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Abstract. Fire is an integral ecosystem process and a ma-
jor natural source of vegetation disturbance globally. Yet at
the same time, humans use and manage fire in diverse ways
and for a huge range of purposes. Therefore, it is perhaps un-
surprising that a central finding of the first Fire Model Inter-
comparison Project was simplistic representation of humans
is a substantial shortcoming in the fire modules of dynamic
global vegetation models (DGVMs). In response to this chal-
lenge, we present a novel, global geospatial model that seeks
to capture the diversity of human–fire interactions. Empiri-
cally grounded with a global database of anthropogenic fire
impacts, WHAM! (the Wildfire Human Agency Model) rep-
resents the underlying behavioural and land system drivers
of human approaches to fire management and their impact
on fire regimes. WHAM! is designed to be coupled with
DGVMs (JULES-INFERNO in the current instance), such
that human and biophysical drivers of fire on Earth, and
their interactions, can be captured in process-based models
for the first time. Initial outputs from WHAM! presented
here are in line with previous evidence suggesting managed
anthropogenic fire use is decreasing globally and point to
land use intensification as the underlying reason for this phe-
nomenon.

1 Introduction

Fire is a fundamental earth-system process and a key driver
of global vegetation dynamics (Pausas et al., 2017). Yet at
the same time humans use fire for a large range of pur-
poses (Smith et al., 2022), from disposal of agricultural
residue (Lin and Begho, 2022) to social ceremonies (Beaula-
ton, 2010). Anthropogenic fire management strategies are
similarly diverse, spanning preventative strategies such as
indigenous patch burning (Laris, 2002) to fire exclusion
through industrial fire extinguishing (Eloy et al., 2019a). Fur-
thermore, humans influence fire regimes not only directly,
through starting and managing fires, but also indirectly, by
altering and fragmenting fuel loads (Harrison et al., 2021;
Rosan et al., 2022), for example through road-building (Haas
et al., 2022), livestock grazing (Archibald, 2016), and log-
ging (Cochrane and Barber, 2009).

As such, present-day wildfire regimes are best understood
as a coupled socio-ecological system (Kelley et al., 2019;
Ford et al., 2021), in which people are the largest driver of
changes to the frequency, intensity, and extent of fire (Kelly
et al., 2020; Andela et al., 2017). Given the extent and di-
versity of human–fire interactions, it is perhaps not surpris-
ing that the recently completed Fire Model Intercomparison
Project (FIREMIP; Hantson et al., 2016) found that repre-
sentation of humans is a substantial shortcoming in current
fire-enabled dynamic global vegetation models (DGVMs).
Representation of humans was the biggest cause of disparity
between model outputs (Teckentrup et al., 2019) and a ma-
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jor contributor to divergence between models and remotely
sensed observations (Forkel et al., 2019). Models did not
agree on the magnitude or the direction of the anthropogenic
influence on burned area over the last century (Teckentrup
et al., 2019).

Underlying this issue are DGVMs’ simplistic represen-
tations of human activity. To this point, inclusion of an-
thropogenic influences on fire regimes has been limited to
globally homogenous functions based on population density
and/or GDP (Rabin et al., 2018; Ford et al., 2021). These ap-
proaches treat all anthropogenic fires as similar events and
therefore do not account for the diverse ways in which hu-
mans use and manage fire in contrasting land use systems
and underlying socio-ecological contexts. This makes sep-
arating the role of biophysical drivers of fire regimes from
human fire use and management, and from anthropogenic
changes to fuel load, a substantial research challenge (Jones
et al., 2022). Indeed, integration of managed anthropogenic
fire into models at all scales has been identified as a ma-
jor step required to “reimagine fire science for the Anthro-
pocene” (Shuman et al., 2022). Lack of adequate representa-
tion of humans in DGVMs limits their ability to predict the
future of fire on Earth, which, consequently, affects the qual-
ity of forecasts of future emissions of carbon and air pollu-
tants in Earth system models (ESMs; Lasslop et al., 2019).

Here, we present a new model that seeks to address this
challenge. Drawing on agent-based approaches, the model –
WHAM! (Wildfire Human Agency Model) – captures the
drivers and distribution of human fire use and management
globally. Importantly, it represents the influence of categor-
ical differences in land use systems – arable farming, live-
stock farming, forestry, and non-extractive land uses such
as conservation and recreation – on human fire management
strategies.

One reason for currently limited approaches to represent-
ing anthropogenic impacts on fire regimes has been a lack of
systematic data from which to derive alternative parameter-
isations (Forkel et al., 2019; Jones et al., 2022). WHAM!’s
empirical foundation is the Database of Anthropogenic Fire
Impacts (DAFI), which was developed to address this issue
(Millington et al., 2022). DAFI contains data from 1809 case
studies of human–fire interactions, sourced primarily from
the academic literature, as well as the “grey” literature of
government and NGO reports. DAFI, which is freely avail-
able online (Perkins and Millington, 2021), enables WHAM!
to represent the processes that drive human impacts on fire
regimes from the bottom up.

A concurrent data issue has been that the majority of
anthropogenic fires have not been captured in global-scale
Earth observation products (Zhang et al., 2018). Anthro-
pogenic fires are typically small: > 50 % are smaller than
the 21 ha size at which MODIS can reliably detect them
(Millington et al., 2022). This has made the evaluation of rep-
resentations of anthropogenic fire challenging, often leading
to circular calibration of modelled fire counts and/or burned

area to a structurally biased observational record (Tecken-
trup et al., 2019). However, with recent advances in fine-
scale remote sensing of burned area (e.g. Gaveau et al., 2021;
Chen et al., 2023), it is now possible to capture much more
of the anthropogenic signal. As such, with the combination
of DAFI and fine-scale Earth observation products, an inde-
pendent evaluation of process-based model representation of
anthropogenic influences on fire regimes is now possible.

Anthropogenic fire can be broadly categorised into
three components: managed fire, unmanaged fires, and es-
caped fires (UNEP, 2022). For managed fire, Millington
et al. (2022) identify seven central modes of anthropogenic
fire use, which range from field preparation in shifting cul-
tivation systems to prescribed fire for biodiversity conser-
vation. Unmanaged anthropogenic fire comprises accidental
fires from cigarette butts or machinery failure, as well as ar-
son (Scott, 1985). Escaped fire is when a managed fire grows
beyond its original purpose to become an unmanaged wild-
fire (e.g. Cano-Crespo et al., 2015). Of these three categories,
calculating burned area from managed anthropogenic fire can
be done within WHAM! itself, as a function of the land sys-
tem and land user objectives. However, the burned area from
unmanaged and escaped anthropogenic fires can only be cal-
culated through coupling with a biophysical fire model.

Therefore, as fire regimes emerge from a combination of
anthropogenic and biophysical influences, WHAM! has been
developed to be coupled with DGVMs, in the first instance
JULES-INFERNO, the fire-enabled dynamic global vegeta-
tion model in the UK Earth System Model (Mangeon et al.,
2016; Burton et al., 2019). This model coupling will al-
low process-based representations of anthropogenic and bio-
physical drivers to be integrated to form a cohesive socio-
ecological simulation of global fire regimes. In this paper
we present WHAM! as a standalone or “isolated” model
(sensu Robinson et al., 2018), and so the model evaluation
focuses on managed fire, particularly a comparison of crop-
land fires from WHAM! with the GFED5 crop fires product
(Hall et al., 2024). As WHAM! is an empirical model, the
performance metrics of statistical parameterisations against
DAFI data are also provided (Sect. S3). However, outside of
croplands global burned area products do not differentiate
between managed and unmanaged fires (Chen et al., 2023),
so full evaluation of WHAM! will only be possible after cou-
pling with JULES-INFERNO, when a complete picture of
global burned area can be calculated.

