Articles | Volume 17, issue 9
https://doi.org/10.5194/gmd-17-3993-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-3993-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global behavioural model of human fire use and management: WHAM! v1.0
The Leverhulme Centre for Wildfires, Environment, and Society, Imperial College London, SB7 2BX, London, UK
Department of Geography, King's College London, WC2B 4BG, London, UK
Matthew Kasoar
The Leverhulme Centre for Wildfires, Environment, and Society, Imperial College London, SB7 2BX, London, UK
Department of Physics, Imperial College London, London, UK
Apostolos Voulgarakis
The Leverhulme Centre for Wildfires, Environment, and Society, Imperial College London, SB7 2BX, London, UK
Department of Physics, Imperial College London, London, UK
Atmospheric Environment and Climate Change Laboratory, Technical University of Crete, Kounoupidiana, 73100, Greece
Cathy Smith
The Leverhulme Centre for Wildfires, Environment, and Society, Imperial College London, SB7 2BX, London, UK
Department of Geography, Royal Holloway, University of London, TW20 0EX, Egham, UK
Jay Mistry
The Leverhulme Centre for Wildfires, Environment, and Society, Imperial College London, SB7 2BX, London, UK
Department of Geography, Royal Holloway, University of London, TW20 0EX, Egham, UK
James D. A. Millington
The Leverhulme Centre for Wildfires, Environment, and Society, Imperial College London, SB7 2BX, London, UK
Department of Geography, King's College London, WC2B 4BG, London, UK
Related authors
Oliver Perkins, Olivia Haas, Matthew Kasoar, Apostolos Voulgarakis, and James D. A. Millington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3728, https://doi.org/10.5194/egusphere-2025-3728, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Humans impact fire indirectly through climate change, but also directly through land use and different fire management strategies. We compare two recently-developed models of global burned area with very different assumptions about the role of direct human impacts on fire. We contrast their future projections and explore the implications of differences between them for climate change adaptation and fire science more broadly.
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe, but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data, and socioeconomic data to determine what affects burning in cropland and non-cropland areas of Europe. We found different drivers of burning in cropland burning vs. non-cropland to the point that some variables, e.g. population density, had the complete opposite effects.
Oliver Perkins, Olivia Haas, Matthew Kasoar, Apostolos Voulgarakis, and James D. A. Millington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3728, https://doi.org/10.5194/egusphere-2025-3728, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Humans impact fire indirectly through climate change, but also directly through land use and different fire management strategies. We compare two recently-developed models of global burned area with very different assumptions about the role of direct human impacts on fire. We contrast their future projections and explore the implications of differences between them for climate change adaptation and fire science more broadly.
Joao C. M. Teixeira, Chantelle Burton, Douglas I. Kelley, Gerd A. Folberth, Fiona M. O'Connor, Richard A. Betts, and Apostolos Voulgarakis
EGUsphere, https://doi.org/10.5194/egusphere-2025-3066, https://doi.org/10.5194/egusphere-2025-3066, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Burnt areas produced by wildfires around the world are decreasing, especially in tropical regions, but many climate models fail to show this trend. Our study looks at whether adding a measure of human development to a fire model could improve its representation of these processes. We found that including these factors helped the model better match observations in many regions. This shows that human activity plays a key role in shaping fire trends.
Anastasios Rovithakis, Eleanor Burke, Chantelle Burton, Matthew Kasoar, Manolis G. Grillakis, Konstantinos D. Seiradakis, and Apostolos Voulgarakis
EGUsphere, https://doi.org/10.5194/egusphere-2025-274, https://doi.org/10.5194/egusphere-2025-274, 2025
Short summary
Short summary
JULES-INFERNO captures observed burned area across Greece fairly well for the present-day. Drastic future changes in burnt area in Eastern continental and southern Greece, especially under severe climate change scenarios. Static vegetation leads to larger burnt area compared to dynamic vegetation due to the lower concentration of flammable needleleaf trees.
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe, but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data, and socioeconomic data to determine what affects burning in cropland and non-cropland areas of Europe. We found different drivers of burning in cropland burning vs. non-cropland to the point that some variables, e.g. population density, had the complete opposite effects.
Katie R. Blackford, Matthew Kasoar, Chantelle Burton, Eleanor Burke, Iain Colin Prentice, and Apostolos Voulgarakis
Geosci. Model Dev., 17, 3063–3079, https://doi.org/10.5194/gmd-17-3063-2024, https://doi.org/10.5194/gmd-17-3063-2024, 2024
Short summary
Short summary
Peatlands are globally important stores of carbon which are being increasingly threatened by wildfires with knock-on effects on the climate system. Here we introduce a novel peat fire parameterization in the northern high latitudes to the INFERNO global fire model. Representing peat fires increases annual burnt area across the high latitudes, alongside improvements in how we capture year-to-year variation in burning and emissions.
