to/from the S3 bucket) in
the workflow if the ParallelCluster is configured to have the
EBS volumes deleted when the cluster is terminated. Scaling
performance was improved when both the code and the data
files reside on /lustre and may also improve if both the code
and the I/O are on local storage (/nvme) or Azure file share
(/data). The effect of process pinning resulted in modestly
improved timings on both EBS and Lustre on AWS Paral-
lelCluster. Process pinning resulted in significant timing im-
provements for Lustre on Azure CycleCloud. Process pin-
ning resulted in improved performance on /shared, /data and
/lustre using Azure’s CycleCloud, with the best performance
being on Lustre.

Geosci. Model Dev., 17, 7001-7027, 2024
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Figure 13. Model-to-model comparison for a base case of CMAQ version 5.3.3 and a sensitivity case where DESID was used to reduce the
point-source electric generating unit (PT_EGU) emissions in New York State by 25 %.

5.3 Scalability

A key issue that is brought up in the Results section is the
model scalability, which exhibits a diminishing return as the
systems are scaled out across more cores and nodes. In gen-
eral, scalability depends on the domain characteristics (do-
main size, resolution) and the hardware. Domain decompo-
sition can significantly reduce performance when the do-
main is highly decomposed; i.e., only a few grid cells are
assigned to each core. While our results focus on a fixed-size
cloud benchmark suite, we expect improved scalability with
a higher-resolution domain, as it would increase the work-
load per core. Compared to typical WRF benchmarks where
a 2.5km x 2.5km resolution CONUS domain (63 million
grid cells) is considered a typical case that scales well up to a
few hundred cores, the 12km x 12km CMAQ CBS (97 000
grid cells) is comparatively too small of a problem to scale
similarly.
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5.4 Future research recommendations

The online tutorials and documentation include recommen-
dations for future work such as (1) running the bench-
mark using new releases of virtual machines (Elastic Com-
pute Cloud (EC2) instances or Microsoft Azure VMs),
(2) building with the EPYC processor including Stan-
dard_HB176rs_v4 on Azure CycleCloud and on new re-
leases of the Arm-based AWS Graviton 3 processor using
c7g.16xlarge on ParallelCluster, and (3) running the bench-
mark using a parallel I/O API implementation and other effi-
ciency improvements in the source code that can be specific
to the compiler and processor architecture. The impact on
performance needs to be examined after each model release
and for each model configuration and input platform data,
which vary by year and model parameterization.
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5.5 Using a cloud service provider versus on-premise
compute servers

The choice of conducting simulations on CSPs versus an
on-premise option comes down to the cost and resources of
the on-premise option and the specifics of the work to be
accomplished. In some cases, organizational investments to
support computational and data needs may effectively sub-
sidize the cost of an on-premise solution. Even when an
on-premise option is available, it may be reasonable to uti-
lize both on-premise and CSP services to take advantage of
the flexibility and scalability of building custom infrastruc-
ture and workflows within a CSP. Our cost estimates for the
cloud benchmark suite support the conclusion by Zhuang et
al. (2020) that atmospheric modeling in the cloud can be
a cost-competitive alternative to more traditional HPC sys-
tems.