To facilitate the planned coupling of WHAM! with
JULES-INFERNO, the parameterisation of WHAM! pre-
sented in the main text takes relevant biophysical input vari-
ables from JULES model outputs. However, as our intention
is ultimately that WHAM! can be coupled with multiple fire-
enabled DGVMs, we have also parameterised WHAM! using
Earth observation products for its biophysical inputs. The dif-
ferences between the EO-driven version, named “WHAM-
EO” (for WHAM! Earth Observation), and the default ver-
sion of WHAM! are described in Sect. S1 of the Supplement.
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Figure 1. From Perkins et al. (2023c): schematic representation of the structural changes to INFERNO enabled by WHAM! integration.
Rather than treating all fires as similar events, the WHAM! integration can differentiate between managed fires – which spread primarily
according to anthropogenic land management objectives – and unmanaged fires, which spread principally according to biophysical drivers.

Some guidance for developers of other DGVMs on how to
integrate WHAM! inputs is offered in Sect. S6.

2 Methods

The typical time steps adopted by DGVMs (e.g. hourly or
daily) are not relevant for large-scale modelling of human
decision-making (Arneth et al., 2014). As such, WHAM!
runs at an annual time step, in line with other geospatial
land use models run at large spatial extents (e.g. Murray-Rust
et al., 2014). WHAM! can be parameterised at different spa-
tial resolutions but is here set up to run at the spatial resolu-
tion of JULES adopted in CMIP6 (1.875°× 1.25°; Wiltshire
et al., 2020).

From a model structure perspective, WHAM! replaces
globally uniform functions generating numbers of anthro-
pogenic “ignitions” with a process-based representation of
anthropogenic fire use and management. An overview of
these changes is given in Fig. 1. WHAM! outputs, therefore,
are burned area from managed anthropogenic fire as a frac-
tion of each model grid cell, unmanaged anthropogenic fires
as number of fires km−2 yr−1, and fire suppression intensity
on a dimensionless scale (0–1; Table 1).

WHAM! is presented in the following stages. Firstly, we
present the procedure to allocate categorical types of land
user spatially (building on Perkins et al., 2022, Sect. 2.1).
Secondly, we describe calculation of anthropogenic managed
fire (Sect. 2.2) and, thirdly, unmanaged fires (Sect. 2.3). Fire

Table 1. Overview of WHAM! outputs and respective units; burned
area from unmanaged anthropogenic fires – including the impact of
fire suppression – will be calculated by a DGVM (initially JULES-
INFERNO) as a part of a coupled model ensemble.

Variable Section Output units

Managed fire 2.2 Burned area (fraction of grid cell)
Unmanaged fire 2.3 Fire counts (km−2 yr−1)
Fire suppression 2.4 Suppression intensity (0–1;

dimensionless)

suppression is described in Sect. 2.4. Setup of historical runs
and model evaluation are described in Sects. 2.5 and 2.6.
WHAM! is written in Python 3.8 using the AgentPy library
(Foramitti, 2021). Model code, including forcing data, is
made freely available online (Perkins et al., 2023a).

2.1 Land use in WHAM!

2.1.1 Defining agent functional types

WHAM! is driven by the spatiotemporal distribution and de-
cisions of agent functional types (AFTs; Rounsevell et al.,
2012). AFTs are analogous to plant functional types (PFTs)
in DGVMs, providing broad categories of function or roles
that allow global heterogeneity to be represented in a man-
ageable way (Arneth et al., 2014). The AFTs used are derived
from a combination of land use system (LUS) types – crop-
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Table 2. Agent functional types (AFTs, italicised) and land fire systems (LFSs) resulting from the cross-referencing of land use systems
and anthropogenic fire regimes (AFRs). In 12/16 cases, AFTs are synonymous with LFS, while in the remaining cases the relationship is
multi-faceted (and therefore multiple AFTs exist within a LFS as shown by italics).

AFR Land use system

Non-extractive Forestry Livestock Cropland

Pre-industrial Unoccupied Hunter-gatherer Pastoralist Swidden

Transition Recreationalist,
Conservationist

Logging,
Agroforestry

Extensive
Livestock farmer

Small-holder (subsistence),
Small-holder (market)

Industrial State land manager Managed forestry Intensive
Livestock farmer

Intensive farmer

Post-industrial Conservationist,
Recreationalist

Abandoned
forest plantation

Abandoned pasture Abandoned cropland

land, livestock farming, forestry, and non-extractive uses –
and from what we term anthropogenic fire regimes (AFRs).
The AFRs draw on Pyne’s (2019) framing of human–fire
interactions and as such are categorical – “pre-industrial”,
“transitional”, “industrial”, and “post-industrial” – reflect-
ing available resources and management strategies at a given
time and place. The underlying theoretical justification and
quantitative signatures of these AFRs, as well as the rela-
tionship of the LUS to LUH2 land cover types, are described
in Millington et al. (2022) and Perkins et al. (2022). The
combination of four land use systems and four anthropogenic
fire regimes provides 16 combined land fire systems (LFSs)
which in turn can be split into distinct AFTs. In 12 of 16
cases, LFS and AFT are synonymous (Table 2). In the re-
maining four cases, multiple AFTs compete for space within
a single LFS.

2.1.2 Land system distribution

To ensure compatibility under model intercomparison project
protocols, WHAM! takes land cover inputs from the LUH2
forcing data sets of Hurtt et al. (2020). Cropland, pasture,
rangeland, and urban land cover fractions were taken directly
as forcing data. However, to calculate the proportion of tree
cover used for forestry versus non-extractive land use, as well
as the unoccupied fraction of cell, a process of competition
was simulated. This used the same methods as those for the
distribution of AFTs, which is described below in Sect. 2.1.3.

2.1.3 Agent functional type distribution

The global spatiotemporal distribution of AFTs is based
on a simulation of their competition for land. After Arneth
et al. (2014), we first define the socio-ecological niche of
each AFT, before comparing their relative competitiveness in
a pixel to allocate space. A detailed presentation and evalua-
tion of the representation of competition for land in WHAM!

Figure 2. Overview of agent functional type (AFT) distribution in
WHAM!; (a) describes how cells are divided first into land use sys-
tems (LUSs) and then into land fire systems (LFSs). Panel (b) then
describes the relationship of land fire systems to AFTs. Key: C –
cropland, L – livestock, N-E – non-extractive, F – forestry, U & U –
urban and unoccupied.

is given in Perkins et al. (2022). Here, we therefore provide a
brief summary; a schematic representation is given in Fig. 2.

Firstly, to capture the socio-ecological niche of AFTs a
simple classification tree was constructed quantitatively for
each. This was done using data in DAFI as the target variable
and explanatory variables from the secondary data sets given
in Table 3. Bootstrapping was used to identify the most ro-
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Table 3. Data sets used to parameterise WHAM! submodels for land use competition and agent functional type allocation, managed fire use,
unmanaged fires, and fire suppression. All data were resampled to the resolution of JULES-INFERNO (1.875°× 1.25°). All data sets have
an annual temporal resolution. JULES-INFERNO data were used here to parameterise WHAM!, but WHAM! has also been parameterised
using Earth observation data to enable integration with other DGVMs (see Sect. S1).