Stephanie Fiedler, Vaishali Naik, Fiona M. O'Connor, Christopher J. Smith, Paul Griffiths, Ryan J. Kramer, Toshihiko Takemura, Robert J. Allen, Ulas Im, Matthew Kasoar, Angshuman Modak, Steven Turnock, Apostolos Voulgarakis, Duncan Watson-Parris, Daniel M. Westervelt, Laura J. Wilcox, Alcide Zhao, William J. Collins, Michael Schulz, Gunnar Myhre, and Piers M. Forster
Geosci. Model Dev., 17, 2387–2417, https://doi.org/10.5194/gmd-17-2387-2024, https://doi.org/10.5194/gmd-17-2387-2024, 2024
Short summary
Short summary
Climate scientists want to better understand modern climate change. Thus, climate model experiments are performed and compared. The results of climate model experiments differ, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article gives insights into the challenges and outlines opportunities for further improving the understanding of climate change. It is based on views of a group of experts in atmospheric composition–climate interactions.
Christopher D. Wells, Matthew Kasoar, Majid Ezzati, and Apostolos Voulgarakis
Atmos. Chem. Phys., 24, 1025–1039, https://doi.org/10.5194/acp-24-1025-2024, https://doi.org/10.5194/acp-24-1025-2024, 2024
Short summary
Short summary
Human-driven emissions of air pollutants, mostly caused by burning fossil fuels, impact both the climate and human health. Millions of deaths each year are caused by air pollution globally, and the future trends are uncertain. Here, we use a global climate model to study the effect of African pollutant emissions on surface level air pollution, and resultant impacts on human health, in several future emission scenarios. We find much lower health impacts under cleaner, lower-emission futures.
Joao Carlos Martins Teixeira, Chantelle Burton, Douglas I. Kelly, Gerd A. Folberth, Fiona M. O'Connor, Richard A. Betts, and Apostolos Voulgarakis
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-136, https://doi.org/10.5194/bg-2023-136, 2023
Revised manuscript not accepted
Short summary
Short summary
Representing socio-economic impacts on fires is crucial to underpin the confidence in global fire models. Introducing these into INFERNO, reduces biases and improves the modelled burnt area (BA) trends when compared to observations. Including socio-economic factors in the representation of fires in Earth System Models is important for realistically simulating BA, quantifying trends in the recent past, and for understanding the main drivers of those at regional scales.
Caili Zhong, Sibo Cheng, Matthew Kasoar, and Rossella Arcucci
Nat. Hazards Earth Syst. Sci., 23, 1755–1768, https://doi.org/10.5194/nhess-23-1755-2023, https://doi.org/10.5194/nhess-23-1755-2023, 2023
Short summary
Short summary
This paper introduces a digital twin fire model using machine learning techniques to improve the efficiency of global wildfire predictions. The proposed model also manages to efficiently adjust the prediction results thanks to data assimilation techniques. The proposed digital twin runs 500 times faster than the current state-of-the-art physics-based model.
Christopher D. Wells, Matthew Kasoar, Nicolas Bellouin, and Apostolos Voulgarakis
Atmos. Chem. Phys., 23, 3575–3593, https://doi.org/10.5194/acp-23-3575-2023, https://doi.org/10.5194/acp-23-3575-2023, 2023
Short summary
Short summary
The climate is altered by greenhouse gases and air pollutant particles, and such emissions are likely to change drastically in the future over Africa. Air pollutants do not travel far, so their climate effect depends on where they are emitted. This study uses a climate model to find the climate impacts of future African pollutant emissions being either high or low. The particles absorb and scatter sunlight, causing the ground nearby to be cooler, but elsewhere the increased heat causes warming.
João C. Teixeira, Gerd A. Folberth, Fiona M. O'Connor, Nadine Unger, and Apostolos Voulgarakis
Geosci. Model Dev., 14, 6515–6539, https://doi.org/10.5194/gmd-14-6515-2021, https://doi.org/10.5194/gmd-14-6515-2021, 2021
Short summary
Short summary
Fire constitutes a key process in the Earth system, being driven by climate as well as affecting climate. However, studies on the effects of fires on atmospheric composition and climate have been limited to date. This work implements and assesses the coupling of an interactive fire model with atmospheric composition, comparing it to an offline approach. This approach shows good performance at a global scale. However, regional-scale limitations lead to a bias in modelling fire emissions.
Carl Thomas, Apostolos Voulgarakis, Gerald Lim, Joanna Haigh, and Peer Nowack
Weather Clim. Dynam., 2, 581–608, https://doi.org/10.5194/wcd-2-581-2021, https://doi.org/10.5194/wcd-2-581-2021, 2021
Short summary
Short summary
Atmospheric blocking events are complex large-scale weather patterns which block the path of the jet stream. They are associated with heat waves in summer and cold snaps in winter. Blocking is poorly understood, and the effect of climate change is not clear. Here, we present a new method to study blocking using unsupervised machine learning. We show that this method performs better than previous methods used. These results show the potential for unsupervised learning in atmospheric science.