6 Conclusions

This work provides reproducible workflows to facilitate pro-
visioning of HPC clusters on the cloud, setting up and run-
ning CMAQ, and using performance analysis tools and pro-
filers to optimize the HPC systems available from CSPs. The
very nature of cloud implementations comes with the advan-
tage that CSPs are continuously offering advancements in
compute, memory and storage resources. Different CSPs use
different hardware versions (EPYC processor versions), with
a different hypervisor on different Nitro chip and SLURM
implementations, which result in a different number of cores
available per node. Azure provided manual pinning instruc-
tions that required a detailed understanding of the CPU ar-
chitecture and SLURM scheduler. In the case of AWS, the
implementation resulted in fewer cores/nodes available to
the user (96 versus 128) but automatically bound the spe-
cific process to a core and did not require additional fine-
tuning steps (manual pinning had less impact on timings).
CMAQ is also continuously under development, and while
the method presented here used CMAQ version 5.3.3 with
the 12US2 benchmark and the CB6 mechanism, it may be
extended to compile and run new versions of CMAQ, new
mechanisms such as the Community Regional Atmospheric
Chemistry Multiphase Mechanism (CRACMM) (Pye et al.,
2023), and other configurations including WRF-CMAQ and
CMAQ-ISAM. Our HPC in the cloud paradigm allows re-
searchers to improve their workflow and access a menu of
specialized HPC resources offered by cloud computing ven-
dors resulting in a faster time to the solution. These tutorials
by the CMAS community are designed to facilitate the use
of best practices for cloud HPC provisioning, increase cross-
institution collaborations, and improve efficiency in code de-
velopment and deployment cycles.
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Appendix A: HPC architectures and CSP services

A growing number of companies ranging from large enter-
prises such as Amazon, Microsoft and Google to a spec-
trum of cloud-focused computer firms have a strong pres-
ence with evolving portfolios in what is broadly defined
as “public cloud infrastructure”. Typically, cloud computing
is provided through at least four types of services summa-
rized in Fig. Al: infrastructure as a service (IaaS), platform
as a service (PaaS), software as a service (SaaS) and data
as a service (DaaS) (Mell and Grance, 2011; Chang et al.,
2010; Yuan, 2016). IaaS products (Amazon Web Services,
Microsoft Azure, Google Cloud, etc.) allow organizations
and end users to manage their system resources (i.e., servers,
network, data storage) on the cloud. PaaS products (Win-
dows Azure, Google app engine, etc.) allow businesses and
developers to host, build and deploy consumer-facing apps.
The most important contrast between IaaS and PaaS is that
TaaS gives users more administrative control over operating
systems and system resources, while PaaS gives consumers
the ease of use of provided applications but limits access
to choices about the operating system and system resources.
SaaS products are among the most popular cloud computing
services (Microsoft 365, Google Docs, Adobe cloud, etc.)
offering out-of-the-box, simple solutions that usually target
common end users and operate under a subscription model.
DaaS8, the least well-defined type of service, describes cloud-
based software tools used for working with data, such as
managing data in a data warehouse entity and processing
or analyzing with software tools, typically enabled by SaaS
technologies under a subscription model. HPC applications
require administrative access to networking, hardware and
storage configurations and therefore need infrastructure as a
service (IaaS) and infrastructure as code (IaaC) levels of con-
trol that are provided by the ParallelCluster and CycleCloud
cluster management services.
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<

Increasing user control and flexibility in configuration
. User configures
. CSP/Administrator manages HPC Infrastructure

- Cloud resources - On-premise resources

Figure A1l. Architecture of on-site and cloud-based services demonstrating the degree of end-user control.
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Appendix B: Tools for storage performance monitoring
B1 Amazon CloudWatch

Amazon CloudWatch (Amazon CloudWatch, 2024) and
Azure Monitor (Azure Monitor, 2024) allow you to moni-
tor the I/O throughput of a file system while running an ap-
plication in real time. Amazon CloudWatch output shown
in Fig. B1 can be used to further investigate the impact of
storage on performance seen when writing additional model
outputs (e.g., full layered 3D instantaneous model concentra-
tions) to different storage options. While AWS CloudWatch
shows higher throughput on Lustre than shared, the bench-
mark performance is faster on shared than Lustre. This may
be due to larger disk caches or faster latencies on the EBS
volume. The Lustre performance may be improved by using
a persistent volume versus scratch volume that was used in
this study.

Cloudwatch Metrics
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Figure B1. Throughput measurement of the first day of the cloud benchmark suite using 96 cores on ParallelCluster using different file
systems — EBS (blue) and Lustre (orange) — for full output (all variables, all layers) in the CONC file (CBS_full). Credit: Amazon® Cloud-

Watch.

https://doi.org/10.5194/gmd-17-7001-2024

Geosci. Model Dev., 17, 7001-7027, 2024



7020

B2 Azure Monitor

Figure B2 displays the read and write throughput and
client latency metrics from the Azure Monitor for the cloud
benchmark suite using the Azure®-managed Lustre system
(250 MB s 1). Insights into the I/O performance are facili-

tated by the web tools available from each CSP.