Variable type Variable name Spatial resolution Temporal range Source

Socio-economic Population density 0.04° 2000–2020 CIESIN (2017)
Gross domestic product 0.08° 1990–2015 Kummu et al. (2018)
Human development index 0.08° 1990–2015 Kummu et al. (2018)
Market accessa 0.08° 2000 (1990–2015) Verburg et al. (2011)

Land cover Fractional land cover (anthropogenic) 0.25° 1990–2020 Hurtt et al. (2020)
Land cover composition (natural)b 1.875°× 1.25° 1990–2020 Clark et al. (2011)

Biophysical Potential evapotranspirationb 1.875°× 1.25° 1990–2014 Best et al. (2011)
Ecosystem net primary productionb 1.875°× 1.25° 1990–2014 Clark et al. (2011)
Topography 30 m n/a van Zyl (2001)

a Single year of data extrapolated to other years from other secondary data (see Perkins et al., 2022, Supplementary material A). b Replaced with Earth observation
data in WHAM_EO (Sect. S1 to this paper). n/a: not applicable.

bust single-tree structure across data sub-samples. The boot-
strapping approach also led to multiple possible split thresh-
old values and output probabilities for the selected structure.
These were retained to express data uncertainty and to cre-
ate transitions between output probability spaces (“niches”)
in the resulting maps. To prioritise representation of process
and to avoid overfitting, the median and modal number of
nodes or splits in AFTs’ trees is two, and tree structures were
accepted only if they had strong land system process ratio-
nale (Perkins et al., 2022). The complete set of tree models
used for AFT distribution is provided along with model code
(Perkins et al., 2023b).

Secondly, having defined a single tree per AFT, a pro-
cess of competition was simulated by normalising the output
probabilities of tree models across relevant AFTs:

AFTij = p(AFTij )
/∑

p(AFTj [p(AFTj ) > θ ]), (1)

where AFTij is the fractional coverage of the ith AFT in the
j th cell, and p(AFTij ) and

∑
p(AFTj ) are the probability

of the classification tree for the ith AFT and for all AFTs,
respectively. Because of the choice of simple tree structures,
to avoid very small land fractions continuing to be allocated
to inappropriate AFTs – for example shifting cultivation in
the USA Corn Belt – output probabilities beneath a thresh-
old parameter θ were set to 0. In this way, the output proba-
bilities of the tree models of the AFTs’ niche were in effect
interpreted as a “competitiveness score” in a given pixel. A
complete set of AFT distributions is provided as Sect. S5.

2.2 Managed anthropogenic fire

Analysis of DAFI revealed seven central modes of global
anthropogenic fire use (Millington et al., 2022): crop
field preparation, crop residue burning, pasture manage-
ment, hunting and gathering, pyrome management, vege-

tation clearance, and arson. For the first five of these fire
uses, a common method of parameterisation was adopted
(Sect. 2.2.1); however, vegetation clearance (Sect. 2.2.2) and
arson (Sect. 2.3.2) required bespoke approaches. We define
arson as fire use as a weapon or to cause deliberate property
damage (Scott, 1985); therefore it is classed as unmanaged –
though intentional – fire use.

2.2.1 Default fire use parameterisation

Fire use for crop field preparation, crop residue burning, pas-
ture management, hunting and gathering, and pyrome man-
agement were parameterised similarly. We parameterise each
AFT’s decisions to use these forms of managed fire in two
stages. Firstly, AFTs decide whether to use a given type of
fire; this was parameterised using Boolean fire presence or
absence data from DAFI. Secondly, we represent the spa-
tial extent of an AFT’s use of a given fire type, in locations
where they choose to use it; this was parameterised using
burned area data from DAFI. Separating a decision to use
fire for a given purpose (hereafter “fire use tendency”) from
the burned area generated where it is used (hereafter “fire
use extent”) enables WHAM! to capture important nuances
in human fire use decision-making. For example, DAFI data
show that state land managers such as the US Forest Service
are typically fire averse and so have a low fire use tendency;
however, where they do use fire, for example in protected ar-
eas or other sparsely populated regions, they may burn large
areas (Millington et al., 2022).

Fire use tendency and fire use extent maps were calcu-
lated with a combination of statistical tools: classification
and regression trees, generalised linear models (GLMs), and
their combination. These tools were chosen for their simplic-
ity, interpretability, and complementarity. As with the dis-
tribution of AFTs, they were constructed using data from
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DAFI. Owing to data sparsity and sampling biases, correc-
tions were needed for some combinations of AFTs and fire
use mode. For example, parameterisation of hunter-gatherer
fire did not capture the categorical difference between such
fire uses in open savannas versus forest ecosystems. Data in
DAFI suggest hunter-gatherer fire in grasslands and savan-
nas burns 18.0 % of the land cover on average compared to
6.7 % in forests (Perkins and Millington 2021). Hence a cor-
rection was applied to capture this effect. Similarly, a cor-
rection was applied to account for differences between hu-
man fire use in the context of livestock farming on the “pas-
ture” and “rangeland” land cover classes in LUH2 (Sects. S2,
2.3). These fire-purpose-specific amendments are detailed in
Sect. S2. A complete set of AFT parameterisations is pro-
vided along with model code, and their evaluation is de-
scribed in Sect. S3.

In addition to extra parameters required for specific fire
use modes and AFTs, two global biases in DAFI data were
corrected using top-down constraints on managed fire use.
These were a vegetation constraint and a dominant anthro-
pogenic fire regime (AFR) effect. The impact of both con-
straints on model outputs is described in Sect. S4. The vege-
tation constraint corrected for the lack of DAFI case studies
in deserts and other very arid environments (Perkins et al.,
2022). The goal of the constraint was therefore to remove fire
from areas where it could not plausibly exist. Hence, rather
than use a measure of vegetation density such as FAPAR (as
in Knorr et al., 2014), we use bare soil fraction from JULES
to capture only the presence or absence of any vegetation.
The vegetation constraint was calculated as

VCt =

{
1 if soilt ≤ Tsoil

1− soilt otherwise
(2)

BAt = B̂At ·VCt , (3)

where soilt is the bare soil fraction from JULES outputs at
time – t ; Tsoil is a free parameter determining at what frac-
tional coverage of bare soil in a cell the vegetation constraint
should apply; VCt is the vegetation constraint, and B̂At and
BAt are raw burned area from bottom-up AFT calculations
and burned area adjusted for the vegetation constraint. The
initial parameter value of Tsoil was the global mean. Given
the highly skewed distribution of bare soil fraction in JULES,
this removed fire from biophysically implausible locations
whilst having limited impact on WHAM! outputs in other
regions.

Similarly, the dominant-AFR constraint was needed as
DAFI under-sampled places where fire use was absent in
more developed contexts (Perkins et al., 2022). From a pro-
cess perspective, it aimed to capture the impact of imita-
tion in fire management amongst land users (Lopes et al.,
2020; Cammelli et al., 2020) and also the impact of legal
and other social barriers that prevent or restrict managed fire
use where fire suppression has become the dominant man-
agement paradigm (Kreuter et al., 2008; Harr et al., 2014;

Bendel et al., 2020). As such, it aimed to capture the social
tipping point at which a fire exclusionary attitude (the in-
dustrial AFR) became the dominant management approach.
The dominant AFR constraint was therefore applied in model
cells where the intensive AFR occupied more than half of a
cell. It was calculated as

AFRCt =

{
1 if Industrialt ≤ TAFR

1− Industrialt otherwise
(4)

BAt = B̂At ·AFRCt , (5)

where Industrialt is the fractional coverage of the industrial
AFR at time – t ; TAFR is a free parameter determining at what
fractional coverage the constraint should apply, and AFRCt
is the industrial AFR constraint. As a result of this process,
the model gained two free parameters: the two critical thresh-
olds at which the bare soil and dominant AFR constraints
take effect. The sensitivity of model outputs to WHAM!’s
free parameters is explored in Sect. S4.

