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Abstract. Numerical modeling of ice sheet dynamics is a
critical tool for projecting future sea level rise. Among all the
processes responsible for the loss of mass of the ice sheets,
enhanced ice discharge triggered by the retreat of marine-
terminating glaciers is one of the key drivers. Numerical
models of ice sheet flow are therefore required to include ice
front migration in order to reproduce today’s mass loss and
to be able to predict their future. However, the discontinuous
nature of calving poses a significant numerical challenge for
accurately capturing the motion of the ice front. In this study,
we explore different stabilization techniques combined with
varying reinitialization strategies to enhance the numerical
stability and accuracy of solving the level-set function, which
tracks the position of the ice front. Through rigorous testing
on an idealized domain with a semicircular and a straight-line
ice front, including scenarios with diverse front velocities,
we assess the performance of these techniques. The findings
contribute to advancing our ability to model ice sheet dy-
namics, specifically calving processes, and provide valuable
insights into the most effective strategies for simulating and
tracking the motion of the ice front.

1 Introduction

Ice sheet numerical modeling is the best tool to make future
sea level rise projections (e.g., Seroussi et al., 2020; Goelzer
et al., 2020; IPCC, 2021). One key process that significantly
contributes to mass loss is the retreat of marine-terminating
glaciers (Mouginot et al., 2019; Choi et al., 2021; Pattyn and
Morlighem, 2020). For example, in Greenland, the increased
ice discharge is mainly driven by the retreat of glacier fronts

(King et al., 2020), which is a direct consequence of calving
and undercutting at the ice front (Wood et al., 2021; Moug-
inot et al., 2019), possibly intensified by increased runoff and
ocean temperatures (Black and Joughin, 2023). As Green-
land has very few ice shelves, ice front retreat predomi-
nantly comprises small yet frequent calving events (Black
and Joughin, 2023; Cheng et al., 2021). Future projections
emphasize that ice front retreat will continue to be a pri-
mary driver of Greenland’s mass loss by 2100 (Choi et al.,
2021). Incorporating moving boundaries into numerical ice
sheet models is a vital step in advancing our understanding
of ice loss mechanisms and improving the accuracy of fu-
ture sea level rise projections (Crawford et al., 2021; Bondzio
et al., 2017; Cheng et al., 2022).

Ice sheets are commonly modeled as incompressible flu-
ids governed by conservation laws (e.g., Greve and Blatter,
2009), with empirical calving laws to predict calving rates at
the ice front (Pollard et al., 2015; Morlighem et al., 2016).
These calving laws are parameterizations developed based
on physical principles and observations, which offer compu-
tationally efficient and relatively straightforward expressions
for calving rates (Benn and Astrom, 2018; Choi et al., 2018).
In these parameterizations, the boundary of the model, which
is generally the ice front, needs to be adjusted dynamically
during the transient simulation. The way ice front migration
is typically handled is through a level-set function, which is
a signed distance function defined over the entire computa-
tional domain with the zero level-set contour representing
the ice front position (e.g., Bondzio et al., 2016; Morlighem
et al., 2016). The motion of the level-set function is deter-
mined by solving an advection equation, where the differ-
ence between the ice velocity and the calving (and melting)
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rate at the zero contour governs the evolution (Morlighem
et al., 2016).

However, numerically solving the level-set function is
challenging, especially when using the finite-element method
(FEM), as it can lead to instabilities due to the unbounded
gradient of the solution (Larson and Bengzon, 2013). To ad-
dress this issue, stabilization techniques are employed to en-
force the boundedness of the solution. Additionally, the tran-
sient solution of the level-set function may not always main-
tain its signed distance property due to inhomogeneities in
the velocity field and the accumulation of numerical errors
over time, particularly through the diffusion introduced by
the stabilization method. Therefore, reinitialization is gen-
erally necessary during transient simulations to restore the
signed distance function property. However, as highlighted
in Henri et al. (2022), reinitialization may introduce an arti-
ficial subsequent displacement of the zero level-set contour.
Therefore, the selection of the reinitialization interval is crit-
ical for obtaining an accurate solution of the signed distance
function, which remains inherently dependent on the specific
application.

In this paper, we aim to investigate and compare vari-
ous stabilization techniques in combination with different
choices of reinitialization intervals implemented in the Ice-
sheet and Sea-level System Model v4.23 (ISSM; Larour
et al., 2012; ISSM Team, 2023) and Úa 2019b (Gudmunds-
son et al., 2019; Gudmundsson, 2020). We present different
stabilization and reinitialization procedures and apply them
all in ISSM to solve the level-set equation on an idealized do-
main featuring a semicircular ice front shape (and a straight-
line ice front shape case in Appendix A) representative of
typical Greenland outlet glaciers. To evaluate the effective-
ness of the stabilization techniques and reinitialization strate-
gies, we perform several tests on three different spatially
varying rates of ice front migration, encompassing both low-
and high-speed scenarios. By exploring these approaches, we
seek to investigate which combination leads to the best sta-
bility and accuracy of simulating the level-set function and
effectively tracks the motion of the ice front in ice sheet mod-
els.

