Articles | Volume 17, issue 1
https://doi.org/10.5194/gmd-17-321-2024
https://doi.org/10.5194/gmd-17-321-2024
Model description paper
 | 
15 Jan 2024
Model description paper |  | 15 Jan 2024

BoundaryLayerDynamics.jl v1.0: a modern codebase for atmospheric boundary-layer simulations

Manuel F. Schmid, Marco G. Giometto, Gregory A. Lawrence, and Marc B. Parlange

Related authors

On the suitability of second-order accurate finite-volume solvers for the simulation of atmospheric boundary layer flow
Beatrice Giacomini and Marco G. Giometto
Geosci. Model Dev., 14, 1409–1426, https://doi.org/10.5194/gmd-14-1409-2021,https://doi.org/10.5194/gmd-14-1409-2021, 2021
Short summary

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Albertson, J. D. and Parlange, M. B.: Surface length scales and shear stress: implications for land–atmosphere interaction over complex terrain, Water Resour. Res., 35, 2121–2132, https://doi.org/10.1029/1999wr900094, 1999a. a
Albertson, J. D. and Parlange, M. B.: Natural integration of scalar fluxes from complex terrain, Adv. Water Resour., 23, 239–252, https://doi.org/10.1016/s0309-1708(99)00011-1, 1999b. a
Bardina, J., Ferziger, J. H., and Reynolds, W. C.: Improved subgrid-scale models for large-eddy simulation, in: 13th Fluid and PlasmaDynamics Conference, American Institute of Aeronautics and Astronautics, https://doi.org/10.2514/6.1980-1357, 1980. a
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A fresh approach to numerical computing, SIAM Review, 59, 65–98, https://doi.org/10.1137/141000671, 2017. a
Bou-Zeid, E., Meneveau, C., and Parlange, M. B.: A Scale-Dependent Lagrangian Dynamic Model for Large Eddy Simulation of Complex Turbulent Flows, Phys. Fluids, 17, 025105, https://doi.org/10.1063/1.1839152, 2005. a
Download
Short summary
Turbulence-resolving flow models have strict performance requirements, as simulations often run for weeks using hundreds of processes. Many flow scenarios also require the flexibility to modify physical and numerical models for problem-specific requirements. With a new code written in Julia we hope to make such adaptations easier without compromising on performance. In this paper we discuss the modeling approach and present validation and performance results.