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, https://doi.org/10.5194/bg-18-3861-2021, 2021
Short summary
Short summary
Along with current climate, vegetation, and human influences, long-term accumulation of biomass affects fires. Here, we find that including the influence of antecedent vegetation and moisture improves our ability to predict global burnt area. Additionally, the length of the preceding period which needs to be considered for accurate predictions varies across regions.
Yawei Qu, Apostolos Voulgarakis, Tijian Wang, Matthew Kasoar, Chris Wells, Cheng Yuan, Sunil Varma, and Laura Mansfield
Atmos. Chem. Phys., 21, 5705–5718, https://doi.org/10.5194/acp-21-5705-2021, https://doi.org/10.5194/acp-21-5705-2021, 2021
Short summary
Short summary
The meteorological effect of aerosols on tropospheric ozone is investigated using global atmospheric modelling. We found that aerosol-induced meteorological effects act to reduce modelled ozone concentrations over China, which brings the simulation closer to observed levels. Our work sheds light on understudied processes affecting the levels of tropospheric gaseous pollutants and provides a basis for evaluating such processes using a combination of observations and model sensitivity experiments.
Cited articles
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., and Randerson, J. T.: A human-driven decline in global burned area, Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017.
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552, https://doi.org/10.5194/essd-11-529-2019, 2019.
Aragão, L. E. O. C., Malhi, Y., Barbier, N., Lima, A., Shimabukuro, Y., Anderson, L., and Saatchi, S.: Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia, Philos. T. R. Soc. B, 363, 1779–1785, https://doi.org/10.1098/rstb.2007.0026, 2008.
Archibald, S.: Managing the human component of fire regimes: lessons from Africa, Philos. T. R. Soc. B, 371, 20150346, https://doi.org/10.1098/rstb.2015.0346, 2016.
Arneth, A., Brown, C., and Rounsevell, M. D. A.: Global models of human decision-making for land-based mitigation and adaptation assessment, Nat. Clim. Change, 4, 550–557, https://doi.org/10.1038/nclimate2250, 2014.
Bandara, S., Rajeev, P., and Gad, E.: Power Distribution System Faults and Wildfires: Mechanisms and Prevention, Forests, 14, 1146, https://doi.org/10.3390/f14061146, 2023.
Beaulaton, D.: Forêts sacrées et sanctuaires boisés. Des créations culturelles et biologiques (Burkina Faso, Togo, Bénin), Éditions Karthala, Paris, 280 pp., ISBN 978-2-8111-0348-4, 2010.
Bendel, C., Toledo, D., Hovick, T., and McGranahan, D.: Using Behavioral Change Models to Understand Private Landowner Perceptions of Prescribed Fire in North Dakota, Rangeland Ecol. Manag., 73, 194–200, https://doi.org/10.1016/j.rama.2019.08.014, 2020.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Bhuvaneshwari, S., Hettiarachchi, H., and Meegoda, J. N.: Crop Residue Burning in India: Policy Challenges and Potential Solutions, Int. J. Env. Res. Pub. He., 16, 832, https://doi.org/10.3390/ijerph16050832, 2019.
Bilbao, B., Mistry, J., Millán, A., and Berardi, A.: Sharing Multiple Perspectives on Burning: Towards a Participatory and Intercultural Fire Management Policy in Venezuela, Brazil, and Guyana, Fire, 2, 39, https://doi.org/10.3390/fire2030039, 2019.
Birthal, P. S., Chand, R., Joshi, P. K., Saxena, R., Rajkhowa, P., Khan, Md. T., Khan, Mohd. A., and Chaudhary, K. R.: Formal versus informal: Efficiency, inclusiveness and financing of dairy value chains in Indian Punjab, J. Rural Stud., 54, 288–303, https://doi.org/10.1016/j.jrurstud.2017.06.009, 2017.
Brennan, T. J. and Keeley, J. E.: Impacts of Mastication Fuel Treatments on California, USA, Chaparral Vegetation Structure and Composition, Fire. Ecol., 13, 120–138, https://doi.org/10.4996/fireecology.130312013, 2017.
Burton, C., Betts, R., Cardoso, M., Feldpausch, T. R., Harper, A., Jones, C. D., Kelley, D. I., Robertson, E., and Wiltshire, A.: Representation of fire, land-use change and vegetation dynamics in the Joint UK Land Environment Simulator vn4.9 (JULES), Geosci. Model Dev., 12, 179–193, https://doi.org/10.5194/gmd-12-179-2019, 2019.
Cammelli, F., Garrett, R. D., Barlow, J., and Parry, L.: Fire risk perpetuates poverty and fire use among Amazonian smallholders, Global Environ. Chang., 63, 102096, https://doi.org/10.1016/j.gloenvcha.2020.102096, 2020.