2 Methods

The level-set function φ(x, t) is a scalar field defined on
a two-dimensional domain � with zero contours implicitly
representing the ice front position at every given time t .
Conventionally, the level-set function is set to be negative
in the ice-covered region and positive in the ice-free region
(Morlighem et al., 2016) in order for the gradient of the level
set to be normal outward pointing to the ice front. The ab-
solute value of the level set is the closest distance from x

to the ice front contour φ = 0. Given an initial condition
φ(x,0)= φ0, the evolution of the level-set function φ(x, t)

is governed by the advection equation

∂φ

∂t
+ vf · ∇φ = 0, x ∈�, t ∈ [0,T ], (1)

where vf is the front velocity of the level set, which is the
difference between the ice velocity v and the calving rate of
c, which is generally oriented perpendicular to the ice front:

vf = v− c n, (2)

where n is the outward unit normal vector of the level set
(Bondzio et al., 2016; Morlighem et al., 2016).

In order to solve Eq. (1) with the FEM, we introduce a
Hilbert space H1(�) and define the variational form as fol-
lows. Find φ ∈H1(�) such that for all the test functions
ψ ∈H1(�) the following equation is satisfied:∫
�

(
∂φ

∂t
ψ + (vf · ∇φ)ψ

)
d�= 0. (3)

After replacing the space H1(�) with a continuous piece-
wise linear space 8h, the solution of Eq. (3) is then the nu-
merical solution of Eq. (1). However, it is well known that
Eq. (3) gives spurious oscillatory solutions without stabiliza-
tion (Larson and Bengzon, 2013; dos Santos et al., 2021).

2.1 Stabilization

We consider four stabilization schemes in this paper. The
first three methods are classical methods only to stabilize
Eq. (3), namely the artificial diffusion (MacAyeal, 1989,
AD) method, streamline upwind (Eriksson et al., 1996, SU)
method, and streamline upwind Petrov–Galerkin (Brooks
and Hughes, 1982, SUPG) method. The last one is a mod-
ification of the SUPG stabilization, where an additional
forward-and-backward (Li et al., 2005, FAB) diffusion term
is added to the SUPG scheme.

Among these methods, the simplest way to stabilize an ad-
vection equation is to add an additional diffusion term in the
variational form Eq. (3) such that∫
�

(
∂φ

∂t
ψ + (vf · ∇φ)ψ +∇φ · κ∇ψ

)
d�= 0, (4)

where in two dimensions the coefficient of the artificial dif-
fusion term is a scalar

κ =
1
2

√
h2
xv

2
x +h

2
yv

2
y, (5)

where hx and hy are the characteristic mesh sizes in the x
and y directions and vx and vy are the x and y components
of the front velocity vf.

The streamline upwind stabilization follows the same vari-
ational form as the artificial diffusion in Eq. (4) but with a
modified coefficient derived from Eq. (5). Specifically, this
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modification ensures the addition of diffusion solely along
the direction of the velocity vector vf by using

κ =
h

2‖vf‖
vf⊗ vf, (6)

where h=
√
h2
x +h

2
y and ⊗ is the Kronecker product. Due

to the large dissipation introduced by these two stabilization
methods, they are extremely stable but only have first-order
accuracy (dos Santos et al., 2021).

A more accurate stabilization method is the streamline up-
wind Petrov–Galerkin (SUPG, Brooks and Hughes, 1982)
method, which modifies the test function to be ψ̂ = ψ+µvf ·

∇ψ in the variational form in Eq. (3) such that∫
�

(
∂φ

∂t
+ vf · ∇φ

)
(ψ +µvf · ∇ψ) d�= 0, (7)

where µ= h
2‖vf‖

is a mesh-dependent coefficient (dos Santos
et al., 2021).

The FAB diffusion was first introduced in Úa (Gudmunds-
son et al., 2019; Gudmundsson, 2020). We follow the same
formulation and implement it in ISSM. The FAB term added
to the variational form in Eq. (7) is derived from the potential

P =
1
pq

∫
�

(
‖∇φ‖q − 1

)p d�, (8)

for which the directional derivative is

DδφP =
∫
�

(
‖∇φ‖q − 1

)p−1
‖∇φ‖q−2

∇φ · ∇δφ d�. (9)

This results in the addition of a nonlinear diffusion term to
the level-set equation, with a diffusion coefficient

κ = µ
(
‖∇φ‖q − 1

)p−1
‖∇φ‖q−2 , (10)

which is bounded for ‖∇φ‖→ 0 provided q ≥ 2. For even
values of p, the diffusion term defined by Eq. (10) can be
both negative and positive and is an example of a FAB dif-
fusion. Note that the minimum of the potential P in Eq. (8)
is found for ‖∇φ‖ = 1, i.e., when φ is a distance function.
This approach therefore encourages the level set to remain a
signed distance function and relaxes the need to reinitialize
the level set.