2.2.2 Vegetation clearance

Parameterisation of fire for clearance of primary vegetation
(e.g. “deforestation fire”) was complicated by the fact that
WHAM! takes land cover inputs from LUH2 (Hurtt et al.,
2020). Therefore, rather than seeking to model change in
land cover directly, WHAM! instead uses the vegetation-
transition-specified LUH2 data (Ma et al., 2020). Using
these pre-defined land cover changes between simulated time
steps, WHAM! calculates the portion of newly cleared pri-
mary vegetation occupied by each anthropogenic fire regime
and, on this basis, calculates the fraction of the cleared land
area that would have involved fire use. WHAM! uses AFRs
rather than AFTs for this calculation to ensure robust data
samples.

Further, given that it is frequently a clandestine process,
vegetation clearance fire proved highly difficult to quantify in
DAFI. Remote sensing data are widely available for the size
of cleared patches due to deforestation (e.g. Morton et al.,
2006) but not for the specific amount of deforestation driven
by differing actors and its relationship to fire. Consequently,
DAFI contains 136 measurements of vegetation clearance
fire size but only 20 of burned area (Perkins and Milling-
ton, 2021). We therefore parameterise the ratio of area of
vegetation cleared to burned area for each AFR as free pa-
rameters; given the inherent resulting uncertainty, their im-
pact on burned area is explored in model sensitivity analysis
(Sect. S4). Initial values for these fire to deforestation ratios
are given in Table 4. The ratio between fire and deforesta-
tion was assumed to be 1 for the pre-industrial AFR, as by
definition this AFR does not use machinery for land man-
agement (Millington et al., 2022). Furthermore, none of the
AFTs for the post-industrial AFR would clear primary vege-
tation for extractive land use systems, so there is no ratio for
these AFTs.

Geosci. Model Dev., 17, 3993–4016, 2024 https://doi.org/10.5194/gmd-17-3993-2024
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Table 4. Ratio of burned area to total area of vegetation cleared used to parameterise vegetation clearance fire use. A ratio of 1.00 means
100 % of vegetation was cleared by fire use.

Anthropogenic
fire regime

Ratio Source

Pre-industrial 1.00 Ontological: the pre-industrial AFR does not make use of machinery
Transitional 0.84 Aragão et al. (2008)
Industrial 0.31 van Marle et al. (2017)
Post-industrial n/a No post-industrial AFTs cleared vegetation for extractive purposes

n/a: not applicable

Table 5. Parameterisation of escaped fire from Eqs. (6) and (7). Baseline rates of fire escape were calculated from data in DAFI (Millington
et al., 2022). The spatiotemporal distribution of the presence of fire control measures was modelled using simple classification tree models
(Sect. S2). Pyrome management was assumed to be controlled in all cases. Aside from pyrome management, managed pasture fires are larger
(mean= 33.9 ha) than other uses (mean ≤ 9.2 ha); hence, the pasture fires’ more frequent escape rate is offset by a lower density per unit
area burned.

Fire use Fire controlled Baseline escape rate (%) Impact of control Adjusted escape rate (%)

Crop field preparation False 0.06 2.87 0.17
True 0.06 0.35 0.02

Crop residue burning False 0.01 6.43 0.06
True 0.01 0.16 0.00

Hunting and gathering False 1.10 1.04 1.15
True 1.10 0.96 1.05

Pasture management False 5.10 1.61 8.19
True 5.10 0.62 3.17

Pyrome management False 0.06 NA 0.06
True 0.06 NA 0.06

Vegetation clearance False 0.95 3.42 3.25
True 0.95 0.29 0.28

2.3 Unmanaged anthropogenic fire

2.3.1 Escaped fires

Escaped fires are those managed anthropogenic fires that es-
cape control measures and grow to become unmanaged wild-
fires. As with managed fire use, escaped fire parameterisa-
tions were derived from data in DAFI. The starting point was
the calculation of a baseline escape rate for the six managed
fire types described in Sect. 2.2 (Millington et al., 2022; Ta-
ble 5). This was then adjusted for the degree of fire control
measures applied by an AFT. DAFI represents the degree of
control measures applied during managed fire use on a 0–3
ordinal scale. There was a clear divide in outcome between
no or little control (i.e. 0 or 1) and moderate or intensive fire
control (i.e. 2 or 3; Table 5) So, the 0–3 ordinal scale for
fire control was reduced down to a Boolean scale: 0–1 were
grouped as no substantive attempt to control and 2–3 grouped
as a substantive attempt to control.

The result is, in effect, a variable reflecting a meaningful
attempt to control a given fire, which was used to calculate
the ratio of escaped fires with control measures to those with-
out. The rate of escaped fire for each fire use type and fire

control present/absent was calculated as

escaperatei |controli = ρi ·
(∑

fireescapei |controli
)

/(∑
fireescapei

)
(6)

escaperatei |!controli = ρi ·
(∑

fireescapei |!controli
)

/(∑
fireescapei

)
, (7)

where ρ is the global mean rate of escape for each fire type,
fireescapei is the number of DAFI records for fire use i, which
describe escaped fire, and controli is a Bernoulli random
variable representing the probability of the presence or ab-
sence of fire control measures.

The next step was to develop a distribution model of the
control variable (Eqs. 6 and 7). This was done with sim-
ple classification trees. Regimes of fire governance, manage-
ment philosophy, and their associated degree of fire control
measures emerge through complex interactions of land users
with their local socio-ecological circumstances and policy at
multiple spatial scales (Gil-Romera et al., 2011; Seijo et al.,

https://doi.org/10.5194/gmd-17-3993-2024 Geosci. Model Dev., 17, 3993–4016, 2024



4000 O. Perkins et al.: A global behavioural model of human fire use and management: WHAM! v1.0

2015; Mistry et al., 2016). Therefore, rather than parame-
terising for individual AFTs, the modelled distributions of
anthropogenic fire regimes (AFRs) in WHAM! were used as
predictor variables, representing the complex landscape-level
meta-effects of interactions of multiple actors. Pyrome man-
agement was overwhelmingly used with control measures
(548/565 cases in DAFI), and so data on uncontrolled py-
rome management fire were too sparse to detect the impact
of control measures on escape rate. Therefore, as a simplify-
ing assumption, all pyrome management fires were assumed
to be controlled.

2.3.2 Arson

Arson was defined as fire used deliberately to harm per-
sons or damage property. Fires caused through carelessness
such as untended campfires or cigarettes dropped from car
windows were categorised as background or accidental fires
(Sect. 2.3.3). As arson fires are lit to cause damage, they
are typically not managed and cannot be considered to have
an intended burned area in the same way as a pasture or
crop residue fire. Therefore, rather than using burned frac-
tion as the dependent variable in the burned area calculation,
fires km−2 yr−1 was used.

Furthermore, similar to escaped fire, arson is frequently
associated with landscape-level effects, particularly conflict
between land users over tenure (e.g. Suyanto, 2007). There-
fore, the modelled distributions of AFRs, rather than sec-
ondary data, were used as predictor variables. As unoccupied
areas were not included in the calculation of AFRs, the im-
pact of very inaccessible terrain such as deserts, the arctic
tundra, and rainforests with associated very low populations
(i.e. where there are very few humans to use fire as a weapon)
was accounted for through a simple linear correction:

Arsonadjusted = Ârson · (1−Unoccupied), (8)

where Ârson is the output of the arson distribution model,
Unoccupied is the fraction of the cell unoccupied by humans,
and Arsonadjusted the final calculation of the number of arson
fires – adjusted for areas without human occupation.