Cano-Crespo, A., Oliveira, P. J. C., Boit, A., Cardoso, M., and Thonicke, K.: Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures, J. Geophys. Res.-Biogeo., 120, 2095–2107, https://doi.org/10.1002/2015JG002914, 2015.
Chen, Y., Hall, J., van Wees, D., Andela, N., Hantson, S., Giglio, L., van der Werf, G. R., Morton, D. C., and Randerson, J. T.: Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5), Earth Syst. Sci. Data, 15, 5227–5259, https://doi.org/10.5194/essd-15-5227-2023, 2023.
CIESIN (Center for International Earth Science Information Network): Gridded Population of the World, Version 4.11 (GPWv4), NASA Socioeconomic Data and Applications Center (SEDAC), https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (last access: 13 May 2024), 2017.
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011.
Cochrane, M. A. and Barber, C. P.: Climate change, human land use and future fires in the Amazon, Glob. Change Biol., 15, 601–612, https://doi.org/10.1111/j.1365-2486.2008.01786.x, 2009.
Deshpande, M. V., Pillai, D., and Jain, M.: Detecting and quantifying residue burning in smallholder systems: An integrated approach using Sentinel-2 data, Int. J. Appl. Earth Obs., 108, 102761, https://doi.org/10.1016/j.jag.2022.102761, 2022.
Eloy, L., Hecht, S., Steward, A., and Mistry, J.: Firing up: Policy, politics and polemics under new and old burning regimes, Geograph. J., 185, 2–9, https://doi.org/10.1111/geoj.12293, 2019a.
Eloy, L., Bilbao, A. B., Mistry, J., and Schmidt, I. B.: From fire suppression to fire management: Advances and resistances to changes in fire policy in the savannas of Brazil and Venezuela, Geograph. J., 185, 10–22, https://doi.org/10.1111/geoj.12245, 2019b.
Fernandes, P. M., Pacheco, A. P., Almeida, R., and Claro, J.: The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal, Eur. J. Forest Res., 135, 253–262, https://doi.org/10.1007/s10342-015-0933-8, 2016.
Foramitti, J.: AgentPy: A package for agent-based modeling in Python, Journal of Open Source Software, 6, 3065, https://doi.org/10.21105/joss.03065, 2021.
Ford, A. E., Harrison, S. P., Kountouris, Y., Millington, J. D., Mistry, J., Perkins, O., Rabin, S. S., Rein, G., Schreckenberg, K., and Smith, C.: Modelling human-fire interactions: combining alternative perspectives and approaches, Frontiers in Environmental Science, 9, 649835, https://doi.org/10.3389/fenvs.2021.649835, 2021.
Forkel, M., Andela, N., Harrison, S. P., Lasslop, G., van Marle, M., Chuvieco, E., Dorigo, W., Forrest, M., Hantson, S., Heil, A., Li, F., Melton, J., Sitch, S., Yue, C., and Arneth, A.: Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models, Biogeosciences, 16, 57–76, https://doi.org/10.5194/bg-16-57-2019, 2019.
Gaveau, D. L. A., Descals, A., Salim, M. A., Sheil, D., and Sloan, S.: Refined burned-area mapping protocol using Sentinel-2 data increases estimate of 2019 Indonesian burning, Earth Syst. Sci. Data, 13, 5353–5368, https://doi.org/10.5194/essd-13-5353-2021, 2021.
Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4), J. Geophys. Res.-Biogeo., 118, 317–328, https://doi.org/10.1002/jgrg.20042, 2013.
Gil-Romera, G., Turton, D., and Sevilla-Callejo, M.: Landscape change in the lower Omo valley, southwestern Ethiopia: burning patterns and woody encroachment in the savanna, J. East. Afr. Stud., 5, 108–128, https://doi.org/10.1080/17531055.2011.544550, 2011.
Haas, O., Prentice, I. C., and Harrison, S. P.: Global environmental controls on wildfire burnt area, size, and intensity, Environ. Res. Lett., 17, 065004, https://doi.org/10.1088/1748-9326/ac6a69, 2022.
Haberl, H., Erb, K. H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W., and Fischer-Kowalski, M.: Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems, P. Natl. Acad. Sci., 104, 12942–12947, https://doi.org/10.1073/pnas.0704243104, 2007.
Hall, J. V., Zibtsev, S. V., Giglio, L., Skakun, S., Myroniuk, V., Zhuravel, O., Goldammer, J. G., and Kussul, N.: Environmental and political implications of underestimated cropland burning in Ukraine, Environ. Res. Lett., 16, 064019, https://doi.org/10.1088/1748-9326/abfc04, 2021.
Hall, J. V., Argueta, F., Zubkova, M., Chen, Y., Randerson, J. T., and Giglio, L.: GloCAB: global cropland burned area from mid-2002 to 2020, Earth Syst. Sci. Data, 16, 867–885, https://doi.org/10.5194/essd-16-867-2024, 2024.
Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C., Rabin, S. S., Archibald, S., Mouillot, F., Arnold, S. R., Artaxo, P., Bachelet, D., Ciais, P., Forrest, M., Friedlingstein, P., Hickler, T., Kaplan, J. O., Kloster, S., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Meyn, A., Sitch, S., Spessa, A., van der Werf, G. R., Voulgarakis, A., and Yue, C.: The status and challenge of global fire modelling, Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, 2016.
Harr, R. N., Morton, L. W., Rusk, S. R., Engle, D. M., Miller, J. R., and Debinski, D.: Landowners' perceptions of risk in grassland management: woody plant encroachment and prescribed fire, Ecol. Soc., 19, https://doi.org/10.5751/ES-06404-190241, 2014.
Harrison, S. P., Prentice, I. C., Bloomfield, K. J., Dong, N., Forkel, M., Forrest, M., Ningthoujam, R. K., Pellegrini, A., Shen, Y., Baudena, M., Cardoso, A. W., Huss, J. C., Joshi, J., Oliveras, I., Pausas, J. G., and Simpson, K. J.: Understanding and modelling wildfire regimes: an ecological perspective, Environ. Res. Lett., 16, 125008, https://doi.org/10.1088/1748-9326/ac39be, 2021.
Heinimann, A., Mertz, O., Frolking, S., Christensen, A. E., Hurni, K., Sedano, F., Chini, L. P., Sahajpal, R., Hansen, M., and Hurtt, G.: A global view of shifting cultivation: Recent, current, and future extent, PLOS ONE, 12, e0184479, https://doi.org/10.1371/journal.pone.0184479, 2017.
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020.
Jenkins, J. S., Abatzoglou, J. T., Rupp, D. E., and Fleishman, E.: Human and climatic influences on wildfires ignited by recreational activities in national forests in Washington, Oregon, and California, Environ. Res. Commun., 5, 095002, https://doi.org/10.1088/2515-7620/acf4e2, 2023.
Jiang, N., Li, P., and Feng, Z.: Remote sensing of swidden agriculture in the tropics: A review, Int. J. Appl. Earth Obs., 112, 102876, https://doi.org/10.1016/j.jag.2022.102876, 2022.
Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., and Le Quéré, C.: Global and Regional Trends and Drivers of Fire Under Climate Change, Rev. Geophys., 60, e2020RG000726, https://doi.org/10.1029/2020RG000726, 2022.
Kelley, D. I., Bistinas, I., Whitley, R., Burton, C., Marthews, T. R., and Dong, N.: How contemporary bioclimatic and human controls change global fire regimes, Nat. Clim. Change, 9, 690–696, https://doi.org/10.1038/s41558-019-0540-7, 2019.
Kelly, L. T., Giljohann, K. M., Duane, A., Aquilué, N., Archibald, S., Batllori, E., Bennett, A. F., Buckland, S. T., Canelles, Q., Clarke, M. F., Fortin, M.-J., Hermoso, V., Herrando, S., Keane, R. E., Lake, F. K., McCarthy, M. A., Morán-Ordóñez, A., Parr, C. L., Pausas, J. G., Penman, T. D., Regos, A., Rumpff, L., Santos, J. L., Smith, A. L., Syphard, A. D., Tingley, M. W., and Brotons, L.: Fire and biodiversity in the Anthropocene, Science, 370, eabb0355, https://doi.org/10.1126/science.abb0355, 2020.
Knorr, W., Kaminski, T., Arneth, A., and Weber, U.: Impact of human population density on fire frequency at the global scale, Biogeosciences, 11, 1085–1102, https://doi.org/10.5194/bg-11-1085-2014, 2014.
Kummu, M., Taka, M., Guillaume, J. H. A.: Gridded global datasets for Gross Domestic Product and Human Development Index over 1990–2015, Scientific Data, 5, 180004, https://doi.org/10.1038/sdata.2018.4, 2018.
Kreuter, U. P., Woodard, J. B., Taylor, C. A., and Teague, W. R.: Perceptions of Texas Landowners Regarding Fire and Its Use, Rangeland Ecology & Management, 61, 4, https://doi.org/10.2111/07-144.1, 2008.
Lambin, E. F. and Meyfroidt, P.: Land use transitions: Socio-ecological feedback versus socio-economic change, Land Use Policy, 27, 108–118, https://doi.org/10.1016/j.landusepol.2009.09.003, 2010.
Langer, E. R. and McGee, T. K.: Wildfire risk awareness and prevention by predominantly Māori rural residents, Karikari Peninsula, Aotearoa New Zealand, Int. J. Wildland Fire, 26, 820–828, https://doi.org/10.1071/WF16133, 2017.