2.2 Reinitialization

The formulation of the advection equation Eq. (1) describes
the evolution of the level-set function; however, it does not
guarantee that the level-set function is always a signed dis-
tance function due to the inhomogeneity of the front velocity.
Indeed, as vf is generally higher at the ice front than the far
field, the gradient of the level-set function close to the zero
contours tends to decrease during the transient simulation.

To maintain the gradient of the level-set function, a com-
mon practice is to reset the level set by calculating the signed
distance every nR time steps. This is often called “reinitial-
ization” (Bondzio et al., 2016; Morlighem et al., 2016), and
the reinitialization interval nR is the number of time steps
between two consecutive reinitializations. One method of
reinitialization involves solving an eikonal equation (Suss-
man et al., 1994; Sethian, 1996):

‖∇φ‖ = 1, (11)

generally expressed as a time-dependent problem for which
we seek a steady-state solution:

∂φ

∂t
+ sign(φ)(‖∇φ‖− 1)= 0. (12)

However, this approach (Eq. 12) contains control parameters,
and it is not clear what the optimal value of these param-
eters should be in practical application (Gross and Reusken,
2011). Moreover, the eikonal equation constitutes a nonlinear
hyperbolic partial differential equation (PDE), posing chal-
lenges in achieving accurate discretization. An alternative is
to use the fast marching method (Sethian, 1996; Toure and
Soulaimani, 2016). This method offers a general framework
capable of handling various scenarios.

Here, we use a straightforward geometric reinitialization
algorithm, which is similar to the one described in Toure and
Soulaimani (2016). At any point in time, the zero contour
of the level set is represented by a set of segments if it is
discretized using linear Lagrange elements. At the reinitial-
ization step, we create a loop over all elements and generate
this set of segments, with one segment per element contain-
ing a change in the sign of the level-set function. This set of
segments is then shared across all model partitions through
a message-passing interface in order to recompute a signed
distance. Subsequently, at each vertex of the mesh, we com-
pute the distances to these segments and keep the minimum
distance as the new magnitude of the level set at that vertex,
while preserving the original sign. When this reinitialization
algorithm is applied, it is expected to yield exact results in
terms of signed distance. Hence, we do not expect that the
proposed FAB diffusion algorithms would outperform this
method in terms of accuracy. However, as we show later in
the numerical experiments, numerical errors highly depend
on the reinitialization frequency. Here, we investigate differ-
ent reinitialization intervals combined with the four stabiliza-
tion methods described in Sect. 2.1.

2.3 Error quantification

In order to quantify the difference between two ice front po-
sitions represented by the level-set functions φ1 and φ2, we
introduce a misfit metric d(φ1,φ2) such that

d(φ1,φ2)=
sgn(φ1)− sgn(φ2)

2
, (13)
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where

sgn(φ)=

 −1, φ < 0,
0, φ = 0,
1, φ > 0,

(14)

converts a level-set function to a sign function with −1 on
the ice-covered side of the zero contour and 1 on the ice-free
side of the contour. Therefore, if φ1 is ahead of φ2 in terms
of the ice front positions (more advance), the misfit area in
d(φ1,φ2) will be negative.

We integrate the absolute misfit over the whole domain,�,
and get the following metric:

J (φ1,φ2)=

∫
�

|d(φ1,φ2)| d�

=
1
2

∫
�

|sgn(φ1)− sgn(φ2)| d�, (15)

which is actually the absolute misfit area between the two
level-set functions.

3 Numerical experiments

We investigate the influence of the four stabilization meth-
ods described in Sect. 2.1 combined with different choices
of reinitialization interval (Sect. 2.2). Here we consider a
semicircle-shaped initial ice front, as shown in Fig. 1, where
the ice-covered region is shown in light blue and the ice-free
region is shown in light red. We apply spatially and tempo-
rally varying analytical velocity fields to mimic typical ice
flow.