2.3.3 Background fires

Background fires comprise accidental or incidental fires not
captured in managed, escaped, or arson fires. These in-
clude unintentional fires caused by, for example, sparks from
cigarettes, forestry machinery, and from faulty power lines
and other anthropogenic infrastructure (Brennan and Keeley,
2017; Sizov et al., 2021; Bandara et al., 2023; Jenkins et al.,
2023). It also includes mismanaged domestic fires and es-
caped waste disposal fires in urban areas (e.g. Langer and
McGee, 2017), as WHAM! does not explicitly parameterise
the behaviour of urban residents (who are assumed to occupy
land but not manage it in a way that influences landscape
fire). Fire density data (fires km−2 yr−1) were selected from

DAFI where the recorded fire purpose was accidental or un-
known. Using these data as a dependent variable, a simple
regression tree was then developed.

2.4 Fire suppression

Fire suppression here refers to the extinguishing of active,
unmanaged fires. Similar to fire control measures, which are
applied by AFTs to constrain the spread of active managed
fires, fire suppression emerges from interactions of local land
users with policy at multiple spatial scales (Fernandes et al.,
2016; Steen-Adams et al., 2017; Bilbao et al., 2019; Eloy
et al., 2019b) . As such, the degree of suppression was also
treated as a meta-effect, calculated as a function of distri-
bution of the four anthropogenic fire regimes (AFRs) rather
than individual AFTs. The AFR distribution calculated by
WHAM! became the independent variables in an ordinary
least squares regression, the dependent variable of which
was the fire suppression indicator in DAFI. Fire suppres-
sion was recorded in DAFI on a 0–3 ordinal scale: 0= none,
1= limited, 2=moderate or traditional, and 3= intensive.
To convert this to a numeric value, these ordinal values were
given values (Table 6), creating a dimensionless suppres-
sion intensity (0–1). The simplest interpretation of this index,
and the current impact of suppression intensity in JULES-
INFERNO, is that it represents a linear reduction in numbers
of unmanaged fires due to active fire extinguishing. How-
ever, the exact functional form of the relationship between
suppression intensity and reduction in numbers of fires will
ultimately depend on the structure of a DGVM during model
coupling.

2.5 Model setup for historical runs

To assess and understand the model’s outputs and behaviour,
WHAM! was run for a historical period from 1990–2014.
The rationale of this time frame was driven by data availabil-
ity. DAFI focused on 1990–2020, whilst 2014 represented
the end of the CMIP6 historical run period. As noted in
Sect. 2.1, parameters of sub-models for LFS and AFT com-
petition for land have numerical distributions derived from
bootstrapping. Therefore, in model runs, 100 samples were
drawn from these distributions and the mean value taken. As
these distributions form a core part of the model ontology
(capturing the transition zones between the niches of differ-
ent land use systems), they are not a full representation of
model uncertainty per se. As such, results presented below
focus on the mean values of outputs of these 100 runs.

A baseline run used model inputs that took their historical
values. To understand the rationale behind WHAM! outputs
for managed fire, two counterfactual experiments were run
and compared with the baseline run:

– LC90 (land cover 90), in which land cover was held
constant at 1990 levels, and
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Table 6. Overview of DAFI data used in fire suppression model; unmanaged fires extinguished became the dependent variable in a linear
model of the distribution of anthropogenic fire regimes. These initial values will be updated during calibration of the planned coupled model
with JULES-INFERNO.

Ordinal fire suppression Count Numeric fire suppression
intensity (0–3) (DAFI records) intensity (0–1)

0 (none) 150 0
1 (limited) 327 0.05
2 (moderate or community-led) 218 0.25
3 (intensive) 289 0.9

– SE90 (socio-economic 90), in which socio-economic
forcing data (GDP, HDI, market access and population)
were held constant at 1990 values.

As primarily an empirical model, WHAM! has only
six free parameters; a model sensitivity analysis was con-
ducted to fit these parameters, as described in Sect. S4.

2.5.1 Model evaluation

Calculating burned area from unmanaged fires projected by
WHAM! requires coupling with a biophysical model. As
such, whilst all WHAM! outputs are presented (as per Ta-
ble 1), prior to the planned coupling with JULES-INFERNO
evaluation of model outputs focuses on managed fire only.
Crop residue burning outputs are the easiest to evaluate,
as these can be compared directly with the GFED5 crop
fire product (Hall et al., 2024). Similar to the first FireMIP
(which used the GFED4 and 4.1s products), this comparison
was done using data for the overlapping period of WHAM!
historical runs and the MODIS-era of GFED5 (2001–2014;
Rabin et al., 2017). As in Teckentrup et al. (2019) Pearson’s
correlation coefficient between WHAM! outputs and GFED5
was calculated using a square-root transformation to account
for the skewed distribution of burned area. To account for
differences in underlying cropland distributions that are in-
puts to GFED5 (the MODIS-derived MCD12Q1; Hall et al.,
2024) and WHAM! (LUH2; Hurtt et al., 2020), correlations
were also calculated for the proportion of cropland burned
per pixel.

In addition, a broad assessment of plausibility of WHAM!
managed fire outputs was made. The great majority of man-
aged anthropogenic fires are small, and smaller than the
21 ha threshold at which MODIS can reliably detect burned
area (Andela et al., 2019; Millington et al., 2022). How-
ever, in GFED5, MODIS is cross-referenced against fine-
scale remote sensing data from Landsat (30 m2) and Sentinel-
2 (20 m2), and hence small fires are beginning to be incor-
porated in global-scale Earth observation. As such, between
2001–2014, GFED5 has a mean burned area 457.7 Mha
greater than GFED4 (800.3 Mha vs. 342.6 Mha, respectively,
Giglio et al., 2013; Chen et al., 2023). Of course, not all of
this difference is necessarily due to anthropogenic fires (van
Wees et al., 2022), but comparison of the GFED4 to GFED5

increase and WHAM! managed fire outputs offers a high-
level assessment of their plausibility.

Furthermore, evaluation of the sub-models for managed
and unmanaged fire and fire suppression was conducted in
three ways. Firstly, within-sample performance of managed
and unmanaged fire parameterisations is assessed using r2

for regression and AUC (area under the received operated
curve) for classification. Secondly, these parameterisations
are compared against out-of-sample (unseen) DAFI data.
These are available due to the fragmented nature of data
on human–fire interactions. For example, if the dependent
variable of a fire use parameterisation was the percentage of
a land cover burned, then data from DAFI case studies re-
porting fire return interval (but not % burned area) could be
used as unseen evaluation data. Thirdly, the temporal trend
in WHAM! outputs was evaluated by comparison with the
qualitative evaluation of temporal trend in the Livelihood
Fire Database (LIFE; Smith et al., 2022). LIFE provides as-
sessments of whether “subsistence-oriented” and “market-
oriented” fire use were declining, stable, or increasing in the
human–fire use literature. The details and outcomes of these
evaluation steps using DAFI and LIFE case study data are
reported in Sect. S3.

3 Results

3.1 Model evaluation

Burned area from WHAM! managed fire has a coher-
ent relationship with the difference between GFED5 and
GFED4 outputs. From 2001–2014 (the overlapping period
of WHAM! and the MODIS-era of GFED), the mean dif-
ference between GFED5 and GFED4 is 459.4 Mha, com-
pared to burned area in WHAM! of 428.9 Mha (Fig. 3). Pear-
son’s correlation coefficient between WHAM! and GFED4–
GFED5 difference (r = 0.70) is greater than the mean of the
model ensemble in the first FireMIP (r = 0.65; Teckentrup
et al., 2019) indicative of good performance for a first-in-
class model. As noted above, comparison of WHAM! to
the GFED5 to GFED4 difference is not a direct comparison
of managed fire but is provided as an initial assessment of
WHAM! output plausibility.
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Figure 3. Total WHAM! managed fire compared against the difference in burned area in GFED5 and GFED4. Whilst the increase in burned
area detected by GFED5 over that detected in GFED4 is primarily due improved detection of small fires, not all of these will be managed
anthropogenic fires. As such, this comparison is offered not as a like-for-like evaluation but to establish the broad plausibility of WHAM!
outputs.