Laris, P.: Burning the Seasonal Mosaic: Preventative Burning Strategies in the Wooded Savanna of Southern Mali, Human Ecol., 30, 155–186, https://doi.org/10.1023/A:1015685529180, 2002.
Lasslop, G., Coppola, A. I., Voulgarakis, A., Yue, C., and Veraverbeke, S.: Influence of Fire on the Carbon Cycle and Climate, Curr. Clim. Change Rep., 5, 112–123, https://doi.org/10.1007/s40641-019-00128-9, 2019.
Lin, M. and Begho, T.: Crop residue burning in South Asia: A review of the scale, effect, and solutions with a focus on reducing reactive nitrogen losses, J. Environ. Manage., 314, 115104, https://doi.org/10.1016/j.jenvman.2022.115104, 2022.
Liu, T., Marlier, M. E., Karambelas, A., Jain, M., Singh, S., Singh, M. K., Gautam, R., and DeFries, R. S.: Missing emissions from post-monsoon agricultural fires in northwestern India: regional limitations of MODIS burned area and active fire products, Environ. Res. Commun., 1, 011007, https://doi.org/10.1088/2515-7620/ab056c, 2019.
Liverpool-Tasie, L. S. O., Wineman, A., Young, S., Tambo, J., Vargas, C., Reardon, T., Adjognon, G. S., Porciello, J., Gathoni, N., Bizikova, L., Galiè, A., and Celestin, A.: A scoping review of market links between value chain actors and small-scale producers in developing regions, Nat. Sustain., 3, 799–808, https://doi.org/10.1038/s41893-020-00621-2, 2020.
Lopes, A. A., Viriyavipart, A., and Tasneem, D.: The role of social influence in crop residue management: Evidence from Northern India, Ecol. Econ., 169, 106563, https://doi.org/10.1016/j.ecolecon.2019.106563, 2020.
Ma, L., Hurtt, G. C., Chini, L. P., Sahajpal, R., Pongratz, J., Frolking, S., Stehfest, E., Klein Goldewijk, K., O'Leary, D., and Doelman, J. C.: Global rules for translating land-use change (LUH2) to land-cover change for CMIP6 using GLM2, Geosci. Model Dev., 13, 3203–3220, https://doi.org/10.5194/gmd-13-3203-2020, 2020.
Maharani, C. D., Moeliono, M., Wong, G. Y., Brockhaus, M., Carmenta, R., and Kallio, M.: Development and equity: A gendered inquiry in a swidden landscape, Forest Policy Econ., 101, 120–128, https://doi.org/10.1016/j.forpol.2018.11.002, 2019.
Mangeon, S., Voulgarakis, A., Gilham, R., Harper, A., Sitch, S., and Folberth, G.: INFERNO: a fire and emissions scheme for the UK Met Office's Unified Model, Geosci. Model Dev., 9, 2685–2700, https://doi.org/10.5194/gmd-9-2685-2016, 2016.
Millington, J. D. A., Perkins, O., and Smith, C.: Human Fire Use and Management: A Global Database of Anthropogenic Fire Impacts for Modelling, Fire, 5, 87, https://doi.org/10.3390/fire5040087, 2022.
Mistry, J., Bilbao, B. A., and Berardi, A.: Community owned solutions for fire management in tropical ecosystems: case studies from Indigenous communities of South America, Philos. T. R. Soc. B, 371, 20150174, https://doi.org/10.1098/rstb.2015.0174, 2016.
Morton, D. C., DeFries, R. S., Shimabukuro, Y. E., Anderson, L. O., Arai, E., del Bon Espirito-Santo, F., Freitas, R., and Morisette, J.: Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon, P. Natl. Acad. Sci., 103, 14637–14641, https://doi.org/10.1073/pnas.0606377103, 2006.
Murray-Rust, D., Brown, C., van Vliet, J., Alam, S. J., Robinson, D. T., Verburg, P. H., and Rounsevell, M.: Combining agent functional types, capitals and services to model land use dynamics, Environ. Model. Softw., 59, 187–201, https://doi.org/10.1016/j.envsoft.2014.05.019, 2014.
Nelson, E. L., Khan, S. A., Thorve, S., and Greenough, P. G.: Modeling pastoralist movement in response to environmental variables and conflict in Somaliland: Combining agent-based modeling and geospatial data, PLOS ONE, 15, e0244185, https://doi.org/10.1371/journal.pone.0244185, 2020.
Pausas, J. G., Keeley, J. E., and Schwilk, D. W.: Flammability as an ecological and evolutionary driver, J. Ecol., 105, 289–297, https://doi.org/10.1111/1365-2745.12691, 2017.
Perkins, O. and Millington, J. D. A.: DAFI: A global database of Anthropogenic Fire, Figshare [data set], https://doi.org/10.6084/m9.figshare.c.5290792.v4, 2021.