Home > lustrefs250

;i lustrefs250 | Metrics =
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Figure B2. Cloud metric latency and throughput measurement of data read and data write for the cloud benchmark suite using 96 cores on
CycleCloud using the Lustre file system for full output (all variables, all layers) in the CONC file for the cloud benchmark suite (CBS_full).

Credit: Azure® Monitor.
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B3 ARM® MAP code profiler analysis for Azure
CycleCloud and AWS ParallelCluster

As mentioned before, examining the main log and associated
timing plots does not precisely capture the time spent in I/O
tasks. The use of a code profiler such as the ARM® MAP
Profiler (ARM Ltd., 2022) can provide better insights into
the model components, along with more detailed capture of
the I/O tasks by different code routines. Results from apply-
ing the ARM® MAP code profiler on a single-day bench-
mark simulation using the limited I/O benchmark for each
CSP cluster and storage offering are presented in Fig. B3.
We can clearly see a very similar behavior in both systems
with the model using a Lustre file system. For /shared, AWS’s
EBS solution is performing much better, with less time spent
in I/O, which allows speeds closer to physical, “bare-metal”
server equivalents. For Azure, the /shared volume has pro-
portionately higher time spent in I/O and lower percentage
spent on computation. In earlier tests without a profiler, the
Azure NetApp Files (ANF) solution provided better I/O per-
formance, but due to considerably higher cost due to a mini-
mum file size of 4TB, we chose not to include an ANF setup
in the profiler tests. The performance improvements going
from /shared to /data and Lustre on Azure’s CycleCloud are
also demonstrated by comparing Figs. B4, B5 and B6, where
orange at the beginning of the run indicates the I/O portions
that get reduced as we utilize faster storage options.
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Figure B3. Code profiler performance analysis for the first day of the cloud benchmark suite (CBS_limited) on AWS’s ParallelCluster and
Azure’s CycleCloud using different storage options (a Azure /shared, b AWS /shared, ¢ Azure /data, d Azure /lustre and e AWS /lustre).

Credit: ARM® MAP.
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Figure B4. Code profiler single-day performance analysis for Azure’s CycleCloud using the NFS /shared file system. Credit: ARM® MAP.
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Figure BS. Code profiler single-day performance analysis for Azure’s CycleCloud using the /data file system. Credit: ARM® MAP.
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Code and data availability. The code for CMAQ is available
and referenced at https://github.com/USEPA/CMAQ/ (last access:
20 June 2024) and https://doi.org/10.5281/zenodo.5213949 (US
EPA Office of Research and Development, 2021).

The code for the AWS cloud implementation is avail-
able and referenced at https:/github.com/CMASCenter/
pcluster-cmag/tree/CMAQvVS5.3.3 (last access: 20 June 2024)
and https://doi.org/10.5281/zenodo.10696908 (Adams et al.,
2024a).

The code for the Azure cloud implementation is avail-
able and referenced at https://github.com/CMASCenter/
cyclecloud-cmagq/tree/CMAQVS5.3.3 (last access: 20 June 2024) and
https://doi.org/10.5281/zenodo.10696804 (Adams and Efstathiou,
2024a).

Data inputs for the benchmark suite are available and referenced
at https://registry.opendata.aws/cmas-data-warehouse/ (last access:
20 June 2024) and https://doi.org/10.15139/S3/CFU9UL (Adams,
2024).

Tutorials with instructions on running CMAQ version 5.3.3 and
above on the cloud are available through https://cyclecloud-cmagq.
readthedocs.io/en/cmaqv5.3.3/ (Adams and Efstathiou, 2024b) and
https://pcluster-cmaq.readthedocs.io/en/cmaqv5.3.3/ (Adams et al.,
2024b).
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