Figure 4. Comparison of WHAM! crop residue burning outputs and GFED5 crop fire outputs in 2014. Whilst overall coherence is good,
disagreements are most evident in northern India.
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Figure 5. Continent-scale trends in burned area for WHAM! crop
residue fires and GFED5 crop fires. The biggest area of disagree-
ment in burned area is in Asia. Conversely, whilst in Africa burned
area is similar, WHAM! and GFED5 show opposite temporal
trends. Note the differing y-axis values.

WHAM! outputs for crop residue burning are in broad
agreement with GFED5 crop fires (Fig. 4). Correlation (Pear-
son’s r) is 0.673 for burned area per pixel and 0.665 for rate
of cropland burned per pixel. WHAM! crop residue outputs
project more burning than GFED5, with an annual mean of
129.2 Mha over the overlapping period (2001–2014) com-
pared to 87.6 Mha for GFED5. The main continent driving
disagreement is Asia: 67.8 Mha in WHAM! compared to
31.2 Mha in GFED5 (Fig. 5).

WHAM! and GFED5 disagree on the trend of global
crop fires, with WHAM! projecting a global increase and
GFED5 suggesting a decrease (Fig. 5). At the continental
scale, WHAM! and GFED5 agree on the trends in Europe
and North America (decreasing). However, WHAM! projects
gains in Asia (GFED decreasing), as well as increases in
Africa (GFED decreasing). It is notable that WHAM! ex-
hibits contrasting trends between crop residue fires and other
managed fires. For example, in South America and Asia,
WHAM! residue fires and other managed fires are negatively
correlated (r =−0.91, −0.74, respectively), whilst GFED5
outputs for crop fires and the overall regime are positively
correlated in all cases.

3.2 Analysis of model outputs

3.2.1 Managed fire

Over the study period of 1990–2014, modelled burned area
from managed anthropogenic fires decreases from 431.9 to
419.1 Mha. In percentage terms, this equates to a 3 % de-
cline. There is substantial heterogeneity in the trend amongst
fire use types. The overall modelled decline in burned area is
primarily due to a decrease in fire for pasture management,
which declines 20.1 % from 192.04 to 153.7 Mha over 1990–
2014 (Fig. 6). This is complemented by declines in shifting
cultivation (crop field preparation) fire (31.5 to 26.9 Mha)
and hunter-gatherer fire (23.2 to 19.4 Mha). By contrast,
crop residue burning increases by 17.0 % from 112.0 to
131.1 Mha, and pyrome management fire use increases by
15.7 % from 69.5 to 80.4 Mha. In absolute terms, vegeta-
tion clearance fires burn the smallest area (3.4–9.1 Mha), but
in relative terms, their increase is much the largest (217 %),
highlighting this growing environmental challenge.

Beneath the global trends in managed fire, there is also
substantial spatial heterogeneity (Fig. 7). At the continen-
tal scale, the decline in pasture management fire dominates
in South America, declining from 55.31 Mha in 1990 to
25.15 Mha in 2014, leading to a decline in overall managed
fire from 102.14 to 71.12 Mha (Fig. 8). By contrast, in Africa
pasture fire increases by 6.51 Mha, whilst in Asia a decrease
in pasture fire of 9.83 Mha is more than offset by a steep in-
crease in crop residue burning of 18.17 Mha.

3.2.2 Unmanaged fire

Whilst burned area from managed fire modestly decreases by
3 % globally, the picture from unmanaged fire is mixed. Ar-
son and accidental anthropogenic fires both increase (Fig. 9):
the background rate of accidental fires increases 24.8 %,
whilst the rate of arson increases 17.7 %. By contrast, the
number of escaped fires decreases (−8.6 %), mirroring the
decrease in burned area from managed fire. However, until
WHAM! is coupled with a DGVM, it will not be possible
to deduce if this has led to increase in burned area from un-
managed anthropogenic fire. This consideration is particu-
larly important given the distribution of unmanaged fires is
clustered in urbanised areas (Fig. 9b), meaning that many of
these ignitions will likely be extinguished through industri-
alised fire-fighting (Millington et al., 2022).

3.2.3 Fire suppression

Overall, modelled fire suppression increases from 1990–
2014, particularly in South America, South Asia, and South-
East Asia (Fig. 10). As noted above, outputs here are a di-
mensionless suppression intensity (0–1). The form of the re-
lationship of suppression intensity to reduction in the number
of unmanaged fires will be determined through the planned
coupling with JULES-INFERNO.
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Figure 6. Temporal trends in managed fire. Lines show the global mean, shading the 5th and 95th percentiles of the outputs from WHAM!
parameters’ numerical distributions. Overall, pasture fire accounts for both the largest amount of fire and the largest absolute decline. In
cropland systems, shifting cultivation fire and residue burning exhibit opposite trends. Whilst vegetation clearance fire is small in absolute
terms, it shows the largest relative increase over the model period. Key: CFP – crop field preparation, CRB – crop residue burning, HG –
hunter-gatherer, Pasture – pasture management, Pyrome – pyrome management, VC – vegetation clearance.

Figure 7. Global model outputs for managed fire grouped by land cover. (a) Mean values across 1990–2014 and (b) change in burned area
fraction between 1990 and 2014. Forestry and non-extractive fire use types are grouped together as this will be how they are interpreted by
JULES-INFERNO. Maps highlight the decline in pasture fires in South America. Conversely, pasture fire increases in sub-Saharan Africa.
Crop fires increase in northern India, South Asia, and modestly in South America but decline elsewhere. Vegetation fires cover those for
hunting and gathering, pyrome management, and vegetation clearance.

3.3 Understanding model behaviour

Counterfactual experiments reveal divergent impacts be-
tween land cover change and changes in socio-economic

forcings. In the LC90 experiment, where land cover was
held constant at 1990 levels, managed fire declines more
starkly than in the baseline model run (431.94 to 388.74 Mha;
Fig. 11). By contrast, SE90 (socio-economics held constant
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Figure 8. Managed fire burned area for the two dominant modes of managed fire and total managed fire for the three continents with largest
burned area from managed fire. Whilst the global declining trend in pasture management fire is dominant in South America, in Africa pasture
and crop residue fires contribute to an overall slight increase. Similarly, in Asia a decline in pasture fire is offset by a marked increase in crop
residue fires.

at 1990 levels) leads to an increase in overall managed fire
from 431.94 to 472.10 Mha.

The effects of land cover and socioeconomic forcings on
human fire use have clear spatial patterns (Fig. 11b). In SE90,
the increase in fire over the baseline scenario is most evident
in South America, highlighting the importance of socioeco-
nomic development, and consequent land use intensification
in this continent as a driver of changing fire regimes (Ri-
biero et al., 2024). Similar increases over the baseline are
present in north-eastern China and Mexico. By contrast, in
northern India, the SE90 counterfactual leads to decreased
fire against the baseline, indicating land use intensification
has led to increased fire use. This finding fits previous anal-
yses of crop residue burning in the Indo-Gangetic Plain (Liu
et al., 2019; Sembhi et al., 2020). The LC90 (constant land
cover) counterfactual has more consistent global effects, with
decreases in fire over the baseline observed in regions with
large amounts of extensive livestock farming – particularly
Madagascar, the Guinean Savanna, and southern Brazil.

