
Geosci. Model Dev., 17, 321–333, 2024
https://doi.org/10.5194/gmd-17-321-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperBoundaryLayerDynamics.jl v1.0: a modern codebase for
atmospheric boundary-layer simulations
Manuel F. Schmid1,2, Marco G. Giometto2, Gregory A. Lawrence1, and Marc B. Parlange3,4,5

1Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada
2Department of Civil Engineering & Engineering Mechanics, Columbia University, New York, NY, USA
3Mechanical, Industrial, and Systems Engineering, University of Rhode Island, Kingston, RI, USA
4Ocean Engineering, University of Rhode Island, Kingston, RI, USA
5Civil and Environmental Engineering, University of Rhode Island, Kingston, RI, USA

Correspondence: Manuel F. Schmid (mfs2173@columbia.edu) and Marco G. Giometto (mg3929@columbia.edu)

Received: 21 May 2023 – Discussion started: 15 June 2023
Revised: 13 November 2023 – Accepted: 16 November 2023 – Published: 15 January 2024

Abstract. We present BoundaryLayerDynamics.jl, a new
code for turbulence-resolving simulations of atmospheric
boundary-layer flows as well as canonical turbulent flows
in channel geometries. The code performs direct numerical
simulation as well as large-eddy simulation using a hybrid
(pseudo)spectral and finite-difference approach with explicit
time advancement. Written in Julia, the code strives to be
flexible and adaptable without sacrificing performance, and
extensive automated tests aim to ensure that the implemen-
tation is and remains correct. We show that the simulation
results are in agreement with published results and that the
performance is on par with an existing Fortran implementa-
tion of the same methods.

1 Introduction

Since Deardorff’s early studies (Deardorff, 1969, 1970a, b),
numerical simulations of the three-dimensional, unsteady
flow field have become an integral part of microscale at-
mospheric boundary-layer (ABL) research. Direct numeri-
cal simulation (DNS) provides an extremely accurate tool
to study fundamental properties of turbulent flows and their
scaling from low to moderate Reynolds numbers (Moin and
Mahesh, 1998). Large-eddy simulation (LES) provides a nu-
merical model for a wide range of ABL flow phenomena at
realistic Reynolds numbers while relying on modest, well-
supported modeling assumptions (Meneveau and Katz, 2000;
Stoll et al., 2020). Together, DNS and LES constitute the

backbone of the computational study of turbulent flow dy-
namics and have contributed many insights to our current
understanding.

Many different implementations of these methods are in
use for ABL research and continue to be actively developed.
Projects such as PALM (Maronga et al., 2020), OpenFOAM
(Chen et al., 2014), and the Weather Research and Forecast-
ing (WRF) model (Skamarock et al., 2021) are developed in
a community effort as open-source codes with broad appli-
cability. In addition, many research groups have their own
codes that have been developed and extended over decades
and are passed person to person. Some studies also rely on
commercial software such as Ansys Fluent, although not hav-
ing access to implementation details is problematic for scien-
tific reproducibility.

Codes differ along many dimensions, perhaps most impor-
tantly in the physical models that are implemented. The nu-
merical methods used to compute a solution can also lead to
important differences, particularly for LES, where the small-
est resolved scales of motion are an integral part of the tur-
bulence dynamics (Kravchenko and Moin, 1997). The per-
formance characteristics of a code are also central as most
turbulence-resolving simulations continue to be limited by
their computational cost. Furthermore, there can be impor-
tant differences in the effort and model-specific experience
required for setting up simulations and making changes and
additions to the source code while ensuring the correctness of
the results. When developing a new code or selecting an ex-

Published by Copernicus Publications on behalf of the European Geosciences Union.

322 M. F. Schmid et al.: BoundaryLayerDynamics.jl v1.0

isting model for a simulation, these different qualities have to
be weighed against each other and trade-offs are inevitable.

The advent of the Julia programming language (Bezan-
son et al., 2017) represents a shift in the landscape of possi-
ble trade-offs between conflicting goals. Publicly launched in
2012 and stabilized with version 1.0 in 2018, Julia promises
to combine the performance of Fortran, C, and C++ with the
convenience of Python, MATLAB, and R. Automatic mem-
ory management, dynamic typing with type inference, mul-
tiple dispatch, and a built-in modern package manager fa-
cilitate rapid development of clear, concise code that keeps
orthogonal functionality separate. At the same time, Julia’s
“just-ahead-of-time” compilation model allows code to run
with no or minimal computational overhead.

In this paper, we present and discuss BoundaryLayerDy-
namics.jl (Schmid et al., 2023b), a new code for turbulence-
resolving flow simulation optimized for ABL research. The
code has been written to provide core functionality for DNS
and LES of channel-flow configurations with a focus on mak-
ing it easy to use, adapt, and extend the code without jeopar-
dizing the correctness of the results. To achieve better trade-
offs along these dimensions, the implementation relies on the
Julia programming language, on automated testing, and on a
modular design.