We run all the simulations on a two-dimensional square
domain�(x,y)= [0,L]×[0,L], with L= 20 km as the size
of the domain. We create an unstructured triangular mesh
on � with the element size of 100 m. In Fig. 1, the calv-
ing front is represented by a semicircle (red) centered at
(cx,cy)= (

5L
8 ,

L
2 ) with a radius of r = L

4 , and the side walls
of the fjord are in blue and connect the semicircle to the right
boundary of the domain. By construction, the width of the
fjord is 10 km. The initial zero level set is the red ice front
together with the blue side walls, which has a closed form
as {(x,y)|(x− cx)2+ (y− cy)2 = r2,x ≤ cx}

⋃
{(x,y)|x ∈

[cx,L],y = cy + r}
⋃
{(x,y)|x ∈ [cx,L],y = cy − r}.

We apply three distinct velocity fields to control the mi-
gration of the ice front. For simplicity, we assume that there
is no ice flux across the side walls of the fjord so that the
velocity field only contains a horizontal component as fol-
lows: vf = (vx,0)T . The x component of the velocity fields
are given in Table 1. They represent zeroth- (uniform), first-
(triangle), and second-order (parabola) polynomial shapes of
the velocities.

Temporal variations are introduced by flipping the sign of
v(t) (as in Table 1) every half-year to mimic the typical an-

Figure 1. The domain of the semicircle-shaped ice front. The light
blue area indicates the ice-covered region, and the light red area is
the ice-free region. The values close to the dashed grey lines are
their lengths.

Table 1. The three shapes of front velocity at the ice front.

Shape Formula

Uniform vx(x,y, t)= v(t)

Triangle vx(x,y, t)= v(t)
(

1−
∣∣∣ ycy − 1

∣∣∣)
Parabola vx(x,y, t)= v(t)

(
1−

(
y
cy
− 1

)2
)

nual cycle of the advance and retreat of an ice front such that

v(t)=

{
v0, t ∈ [nT ,(n+ 1

2 )T ),

−v0, t ∈ [(n+ 1
2 )T ,(n+ 1)T ),

(16)

where T = 1 year, n= 0,1,2,3, . . .,N , and v0 is a veloc-
ity constant. We examine two scenarios with high- (v0 =

5000 m a−1) and low-velocity (v0 = 1000 m a−1) constants,
respectively. All the simulations are run for N = 50 peri-
ods (or years), with a constant time step at 1t = 0.005 years
to satisfy the Courant–Friedrichs–Lewy (CFL) condition for
both the high- and low-velocity scenarios. We reinitialize the
zero level-set contour with the interval nR = 1, 10, 100, 200,
which corresponds to a reinitialization every 2 d, two-thirds
of a month, half a year, and year. We also set a control run
with no reinitialization (nR =∞) throughout the whole sim-
ulation period.

By applying the velocity for T
2 in one direction and then

flipping the sign of vx for another T2 , the ice front is expected
to return to its initial position φ0 after every period T . Fur-
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thermore, the analytical solution at any given time t + nT
should be identical to the solution at time t . Therefore, we use
the numerical solution at t ∈ [0,T ) as the exact solution and
calculate the numerical error at t+nT according to Eq. (15),
with φ1 = φ(x, t + nT ) and φ2 = φ(x, t).

4 Results

The misfit between the numerical and the exact solution
under a uniform velocity field at the low-velocity setting
(v0 = 1000 m a−1) after 1.5, 2, and 50 periods (or years) is
shown in Fig. 2 with nR = 1 and in Fig. 3 with nR = 100 for
the four stabilization methods considered in this paper. The
misfit at every time point is calculated according to Eq. (13),
where the area with negative values (blue in the figures) indi-
cates the ice front from the numerical solution is downstream
(i.e., further advanced) of the exact solution. The errors of all
the cases in Figs. 2 and 3 are almost evenly distributed along
the ice front, and the total misfit grows as time increases. In-
deed, all the errors are first-order in time, as we show the
time series of the errors in Appendix B for different stabi-
lizations, reinitializations, and velocity constants. Figures 2
and 3 also indicate that using nR = 100 gives more accurate
results compared to reinitializing every time step (nR = 1).

To facilitate a better comparison of the different stabiliza-
tion, reinitialization, and velocity constant choices, we show
the total absolute misfit in Fig. 4, which is calculated accord-
ing to Eq. (15) at the final time step t = 50 years for the uni-
form velocity field. The numerical errors tend to decrease
as the reinitialization interval nR increases. Specifically, in
Fig. 4a, the four largest errors occur when the level-set func-
tion is reinitialized at every time step (nR = 1), resulting in
errors of 16.87 km2 in AD, 16.67 km2 in SU, 11.32 km2 in
SUPG, and 10.28 km2 in SUPG+FAB. The spatial distribu-
tions of the errors are shown in Fig. 2c, f, i, and l. Given
that the width of the fjord is 10 km, these errors correspond
to an average offset of the ice front of 1 to 2 km along the
flow direction. After nR > 10, the numerical errors remain
almost constant, comparable to the ones of nR =∞, for all
the stabilization methods employed. We find a similar pat-
tern in the high-velocity (v0 = 5000 m a−1) cases in Fig. 4b,
where most of the numerical errors are approximately 5 times
larger than those in the low-velocity (v0 = 1000 m a−1) cases
in Fig. 4a. However, the high-velocity cases are less sensitive
to nR than the low-velocity cases. For instance, reinitializing
every time step does not introduce exceptionally large errors
as we found in the low-velocity cases. Indeed, the largest
numerical error (88.62 km2) among all the experiments is
achieved by the AD stabilization without reinitialization.

