Articles | Volume 17, issue 16
https://doi.org/10.5194/gmd-17-6227-2024
https://doi.org/10.5194/gmd-17-6227-2024
Development and technical paper
 | 
22 Aug 2024
Development and technical paper |  | 22 Aug 2024

Numerical stabilization methods for level-set-based ice front migration

Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson

Related authors

Calibrating calving parameterizations using graph neural network emulators: application to Helheim Glacier, East Greenland
Younghyun Koo, Gong Cheng, Mathieu Morlighem, and Maryam Rahnemoonfar
The Cryosphere, 19, 2583–2599, https://doi.org/10.5194/tc-19-2583-2025,https://doi.org/10.5194/tc-19-2583-2025, 2025
Short summary
Smoothed monthly Greenland ice sheet elevation changes during 2003–2023
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, Alicia Bråtner, and Javed Hassan
Earth Syst. Sci. Data, 17, 3047–3071, https://doi.org/10.5194/essd-17-3047-2025,https://doi.org/10.5194/essd-17-3047-2025, 2025
Short summary
A Python library for solving ice sheet modeling problems using Physics Informed Neural Networks, PINNICLE v1.0
Gong Cheng, Mansa Krishna, and Mathieu Morlighem
EGUsphere, https://doi.org/10.5194/egusphere-2025-1188,https://doi.org/10.5194/egusphere-2025-1188, 2025
Short summary
Evaluation of four calving laws for Antarctic ice shelves
Joel A. Wilner, Mathieu Morlighem, and Gong Cheng
The Cryosphere, 17, 4889–4901, https://doi.org/10.5194/tc-17-4889-2023,https://doi.org/10.5194/tc-17-4889-2023, 2023
Short summary
Sensitivity of ice sheet surface velocity and elevation to variations in basal friction and topography in the full Stokes and shallow-shelf approximation frameworks using adjoint equations
Gong Cheng, Nina Kirchner, and Per Lötstedt
The Cryosphere, 15, 715–742, https://doi.org/10.5194/tc-15-715-2021,https://doi.org/10.5194/tc-15-715-2021, 2021
Short summary

Related subject area

Numerical methods
Stabilized two-phase material point method for hydromechanical coupling problems in solid–fluid porous media
Xiong Tang, Wei Liu, Siming He, Lei Zhu, Michel Jaboyedoff, Huanhuan Zhang, Yuqing Sun, and Zenan Huo
Geosci. Model Dev., 18, 4743–4758, https://doi.org/10.5194/gmd-18-4743-2025,https://doi.org/10.5194/gmd-18-4743-2025, 2025
Short summary
asQ: parallel-in-time finite element simulations using ParaDiag for geoscientific models and beyond
Joshua Hope-Collins, Abdalaziz Hamdan, Werner Bauer, Lawrence Mitchell, and Colin Cotter
Geosci. Model Dev., 18, 4535–4569, https://doi.org/10.5194/gmd-18-4535-2025,https://doi.org/10.5194/gmd-18-4535-2025, 2025
Short summary
Optimized step size control within the Rosenbrock solvers for stiff chemical ordinary differential equation systems in KPP version 2.2.3_rs4
Raphael Dreger, Timo Kirfel, Andrea Pozzer, Simon Rosanka, Rolf Sander, and Domenico Taraborrelli
Geosci. Model Dev., 18, 4273–4291, https://doi.org/10.5194/gmd-18-4273-2025,https://doi.org/10.5194/gmd-18-4273-2025, 2025
Short summary
Potential-based thermodynamics with consistent conservative cascade transport for implicit large eddy simulation: PTerodaC3TILES version 1.0
John Thuburn
Geosci. Model Dev., 18, 3331–3357, https://doi.org/10.5194/gmd-18-3331-2025,https://doi.org/10.5194/gmd-18-3331-2025, 2025
Short summary
Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squares
Benjamin C. Sapper, Sean Youn, Daven K. Henze, Manjula Canagaratna, Harald Stark, and Jose L. Jimenez
Geosci. Model Dev., 18, 2891–2919, https://doi.org/10.5194/gmd-18-2891-2025,https://doi.org/10.5194/gmd-18-2891-2025, 2025
Short summary

Cited articles

Benn, D. I. and Astrom, J. A.: Calving glaciers and ice shelves, Adv. Phys.-X, 3, 1513819, https://doi.org/10.1080/23746149.2018.1513819, 2018. a
Biswas, R., Devine, K. D., and Flahert, J. E.: Parallel, adaptive finite element methods for conservation laws, Appl. Numer. Math., 14, 255–283, https://doi.org/10.1016/0168-9274(94)90029-9, 1994. a
Black, T. E. and Joughin, I.: Weekly to monthly terminus variability of Greenland's marine-terminating outlet glaciers, The Cryosphere, 17, 1–13, https://doi.org/10.5194/tc-17-1-2023, 2023. a, b
Bondzio, J., Morlighem, M., Seroussi, H., Kleiner, T., Ruckamp, M., Mouginot, J., Moon, T., Larour, E., and Humbert, A.: The mechanisms behind Jakobshavn Isbræ's acceleration and mass loss: A 3-D thermomechanical model study, Geophys. Res. Lett., 44, 6252–6260, https://doi.org/10.1002/2017GL073309, 2017. a
Bondzio, J. H., Seroussi, H., Morlighem, M., Kleiner, T., Rückamp, M., Humbert, A., and Larour, E. Y.: Modelling calving front dynamics using a level-set method: application to Jakobshavn Isbræ, West Greenland, The Cryosphere, 10, 497–510, https://doi.org/10.5194/tc-10-497-2016, 2016. a, b, c
Download
Short summary
We conducted a comprehensive analysis of the stabilization and reinitialization techniques currently employed in ISSM and Úa for solving level-set equations, specifically those related to the dynamic representation of moving ice fronts within numerical ice sheet models. Our results demonstrate that the streamline upwind Petrov–Galerkin (SUPG) method outperforms the other approaches. We found that excessively frequent reinitialization can lead to exceptionally high errors in simulations.
Share