Perkins, O., Matej, S., Erb, K., and Millington, J.: Towards a global behavioural model of anthropogenic fire: The spatiotemporal distribution of land-fire systems, Socio-Environmental Systems Modelling, 4, 18130–18130, https://doi.org/10.18174/sesmo.18130, 2022.
Perkins, O., Millington, J., Kasoar, M., Voulgarakis, A., Smith, C., and Mistry, J.: OliPerkins1987/Wildfire_Human_Agency_Model: v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.8319310, 2023a.
Perkins, O., Millington, J., Kasoar, M., Voulgarakis, A., Smith, C., and Mistry, J.: Data for running WHAM! v1.0 (1.0), Zenodo, https://doi.org/10.5281/zenodo.8319375 [data set], 2023b.
Perkins, O., Alexander, P., Arneth, A., Brown, C., Millington, J., Rounsevell, M.: Towards quantification of the feasible potential of land-based carbon dioxide removal, One Earth, 6, 1638–1651, https://doi.org/10.1016/j.oneear.2023.11.011, 2023c.
Pyne, S. J.: Fire: A Brief History, University of Washington Press, Seattle, WA, USA, ISBN 9781742236964, 2019.
Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D. S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voulgarakis, A., Kelley, D. I., Prentice, I. C., Sitch, S., Harrison, S., and Arneth, A.: The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions, Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, 2017.
Rabin, S. S., Ward, D. S., Malyshev, S. L., Magi, B. I., Shevliakova, E., and Pacala, S. W.: A fire model with distinct crop, pasture, and non-agricultural burning: use of new data and a model-fitting algorithm for FINAL.1, Geosci. Model Dev., 11, 815–842, https://doi.org/10.5194/gmd-11-815-2018, 2018.
Ribiero, A., Santos, L. Randerson, J., Uribe, M., Alencar, A., Macedo, M., Morton, D., Zscheischler, J., Silvestrini, R., Rattis, L., Seneviratne, S., and Brando, P.: The time since land-use transition drives changes in fire activity in the Amazon-Cerrado region, Nature Communications Earth & Environment, 5, 96, https://doi.org/10.1038/s43247-024-01248-3, 2024.
Robinson, D. T., Di Vittorio, A., Alexander, P., Arneth, A., Barton, C. M., Brown, D. G., Kettner, A., Lemmen, C., O'Neill, B. C., Janssen, M., Pugh, T. A. M., Rabin, S. S., Rounsevell, M., Syvitski, J. P., Ullah, I., and Verburg, P. H.: Modelling feedbacks between human and natural processes in the land system, Earth Syst. Dynam., 9, 895–914, https://doi.org/10.5194/esd-9-895-2018, 2018.
Rosan, T. M., Sitch, S., Mercado, L. M., Heinrich, V., Friedlingstein, P., and Aragão, L. E. O. C.: Fragmentation-Driven Divergent Trends in Burned Area in Amazonia and Cerrado, Frontiers in Forests and Global Change, 5, https://doi.org/10.3389/ffgc.2022.801408, 2022.
Rounsevell, M. D. A., Robinson, D. T., and Murray-Rust, D.: From actors to agents in socio-ecological systems models, Philos. T. R. Soc. B, 367, 259–269, https://doi.org/10.1098/rstb.2011.0187, 2012.
Scott, J. C.: Weapons of the Weak: Everyday Forms of Peasant Resistance, Yale University Press, ISBN 9780300036411, 1985.
Seijo, F., Millington, J. D. A., Gray, R., Sanz, V., Lozano, J., García-Serrano, F., Sangüesa-Barreda, G., and Julio Camarero, J.: Forgetting fire: Traditional fire knowledge in two chestnut forest ecosystems of the Iberian Peninsula and its implications for European fire management policy, Land Use Policy, 47, 130–144, https://doi.org/10.1016/j.landusepol.2015.03.006, 2015.
Sembhi, H., Wooster, M., Zhang, T., Sharma, S., Singh, N., Agarwal, S., Boesch, H., Gupta, S., Misra, A., Tripathi, S. N., Mor, S., and Khaiwal, R.: Post-monsoon air quality degradation across Northern India: assessing the impact of policy-related shifts in timing and amount of crop residue burnt, Environ. Res. Lett., 15, 104067, https://doi.org/10.1088/1748-9326/aba714, 2020.
Seo, B., Brown, C., and Rounsevell, M.: Evaluation and Calibration of an Agent Based Land use Model Using Remotely Sensed Land Cover and Primary Productivity Data, in: IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, 22–27 July 2018, Valencia, Spain, 7472–7475, https://doi.org/10.1109/IGARSS.2018.8518023, 2018.
Silva, R. F. B. da, Batistella, M., Dou, Y., Moran, E., Torres, S. M., and Liu, J.: The Sino–Brazilian Telecoupled Soybean System and Cascading Effects for the Exporting Country, Land, 6, 53, https://doi.org/10.3390/land6030053, 2017.