Although all four stabilization methods tend to overesti-
mate the advance of the ice front, the choice of stabiliza-
tion method has a significant impact on the misfit area, and
SUPG+FAB exhibits the lowest numerical errors. In the low-
velocity scenario, e.g., Fig. 4a, with nR = 100, the final misfit

for SUPG+FAB is 0.46 km2, whereas the errors for AD, SU,
and SUPG are 11.51, 4.92, and 0.44 km2, respectively. The
spatial distributions of these errors are shown in Fig. 3c, f,
i, and l, where the misfit achieved by SUPG is equivalent to
an offset of the ice front by approximately 46 m, which is
even less than half of the mesh size. Similarly, in the high-
velocity scenario, the errors are scaled by the front veloc-
ity in all the choices of stabilizations with nR > 1. For in-
stance, in Fig. 4b, with nR = 100, the errors are 49.99 km2 in
AD, 27.07 km2 in SU, 2.94 km2 in SUPG, and 2.92 km2 in
SUPG+FAB.

We present the numerical errors at the final time step for
the parabolic and triangular shape of velocity in Fig. 5 for
both low- and high-velocity constants. Apparently, the shape
of the velocity profile has a limited impact on the numeri-
cal errors. Nevertheless, the triangular velocity cases yield
the smallest errors, while the parabolic velocity cases yield
larger errors, but these errors are still smaller than the uni-
form velocity field scenario depicted in Fig. 4.

5 Discussion

5.1 Reinitialization interval

From a finite-element method point of view, the reinitializa-
tion procedure is an L2 projection of the zero level-set con-
tour onto the mesh (Larson and Bengzon, 2013). It can be
shown that the numerical errors of the projection are propor-
tional to the mesh sizes (shown in Fig. C1), and they accu-
mulate as the number of reinitializations increases (i.e., as
nR decreases). Furthermore, these errors are not only intro-
duced during the projection but also transported and ampli-
fied by the governing equation Eq. (1) throughout the tran-
sient simulation. In the case of frequent reinitializations, such
as nR = 1, the dominant source of numerical error is the L2

projection, particularly evident when the front velocity is low
(v0 = 1000 m a−1), as depicted in Figs. 4 and 5. However,
in the high-velocity scenario, the projection error becomes
less significant compared to the numerical errors resulting
from discretization and stabilization techniques, which then
become the primary sources of error.

As nR increases, the numerical error decreases until no
reinitialization is performed (nR =∞). However, in the ab-
sence of reinitialization, additional errors emerge due to the
distortion of the gradient of the level-set function. The worst-
case scenario observed in this study is the high-uniform-
velocity case with AD at nR =∞ in Fig. 4b, where the zero
contour of the final level-set solution is nearly halfway into
the fjord, resulting in a total misfit of 84.02 km2. This in-
stance emphasizes the necessity to reinitialize the level-set
when solving level-set functions in transient simulations. It
is worth noting that the numerical errors are not significantly
affected by the interval of reinitialization as long as nR is
sufficiently larger than 1. Consequently, for the remainder
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Figure 2. Misfit d(φ1,φ2) of the numerical solution at time t (as φ1) and its exact solution (as φ2) at the reinitialization interval nR = 1 and
v0 = 1000 m a−1, with (a–c) AD, (d–f) SU, (g–i) SUPG, and (j–l) SUPG+FAB stabilizations.

of this paper, the focus will be on discussing the cases with
nR = 10,100, and 200, while disregarding those with nR = 1
and nR =∞.

As discussed above, FAB penalizes deviations from the
eikonal equation, ensuring ‖∇φ‖ = 1 when solving the level
set (Hartmann et al., 2010). The reinitialization interval is
crucial in determining how often the level set needs to be re-
set using the geometric reinitialization algorithm described in
Sect. 2.2. A naïve approach would be to reinitialize the level

set after each step of solving the advection equation in order
to maintain its signed distance property. However, in prac-
tice, frequent reinitialization introduces interface displace-
ments due to numerical errors, resulting in artificial mass
gain or loss, which may also alter the geometrical charac-
teristics of the interface, with potential implications for topo-
logical changes (Hartmann et al., 2010; Gibou et al., 2018;
Henri et al., 2022).
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Figure 3. Misfit d(φ1,φ2) of the numerical solution at time t (as φ1) and its exact solution (as φ2) at the reinitialization interval nR = 100
and v0 = 1000 m a−1, with (a–c) AD, (d–f) SU, (g–i) SUPG, and (j–l) SUPG+FAB stabilizations.