The suitability of the new code is of course not limited to
simulations of ABL turbulence. In fact, none of the current
functionality is specific to ABL applications. However, the
choice of physical models and numerical methods is guided
by the needs of such applications and future developments
will similarly prioritize those use cases.

The code solves the incompressible Navier–Stokes equa-
tions relying on (pseudo)spectral and finite difference meth-
ods for discretization in the horizontal and vertical directions
respectively, making use of the Message Passing Interface
(MPI) for parallelization in the vertical direction and per-
forming fully explicit time integration. The details of the nu-
merical methods are described in Sect. 2. The implementa-
tion is validated via a number of automated tests as described
in Sect. 3, where we also present a validation against DNS
and LES results computed with different codes. The perfor-
mance analysis presented in Sect. 4 shows that the compu-
tational cost is comparable to a Fortran implementation of
the same numerical approach and that parallel performance
scales favorably up to the maximum supported number of
parallel processes.

BoundaryLayerDynamics.jl is open-source software and
available under the MIT License through the official
Julia package repository and on GitHub (https://github.
com/efpl-columbia/BoundaryLayerDynamics.jl, last access:
22 November 2023), where the public repository of the pack-
age is currently hosted. The version described in this article
is archived on Zenodo (Schmid et al., 2023b).

2 Governing equations and numerical methods

The choice of governing equations and numerical methods is
guided by the goal of studying the turbulent flow dynamics
in the atmospheric boundary layer. Other turbulent flows in
engineering and in the natural environment are also consid-
ered insofar as their requirements do not conflict with those
of atmospheric boundary-layer flows.

It is well-established that the Navier–Stokes equations are
an extremely accurate physical model for flows with a Knud-
sen number Kn� 1 and that compressibility effects are mini-
mal for flows with a Mach number Ma . 1/3 (Panton, 2013).
Since these conditions are met for atmospheric boundary-
layer flows, the incompressible Navier–Stokes equations,

∂ui

∂t
+ uj

(
∂ui

∂xj
−
∂uj

∂xi

)
=

1
Re

∂2ui

∂xj∂xj
−
∂p

∂xi
+ fi (1)

and
∂ui

∂xi
= 0 (2)

are used as the mathematical model for this work, given
here with the rotational form of the advection term
(Orszag, 1971a), for which the total kinematic pressure
p = pgauge/ρ+ 1

2uiui includes both the static and dynamic
pressure. Quantities are non-dimensionalized with a length
scale L and a velocity U , producing the Reynolds number
Re= UL/ν. The Cartesian coordinates xi denote the primary
horizontal (i = 1, usually streamwise), secondary horizontal
(i = 2, usually cross-stream), and vertical (i = 3) directions,
while the corresponding velocity components are given as ui .
The term fi denotes the components of a body force, usually
gravity or a constant pressure gradient, and the kinematic vis-
cosity ν and fluid density ρ are assumed scalar constants.

While this formulation can serve as a reasonable represen-
tation of a neutrally stratified atmospheric boundary layer,
there are many important ABL processes that are not in-
cluded. Coriolis forces, temperature, and humidity in par-
ticular are of central importance for many applications. The
current code is meant to provide the core functionality neces-
sary for ABL flow simulations and serve as a foundation for
a more comprehensive set of physical and numerical models
that can be added over time.

For flows with a moderate to high Reynolds number, cur-
rent computational capabilities generally do not permit re-
solving the full range of scales of motion. In this case, the
filtered Navier–Stokes equations,

∂ũi

∂t
+ ũj

(
∂ũi

∂xj
−
∂ũj

∂xi

)
+
∂τ

sgs
ij

∂xj

=
1

Re
∂2ũi

∂xj∂xj
−
∂p̃

∂xi
+ f̃i (3)

and
∂ũi

∂xi
= 0 , (4)

Geosci. Model Dev., 17, 321–333, 2024 https://doi.org/10.5194/gmd-17-321-2024

https://github.com/efpl-columbia/BoundaryLayerDynamics.jl
https://github.com/efpl-columbia/BoundaryLayerDynamics.jl

M. F. Schmid et al.: BoundaryLayerDynamics.jl v1.0 323

are used as the computational model, where ũi rep-
resents the spatially filtered velocity field, i.e., ũi =∫
G(r,x)ui(x− r)dr with G defining the filtering opera-

tion. The subgrid-scale stress tensor τ sgs
ij = τ

R
ij −

1
3τ

R
kkδij rep-

resents the anisotropic component of the residual stress ten-
sor τR

ij = ũiuj − ũi ũj and has to be modeled as a func-
tion of the resolved velocity ũi . The modified pressure p̃ =
p̃gauge/ρ+ 1

2 ũi ũi+
1
3τ

R
ii now includes contributions from the

filtered gauge pressure p̃gauge, the resolved kinetic energy,
and the unresolved kinetic energy. The forcing term f̃i is
simply the spatially filtered fi . In the following, the same
notation is used to represent both the unfiltered (DNS) and
filtered (LES) equations to simplify the notation.