Sizov, O., Ezhova, E., Tsymbarovich, P., Soromotin, A., Prihod'ko, N., Petäjä, T., Zilitinkevich, S., Kulmala, M., Bäck, J., and Köster, K.: Fire and vegetation dynamics in northwest Siberia during the last 60 years based on high-resolution remote sensing, Biogeosciences, 18, 207–228, https://doi.org/10.5194/bg-18-207-2021, 2021.
Smith, C., Perkins, O., and Mistry, J.: Global decline in subsistence-oriented and smallholder fire use, Nat. Sustain., 5, 542–551, https://doi.org/10.1038/s41893-022-00867-y, 2022.
Soares-Filho, B., Rajão, R., Macedo, M., Carneiro, A., Costa, W., Coe, M., Rodrigues, H., and Alencar, A.: Cracking Brazil's Forest Code, Science, 344, 363–364, https://doi.org/10.1126/science.1246663, 2014.
Steen-Adams, M. M., Charnley, S., and Adams, M. D.: Historical perspective on the influence of wildfire policy, law, and informal institutions on management and forest resilience in a multiownership, frequent-fire, coupled human and natural system in Oregon, USA, Ecol. Soc., 22, https://doi.org/10.5751/ES-09399-220323, 2017.
Suyanto, S.: Underlying cause of fire: Different form of land tenure conflicts in Sumatra, Mitig. Adapt. Strat. Gl., 12, 67–74, https://doi.org/10.1007/s11027-006-9039-4, 2007.
Teckentrup, L., Harrison, S. P., Hantson, S., Heil, A., Melton, J. R., Forrest, M., Li, F., Yue, C., Arneth, A., Hickler, T., Sitch, S., and Lasslop, G.: Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models, Biogeosciences, 16, 3883–3910, https://doi.org/10.5194/bg-16-3883-2019, 2019.
UNEP.: Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires, United Nations Environment Programme, http://www.unep.org/resources/report/spreading-wildfire-rising-threat-extraordinary-landscape-fires (last access: 15 May 2024), 2022.
van der Sluis, T., Pedroli, B., Kristensen, S. B. P., Lavinia Cosor, G., and Pavlis, E.: Changing land use intensity in Europe – Recent processes in selected case studies, Land Use Policy, 57, 777–785, https://doi.org/10.1016/j.landusepol.2014.12.005, 2016.
van Marle, M. J. E., Field, R. D., van der Werf, G. R., Estrada de Wagt, I. A., Houghton, R. A., Rizzo, L. V., Artaxo, P., and Tsigaridis, K.: Fire and deforestation dynamics in Amazonia (1973–2014), Global Biogeochem. Cy., 31, 24–38, https://doi.org/10.1002/2016GB005445, 2017.
van Wees, D., van der Werf, G. R., Randerson, J. T., Rogers, B. M., Chen, Y., Veraverbeke, S., Giglio, L., and Morton, D. C.: Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED), Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, 2022.
van Zyl, J.: The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography, Acta Astronaut., 48, 559–565. https://doi.org/10.1016/S0094-5765(01)00020-0, 2001.
Verburg, P. H., Ellis, E. C., Letourneau, A.: A global assessment of market accessibility and market influence for global environmental change studies, Environ. Res. Lett., 6, 034019, https://doi.org/10.1088/1748-9326/6/3/034019, 2011.
Villoria, N., Garrett, R., Gollnow, F., and Carlson, K.: Leakage does not fully offset soy supply-chain efforts to reduce deforestation in Brazil, Nat. Commun., 13, 5476, https://doi.org/10.1038/s41467-022-33213-z, 2022.
Wiltshire, A. J., Duran Rojas, M. C., Edwards, J. M., Gedney, N., Harper, A. B., Hartley, A. J., Hendry, M. A., Robertson, E., and Smout-Day, K.: JULES-GL7: the Global Land configuration of the Joint UK Land Environment Simulator version 7.0 and 7.2, Geosci. Model Dev., 13, 483–505, https://doi.org/10.5194/gmd-13-483-2020, 2020.
Zhang, T., Wooster, M. J., De Jong, M. C., and Xu, W.: How Well Does the `Small Fire Boost' Methodology Used within the GFED4.1s Fire Emissions Database Represent the Timing, Location and Magnitude of Agricultural Burning?, Remote Sens.-Basel, 10, 823, https://doi.org/10.3390/rs10060823, 2018.
Short summary
Wildfire is often presented in the media as a danger to human life. Yet globally, millions of people’s livelihoods depend on using fire as a tool. So, patterns of fire emerge from interactions between humans, land use, and climate. This complexity means scientists cannot yet reliably say how fire will be impacted by climate change. So, we developed a new model that represents globally how people use and manage fire. The model reveals the extent and diversity of how humans live with and use fire.
Wildfire is often presented in the media as a danger to human life. Yet globally, millions of...