5.2 Stabilization method

The numerical errors in AD and SU are 5 to 20 times greater
than those using SUPG and FAB as long as nR exceeds 1.
The main source of the numerical errors in AD and SU is
the diffusion term ∇φ ·κ∇ψ added in the advection equation
Eq. (4), which smears out the oscillations in the numerical

solution and disperses the solution. The coefficient κ controls
the magnitude and direction of the additional diffusion.

In the AD case, the coefficient κ is a scalar, which applies
the diffusion to all directions with the same magnitude. In
contrast, κ contains an outer product of the front velocity in
SU, which only adds diffusion along the flow direction of vf.
Therefore, the errors in SU are less dispersive than those in
AD. Notably, the coefficients κ in AD and SU are also con-
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Figure 4. Total absolute misfit area at T = 50 for semicircle front with uniform velocity (a) v0 = 1000 m a−1 and (b) v0 = 5000 m a−1. The
y axis in (b) is scaled by a factor of 5 for visualization purposes.

Figure 5. The total absolute misfit area at T = 50 with (a, b) parabolic and (c, d) triangle-shaped velocity profiles. The left column has the
velocity constant v0 = 1000 m a−1, and the right column is at v0 = 5000 m a−1.

trolled by the mesh size, such that the additional diffusion
term vanishes as the mesh size becomes zero. In numerical
ice sheet modeling, the mesh size is generally limited by data
accuracy and computational capacity. Therefore, the weak
solution of the stabilized equation Eq. (4) does not neces-
sarily satisfy the variational formulation Eq. (3), and the cor-

responding errors are proportional to the mesh size (Larson
and Bengzon, 2013).

On the other hand, the SUPG stabilizes the advection
equation by adding an additional term in the test function as
in Eq. (7), whose solution satisfies the weak form Eq. (3) al-
most everywhere, except for the position where the test func-
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tions are equal to 0. In this sense, the numerical error is ex-
pected to be much smaller than the other two stabilization
methods. We therefore recommend using SUPG for the sta-
bilization technique, together with a reinitialization interval
greater than 10.

5.3 Front velocity

We anticipate the numerical errors to be scaled by the ve-
locity magnitude when solving the advection equation using
the finite-element method (Biswas et al., 1994) but not influ-
enced by the shape of the calving front. As we construct the
velocities in Table 1, for instance, with v0 = 1000 m a−1, the
mean frontal velocity during the advance phase t ∈ [nT ,(n+
1
2 )T ] is 1000 m a−1 for the uniform shape, 916.7 m a−1 for
the parabola, and 750.0 m a−1 for the triangular shape. The
corresponding numerical errors at nR = 100 with SUPG sta-
bilization are 0.44, 0.36, and 0.29 km2, respectively. Further-
more, as shown in Figs. 4 and 5, this relationship is found in
almost all the reinitialization intervals nR > 1, all stabiliza-
tion techniques, and both the low- and high-velocity scenar-
ios considered in this study.

Note that while we do not model calving explicitly in this
paper, the definition of the frontal velocity in Eq. (2) relies
on vf, which implicitly incorporates the effects of calving or
calving rate. It is important to distinguish that the velocity
of the front (vf) is not the same as the calving velocity. The
frontal velocity vf is a sum of the ice speed (which is not
necessarily normal to the ice front) and the calving rate c,
which is generally defined along the normal n. Therefore, the
ice front velocity is not necessarily orthogonal to the front in
practice.

This study primarily focused on comparing different sta-
bilization and reinitialization strategies for solving the level-
set equation, assuming that vf is known (i.e., both ice ve-
locity and calving rates are known). The main purpose of
this study is to demonstrate that even with a simple pre-
scribed frontal velocity, stabilization and reinitialization can
have a significant impact depending on the choices made. In-
corporating a realistic calving term may not necessarily pro-
vide additional insights into our study, as it is already ac-
counted for through vf in the level-set equation. Moreover,
introducing a calving law would preclude the availability of
analytical solutions, complicating the interpretability of our
results. As a future continuation of this study, as part of
the CalvingMIP project (https://github.com/JRowanJordan/
CalvingMIP/wiki, last access: 20 August 2024) the ice sheet
modeling community is testing more realistic calving veloc-
ities on more complex geometries, including constant and
time-dependent calving rates.