Divergent trends between land use and land cover
change on human fire use point to similarly divergent
socio-economic drivers across differing modes of fire use
(Fig. 12). For example, at global scale, population density
seems to be associated with increased crop residue burn-
ing (r = 0.42). By contrast, population density has a more
ambiguous effect on pasture management fires (r = 0.07),
the distribution of which has an overall negative correla-
tion with socio-economic development (as measured by the
HDI; r =−0.31). However, in lower HDI regions (<0.65;
Fig. 12b), increasing HDI seems to be associated with in-
creased pasture management fire.

Similarly, across the three continents with the highest rates
of agricultural fire – Africa, Asia, and South America – in-
creased HDI consistently leads to decreased fire use for pas-

ture management (Fig. 12b). However, in these three con-
tinents, increased HDI can lead to either increased or de-
creased fire use for crop residue burning: at a mean HDI of
∼ 0.7 such fire use increases substantially in Asia but de-
creases in South America. Possible process-based explana-
tions of this trend are offered in the discussion (Sect. 4.1).

4 Discussion

We have presented WHAM!, the first global behavioural land
system model of human fire. The ultimate intention is to
couple WHAM! with the JULES-INFERNO DGVM. Here,
WHAM! has been presented in standalone form. Therefore,
the discussion focuses on managed fire, which can be inde-
pendently evaluated without input from JULES-INFERNO.

4.1 WHAM! outputs

WHAM! outputs suggest burned area from managed an-
thropogenic fire declined by 12.8 Mha from 1990 to 2014.
This is driven by decreased fire use for pasture manage-
ment particularly in South America (Fig. 8) and comple-
mented by declines in crop field preparation (shifting cul-
tivation) and hunting and gathering fire. By contrast, fires
for crop residue disposal increased by 19.1 Mha. These di-
vergent trends broadly align with Smith et al. (2022), whose
global meta-analysis found that “subsistence-oriented” fire
uses are declining, whilst “market-oriented” fire uses are
increasing (Sect. S3). Globally, empirical data show crop-
land fire uses produce the smallest anthropogenic fires
(mean= 3.9 ha; Millington et al., 2022). Therefore, outputs
from WHAM! are also consistent with initial results from
the Global Fire Emissions Database version 5 (GFED5),
which suggest smaller fires – which are principally anthro-
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Figure 9. Unmanaged fire outputs as fires km−2 yr−1: (a) temporal change and (b) spatial distribution in 2014. The rate of unmanaged fires
increases over the modelled period. However, this increase is clustered towards areas at the periphery of cities, as measured by market access
(visible as spatial anomalies in b). The impact of this pattern of numbers of unmanaged fires on burned area will only be clear after coupling
with JULES-INFERNO.

pogenic – have declined less than larger ones (Chen et al.,
2023). Taken together, these recent advances spanning litera-
ture meta-analysis, remote sensing, and now modelling sug-
gest changes in anthropogenic fire use are contributing to the
observed global decline in burned area but perhaps at a lower
rate than changes in burned area from unmanaged wildfires
(Andela et al., 2017).

Counterfactual experiments and analysis of the drivers of
pasture management fire in WHAM! demonstrate that the

modelled decline in pasture fire is primarily due to eco-
nomic development and associated land use intensification
(Fig. 11). This finding matches real-world observations. For
example, the rapid pace of land use intensification in South
America was documented by Silva et al. (2017), who at-
tribute changes to the “telecoupled” system of soybean pro-
duction in response to increased demand for meat. Further-
more, this process of declining fire under increased land use
intensity was explored in the field experiments of Cammelli
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Figure 10. Fire suppression intensity. (a) Mean suppression intensity across 1990–2014. (b) Change in suppression intensity between 1990–
2014. Reductions in suppression intensity in Canada, Scandinavia, and elsewhere reflect land abandonment and rural depopulation.

et al. (2020), who find that increased capital investment dis-
courages fire use as a management strategy because fire in-
creasingly becomes a risk to machinery, irrigation, and other
capital investments.

By contrast, the relationship between increasing societal
development (represented by the human development index)
and crop residue burning is more ambiguous (Fig. 12). In
Africa (HDI: 0.45–0.65), increased HDI seems to increase
crop residue burning, consistent with land use intensification
driving this practice. However, at intermediate (0.6–0.85)
levels of HDI, increased development can have divergent im-
pacts on residue burning, notably between Asia and South
America. It is possible that farm size, and therefore the pro-
duction system, plays a role here: large soybean farmers in
South America engaged in formal, legalised supply chains
are somewhat likely to comply with anti-burning as well
as general fire management legislation (Soares-Filho et al.,

2014; Villoria et al., 2022). By contrast, in Asia, and the
Indo-Gangetic Plain in particular, high rural population den-
sity and small average farm size entails that production is
dominated by small-holder farms with associated informal
supply chains (Birthal et al., 2017), making environmental
enforcement more challenging (Bhuvaneshwari et al., 2019;
Liverpool-Tasie et al., 2020). In WHAM!, this difference is
seemingly captured through the impact of population density,
which features in the classification tree for the small-holder
land fire system (Perkins et al., 2022).

WHAM! suggests human fire use can either increase or
decrease with increasing population, in ways that are highly
heterogenous and specific to the rationale of the underly-
ing land system and associated modes of fire use (Fig. 12).
At global scale, crop residue burning slightly increases with
population density, but there is a weak negative relationship
with pasture fire. Taken together, these complexities illustrate
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Figure 11. Global burned area from managed fire under counterfactual scenarios. (a) Global trends 1990–2014; (b) difference in burned area
between counterfactual and baseline scenario in 2014. Key: LC90 – land cover held constant at 1990 levels; SE90 – socio-economic forcing
held constant at 1990 levels.

the shortcomings of relying on a single function of popula-
tion density to capture the full spectrum of human–fire in-
teractions globally (Teckentrup et al., 2019) and the benefit
of taking a categorical approach to developing functions for
representing human activity.

Therefore, whilst WHAM! is, at root, a relatively sim-
ple empirical model, it captures complex dynamics amongst
the drivers and spatiotemporal distribution of human–fire
interactions. This is further highlighted by the use of an-
thropogenic fire regimes (AFRs) to capture emergent or
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Figure 12. Drivers of managed burned area for the two modes of anthropogenic fire use with largest global burned area: (a) mean values
across 1990–2014 by pixel and (b) continental mean for each model year. Population density marginally increases the rate of crop residue
burning but has an unclear impact on pasture management. Similarly, the human development index (HDI) has a complex relationship with
fire use: increasing HDI is associated with increased pasture management fire in Africa, but increasing HDI elsewhere is associated with
declining pasture fire. The relationship between HDI and crop residue burning is also complex, with associations in both directions.

landscape-level effects. For example, arson fires become
17.7 % more frequent over the period 1990–2014, driven by
WHAM!’s representation of land tenure conflict through the
transitional AFR. By contrast, the number of escaped man-
aged fires declines (−8.6 %). Using the AFRs as predictor
variables in parameterisations of arson and fire control be-

haviours (which have an important influence on escaped fire)
results in high predictive accuracy (AUC≥ 0.8; Sect. S3). As
such, we can conclude that use of the AFRs allows differing
trends in sources of unmanaged fires to be identified (Fig. 9),
further highlighting the shortcoming of relating to anthro-
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pogenic fire directly to population density without consider-
ing the global diversity of human–fire interactions.

4.2 WHAM! evaluation and limitations

Comparison with GFED5 cropland fires suggests WHAM!
credibly reproduces global patterns of crop burning. How-
ever, there are some disagreements between WHAM! and
GFED5 crop fires, notably in terms of the spatial distribu-
tion of such fires in India and the temporal trend in sub-
Saharan Africa. Evaluating the distribution of the land fire
systems in WHAM!, Perkins et al. (2022) find that the crop
fire hotspots in northern India and in northeastern China were
also spots of disagreement between WHAM!’s distribution
of land fire systems and the human appropriation of net pri-
mary production – an independent measure of land use inten-
sity (Haberl et al., 2007). As such, this difference may point
to underlying difficulties in representing land use transitions
through a single transitional fire regime type per land system,
when in reality multiple trajectories of intensification (and
de-intensification) can occur, even within apparently simi-
lar land system types (Lambin and Meyfroidt, 2010; van der
Sluis et al., 2016).