5.4 Different front shapes

In Appendix A, we show the results of another shape of the
ice front, which is a straight line with side walls orthogonal

to the front. The final errors of the straight front cases with
different stabilization methods, reinitialization intervals, and
velocity shapes are more or less the same as those with the
semicircle front. However, the spatial distribution of the nu-
merical error differs significantly between the two shapes.
To further investigate the source of the numerical errors, we
show the animations of the evolution of misfits in the “Video
supplement”. In the straight front cases, the misfit is initi-
ated at the two corners, where the ice front meets the side
wall of the fjord, and then propagates to the center. In con-
trast, the semicircle case generates numerical errors that do
not initiate from single sources but grow along the entire ice
front. The main reason for these differences is that the finite-
element method approximates the level-set function by pro-
jecting it onto a piecewise linear functional space. As a re-
sult, the sharp corners and the curved level-set contours are
the places where most of the numerical errors occur. On aver-
age, these approximation errors are proportional to the mesh
size, whereas the shape of the ice front actually has a negli-
gible influence on the numerical errors.

6 Conclusions

We studied multiple stabilization methods implemented in
ISSM and Úa for solving a level-set equation on an ide-
alized geometry with a reinitialization interval that varies
from once every time step up to no reinitialization. We found
that SUPG and SUPG+FAB are considerably more accurate
than the other two methods (AD and SU) for all choices of
reinitialization interval regardless of the front velocity and
ice front shape. Using other stabilization methods results in
more than 10 times larger errors in ice front positions. An
optimal choice for the reinitialization interval is nR > 10,
corresponding to a time period exceeding 2.5 weeks in our
experiments. Excessively frequent reinitialization can intro-
duce additional numerical errors surpassing those from other
sources. By identifying the most effective stabilization tech-
niques and reinitialization intervals, we can improve the reli-
ability and robustness of simulations, enabling more accurate
predictions of ice sheet behavior and its influence on future
sea level rise.
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Appendix A: A straight ice front case

We introduce an alternative ice front shape, represented as
a straight line, as depicted in Fig. A1. Similar to Fig. 1, the
ice-covered region is denoted in light blue, while the ice-free
region is in light red. The red line signifies the ice front, and
the blue lines represent the side walls of the fjord, with a
width of 10 km and a length of 20 km. The same set of exper-
iments outlined in Sect. 3 is conducted, and the total misfit at
the final time step is presented in Fig. A2.

Figure A1. The domain of the straight ice front with the coordinates
of the vertices.
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Figure A2. The total absolute misfit area at T = 50 with (a, b) uniform, (c, d) parabolic, and (e, f) triangle-shaped velocity profiles for a
straight ice front. The left column is the low-velocity scenario with v0 = 1000 m a−1, and the right column is at v0 = 5000 m a−1.
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Appendix B: Errors during the transient simulation

The numerical errors exhibit a linear scaling in time, as illus-
trated in Figs. B1 and B2 across nearly all cases. As expected,
the slopes are dictated by the velocity v0. Consequently, for
the sake of simplicity in comparison, we exclusively consider
the numerical errors at the final time step T = 50 in the main
text of this paper.

Figure B1. The evolution of the total absolute misfit area during the transient simulations with (a, b) uniform, (c, d) parabolic, and (e,
f) triangle-shaped velocity profiles for a semicircle-shaped ice front. The left column is the low-velocity scenario with v0 = 1000 m a−1, and
the right column is at v0 = 5000 m a−1.
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Figure B2. The evolution of the total absolute misfit area during the transient simulations with (a, b) uniform, (c, d) parabolic, and (e,
f) triangle-shaped velocity profiles for a straight ice front. The left column is the low-velocity scenario with v0 = 1000 m a−1, and the right
column is at v0 = 5000 m a−1.
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Appendix C: Mesh resolution

We also conducted this study using different mesh resolu-
tions, namely 200 and 400 m, and the corresponding numer-
ical errors are depicted in Fig. C1. To facilitate comparison,
we scaled the y axis by a factor of 2 and 4 for the two mesh
resolutions, respectively. As anticipated, the comparison with
results in Figs. 4 and A2 reveals a linear scaling of numerical
errors with the mesh size. Notably, in Fig. C1d, nR = 1 for
all four stabilization methods reaches the maximum possible
error, equivalent to the area of the fjord in the straight ice
front case, i.e., 75 km2.

Figure C1. The total absolute misfit area at T = 50 with a uniform velocity profile at v0 = 1000 m a−1 for (a, b) semicircle-shaped ice front
and (c, d) straight ice front. The left column is at 200 m mesh resolution, and the right column is at 400 m mesh resolution.
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Appendix D: Numerical errors influenced by the mesh
structure

We investigate the effects of structured meshes on the level-
set solutions by conducting two additional sets of experi-
ments with different mesh configurations. One experiment
employs a diagonally aligned triangular mesh, while the
other relies on a symmetric triangular mesh. The mesh illus-
trations are presented in Fig. D1, where Fig. D1a represents
the unstructured mesh used in this study. Figure D1b depicts
a diagonally aligned mesh extending from the top left to the
bottom right, while Fig. D1c shows a symmetric triangular
mesh.

Figure D2 shows the misfit between the numerical and ex-
act solutions for the diagonally aligned triangular mesh with
a mesh resolution of 100 m under a uniform velocity field
with v0 = 1000 m a−1 observed after 1.5, 2, and 50 periods.
Conversely, Fig. D3 presents the results of the same exper-
iment but on a symmetric triangular mesh. There is a clear
asymmetry in the results shown in Fig. D2 when using the
diagonally aligned triangular mesh but not for the unstruc-
tured mesh (e.g., Fig. 2) or the symmetric triangular mesh in
Fig. D3.

To further examine the diagonally aligned triangular mesh,
we refine the mesh resolution to 50 and 25 m. Figure D4
shows the misfit between the numerical and exact solutions
observed after 1.5, 2, and 50 periods with AD stabilization at
nR = 1 under a uniform velocity field with v0 = 1000 m a−1.
Although numerical errors decrease with mesh refinement,
the asymmetric error patterns persist even at a 25 m reso-
lution, which is nearly the finest mesh resolution used in
real-world applications. This experiment highlights the im-
portance of the mesh structure, particularly when geometric
reinitialization is performed, as it may significantly depend
on the organization and orientation of the elements of the
mesh.

Figure D1. Diagrams of the employed meshes: (a) unstructured mesh, (b) diagonally aligned triangular mesh, and (c) symmetric triangular
mesh.
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Figure D2. Misfit d(φ1,φ2) of the numerical solution at time t (as φ1) and its exact solution (as φ2) on a diagonally aligned triangular mesh
at the reinitialization interval nR = 1 and v0 = 1000 m a−1 with (a–c) AD, (d–f) SU, (g–i) SUPG, and (j–l) SUPG+FAB stabilizations.
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Figure D3. Misfit d(φ1,φ2) of the numerical solution at time t (as φ1) and its exact solution (as φ2) on a symmetric triangular mesh at the
reinitialization interval nR = 1 and v0 = 1000 m a−1 with (a–c) AD, (d–f) SU, (g–i) SUPG, and (j–l) SUPG+FAB stabilizations.
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Figure D4. Misfit d(φ1,φ2) of the numerical solution at time t (as φ1) and its exact solution (as φ2) on a diagonally aligned triangular mesh
using AD stabilization at the reinitialization interval nR = 1 and v0 = 1000 m a−1 with mesh size at (a–c) 100 m, (d–f) 50 m, and (g–i) 25 m.
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Appendix E: Additional experiment with a more
realistic frontal velocity

We introduce an additional numerical experiment aimed at
further improving the realism of the frontal velocity repre-
sentation. In this experiment, we modify the frontal velocity
in Eq. (16) to v(t)= v0 sin(2πt), simulating seasonal varia-
tions rather than abrupt transitions. This adjustment seeks to
emulate the dynamic movement of ice fronts influenced by
seasonal changes.

We set v0 = 1000 m a−1 with the uniform shape of front
velocity and conduct simulations at a mesh resolution of
200 m over a 50-year period. Figure E1 illustrates the evo-
lution of the total absolute misfit and their final values at
T = 50 years.

This experiment exhibits results consistent with other ex-
periments in our study, wherein the SUPG and SUPG+FAB
methods with nR > 10 have the smallest misfit areas among
all other methods. In terms of magnitude, as discussed
in Sect. 5.3, the errors are scaled by the mean velocity
at the front, calculated as 2000

∫ 1/2
0 sin(2πt)dt = 2000

π
≈

636.56 m a−1 during each advance phase and−636.56 m a−1

for the retreat phase. Consequently, these misfits are approxi-
mately 0.64 times of those depicted in Fig. C1a with the same
stabilization and reinitialization intervals.

Figure E1. (a) The total absolute misfit area at T = 50 and (b) the evolution of the total absolute misfit area during the transient simulations
with a uniform velocity profile at v(t)= 1000sin(2πt)m a−1 for semicircle-shaped ice front at 200 m mesh resolution.
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Code and data availability. ISSM version 4.23 is open source
and available at https://doi.org/10.5281/zenodo.7850841 (ISSM
Team, 2023). Úa (v2019b) is open source and available
at https://doi.org/10.5281/zenodo.3706624 (Gudmundsson, 2020).
The code and data analyses used in this paper are available at
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Video supplement. The animations that show the evolution of
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