However, it is important to note that the GFED5 cropland
product is the first of its kind – and is itself a model rely-
ing on empirical scaling factors to infer burned area per ac-
tive fire detection in cropland areas (Hall et al., 2024). These
scaling factors for rice burning were developed from field-
work in Ukraine (Hall et al., 2021), where the mean field
size of 40 ha is much larger than the smallholder fields in
northern India (∼ 1 ha). Hence, a single active fire detection
in northern India could very possibly equate to more real-
world burned area than in Ukraine, indeed as is suggested by
the work of Deshpande et al. (2022). Increased spatial cover-
age of ground-truthed, landscape-level remote sensing work
of cropland burning is needed to advance understanding fur-
ther.

As with any empirical model, WHAM! is inherently lim-
ited by the strengths and weaknesses of its underlying data.
There were three central ways in which such uncertainties in
the Database of Anthropogenic Fire Impacts (DAFI, against
which WHAM! was parameterised) came through in model
outputs, which are discussed in turn below. The first of these
was in the parameterisation of fire use in nomadic land
use systems, particularly shifting cultivation and pastoral-
ism. The mediocre performance of the underlying models is
indicative of the difficulty of quantifying fire regimes pro-
duced by such land use systems (AUC= 0.623, r2

= 0.07).
For example, shifting cultivation is challenging to study with
remote sensing, not only as it is semi-nomadic, but also
due to the complex spectral signals produced (Jiang et al.,
2022), which make differentiating between fields and early-
successional regrowth a substantial challenge (Heinimann
et al., 2017). As a result, the fallow period was typically
used from field studies as a proxy for fire return period. This

involved assumptions about the duration of cultivation after
fallow, here assumed to be 2 years – yet this can vary from
1–5 years (e.g. Maharani et al., 2019). Pastoralism is also
challenging to study with remote sensing, due to the diffi-
culty of tracking pastoralists’ location across the large ar-
eas over which they may migrate seasonally (Nelson et al.,
2020). However, it should be noted that these fire uses repre-
sent a small amount of global burned area: burned area from
shifting cultivation was 26.9 Mha, whilst migratory pastoral-
ist fire accounted for just 18.4 Mha of burned area in 2014.

Secondly, more structural sampling biases within DAFI
led to the need for top-down constraints being applied to the
bottom-up parameterisation of fire uses. These arose firstly
as DAFI did not sample very arid environments (the vegeta-
tion constraint) and, secondly, because DAFI under-sampled
more developed contexts (Perkins et al., 2022). However,
sensitivity analysis demonstrated that WHAM! is not overly
sensitive to the resulting free parameters – with burned area
outputs varying by a maximum of ± 4.4 % (Sect. S4). Fur-
thermore, the most sensitive parameter was not for a top-
down constraint but the “theta” parameter, which sets the
threshold at which a given AFR’s competitiveness score
was set to 0 (Sect. S4). This is somewhat analogous to the
“giving-in” parameter in the CRAFTY land system model,
which determines when a land use type becomes uncompeti-
tive (Murray-Rust et al., 2014). CRAFTY is highly sensitive
to this parameter (Seo et al., 2018), which is an uncertain
function of agent behaviour. There seems to be a strength of
the empirical approach taken here, as it appears less reliant
on uncertain abstraction.

A third fundamental issue arises from the coarse spatial
resolution of WHAM! and how that relates to the data avail-
able for parameterisation. Specifically, due to the intended
coupling with JULES-INFERNO, the spatial resolutions of
WHAM! and DAFI case study data are substantially differ-
ent: the median WHAM! cell is 7 times larger than the me-
dian DAFI case study (24 684 vs. 3508 km2). However, this
is likely a large underestimate of the true discrepancy. Only
30 % of case studies in DAFI reporting pre-industrial AFRs
quantified their study area, compared with 82 % of indus-
trial AFR case studies (Perkins and Millington 2021). The
mean reported study area for industrial AFR case studies is
53 times larger than for the pre-industrial AFR. This trend is
likely even more acute for LIFE (Smith et al. 2022), as it fo-
cuses on “livelihood fire” – which broadly corresponds to the
pre-industrial and early transitional AFRs in WHAM!. How-
ever, case study area is not recorded in LIFE (Smith et al.,
2022). The consequence of this disparity in spatial resolution
is seen in the evaluation of model outputs against unseen case
study data in DAFI and LIFE: WHAM! captures macro-scale
trends, but in its first iteration does not fully capture more de-
tailed trends at the case study level (Sect. S3).

In addition to data limitations, this first version of WHAM!
has two main structural limitations. The first of these is a
lack of seasonality in human fire use. DAFI contains data on
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the months in which a given fire use practice was present.
In principle this information could be extrapolated to cre-
ate global seasonality maps for each of the managed fire use
types. However, such an approach would require an account
of how contrasting forms of seasonality (e.g. temperature-
based, precipitation-based, or their combination) influence
timing of fire use, complexity which is compounded by bi-
modal patterns of crop residue burning in double-cropping
systems (Liu et al., 2019). Future work could explore how to
account for such complexities. The second structural limita-
tion in WHAM! is a lack of explicit representation of pol-
icy. Representation of policy could, for example, replace the
top-down AFR constraint by explicitly capturing the impact
of fire-averse and fire-exclusionary policies. DAFI also con-
tains data on policy, which could in principle be used to pa-
rameterise representation of government “observer” agents
in each country. However, development of such functionality
is an ongoing challenge within land system modelling (see
discussion in Perkins et al., 2023c), so it will need to be ad-
dressed in future versions of WHAM!

5 Conclusion

This paper has presented WHAM!, the first global be-
havioural land system model of present-day human–fire in-
teractions. WHAM! is designed to be coupled with dynamic
global vegetation models – JULES-INFERNO in the first
instance. As such, full evaluation of WHAM! will only be
possible once this coupling is complete. However, here we
demonstrate that, independently, WHAM! is effective at cap-
turing both spatial and temporal trends in Earth observation
data of burned area. Evaluation of WHAM! with GFED5
crop fires reveals strong spatial coherence, whilst WHAM!
managed fire outputs project a decline in burned area be-
tween 1990–2014, driven by land use intensification and de-
clining fire use for extensive livestock farming. Burned area
from managed fire outputs in WHAM! is close to the dif-
ference in global Earth observation data with (GFED5) and
without (GFED4) small fires, establishing the broad plausi-
bility of model outputs.

Drivers of human fire use in WHAM! are divergent across
differing fire use types and spatially heterogenous, pointing
to the fundamental limitation of globally uniform population-
based approaches, which are widely used in existing global
fire models. Additionally, use of landscape-level anthro-
pogenic fire regimes proves an effective way to capture in-
fluences that emerge from interactions between land users:
this includes fire suppression, the extent of control applied to
managed fires, and arson. Overall, the diversity of human–
fire interactions and their divergent spatiotemporal trends
highlight a fundamental need for consideration of the socio-
ecological drivers of fire regimes in dynamic global vegeta-
tion models.

Code and data availability. All code and data to run WHAM!
version 1.0 are made freely available online via Zen-
odo (https://doi.org/10.5281/zenodo.8319310, Perkins et al.,
2023a; https://doi.org/10.5281/zenodo.8319310, Perkins et al.,
2023b). This includes an installation and user guide. For
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