The past decades have seen several efforts to develop
a suitable model for τ sgs

ij (Smagorinsky, 1963; Schumann,
1975; Bardina et al., 1980; Germano et al., 1991; Meneveau
et al., 1996; Porté-Agel et al., 2000; Bou-Zeid et al., 2005).
The current implementation includes the static Smagorinsky
(1963) subgrid-scale model:

τ
sgs
ij =−2l2SSSij , (5)

where Sij = 1/2
(
∂ui
∂xj
+
∂uj
∂xi

)
is the resolved strain rate, S =√

2SijSij is the characteristic or total strain rate, and lS is the
Smagorinsky length scale, taken to be the product of the filter
width 1 and a constant Smagorinsky coefficient CS.

Specifying boundary conditions for turbulent flows re-
mains a challenging research problem, since chaotic veloc-
ity fluctuations have to be prescribed in a physically accu-
rate manner. To avoid these difficulties, turbulence-resolving
simulations are often run with periodic boundary conditions.
While this requires that the problem is formulated such that
it can be approximated with a periodic flow field, unphys-
ical border regions are avoided and accurate results can be
obtained in the whole domain as long as the domain is large
enough to accommodate all relevant scales of motion. Fur-
thermore, the flow field can then be expressed in terms of
periodic basis functions. For a horizontally periodic domain
of size L1×L2, the velocity field can be written as

ui(x1,x2,x3)=
∑∑
−∞<κ1<∞
−∞<κ2<∞

û
κ1κ2
i (x3)eiκ12πx1/L1 eiκ22πx2/L2 . (6)

With similar expressions for the pressure p and the forcing
fi , we can rewrite the governing equations for a single mode
with wavenumber κ1 in x1 direction and κ2 in x2 direction,
∂

∂t
û
κ1κ2
i (x3)+

∑∑
−∞<κ ′1<∞

−∞<κ ′2<∞

û
(κ1−κ

′

1)(κ2−κ
′

2)

j (x3)

(
D̂
κ ′1κ
′

2
j û

κ ′1κ
′

2
i (x3)− D̂

κ ′1κ
′

2
i û

κ ′1κ
′

2
j (x3)

)
+ D̂

κ1κ2
j τ̂

sgs κ1κ2
ij (x3)

=
1

Re

(
D̂
κ1κ2
j

)2
û
κ1κ2
i (x3)

− D̂
κ1κ2
i p̂κ1κ2(x3)+ f̂

κ1κ2
i (x3) , (7)

where D̂κ1κ2
1 =

2πiκ1
L1

, D̂κ1κ2
2 =

2πiκ2
L2

, and D̂κ1κ2
3 =

∂
∂x3

are
the differential operators, with i denoting the imaginary unit.
For direct numerical simulations the subgrid-scale term is
omitted. The continuity equation becomes

D̂
κ1κ2
i û

κ1κ2
i (x3)= 0 . (8)

In the vertical direction, turbulence is not homogeneous for
ABL flows and periodic boundary conditions are not applica-
ble. For a channel geometry, boundary conditions have to be
specified for ui(x3 = 0) and ui(x3 = L3) with the constraint
that

L2∫
0

L1∫
0

u3(x3 = 0)− u3(x3 = L3)dx1dx2 = 0 , (9)

which can be obtained from integrating the continuity equa-
tion over the whole domain. A number of engineering flows
such as smooth-wall open- and closed-channel flows can be
modeled with Dirichlet and Neumann boundary conditions.
The complex boundaries of atmospheric flows can require
significant modeling effort, and simulations generally have to
partially resolve surfaces (e.g., immersed boundary method,
terrain-following coordinates) or represent their effect with a
wall model for τ sgs

i3 , usually formulated for the discretized
equations (Piomelli and Balaras, 2002). The current im-
plementation includes an algebraic equilibrium rough-wall
model defined similar to Mason and Callen (1986) with

τ
sgs
i3 (x3 = 0)=

−κ2
√
u1(x

ref
3)2+ u2(x

ref
3)2

log(xref
3 /z0)2

ui(x
ref
3) (10)

for i = 1,2 and τ sgs
33 (x3 = 0)= 0, where z0 is the roughness

length, κ ≈ 0.4 is the von Kármán constant, and xref
3 > z0

is a reference height at which the (resolved) velocity is ob-
tained, usually chosen as the first grid point. To improve the
near-wall behavior of the subgrid-scale model, the Smagorin-
sky length scale is adjusted to l−nS = (CS1)

−n
+ (κx3)

−n as
proposed by Mason and Thomson (1992), with n= 2 as the
default value.

For the numerical solution of Eqs. (7) and (8), we limit
ourselves toN1×N2 wavenumbers atN3 vertical grid points.
The wavenumbers are selected symmetrically around κi = 0,
i.e., |κ1| ≤ (N1− 1)/2 and |κ2| ≤ (N2− 1)/2. This results
in an odd number of wavenumbers in each direction and
avoids the need for a special treatment of Nyquist frequen-
cies. Since φ̂−κ1−κ2 = φ̂κ1κ2∗ for any real-valued φ, we only
need to explicitly solve for half the modes and can obtain
the others through complex conjugation. In vertical direc-
tion, equidistant grid points are selected from the interval
[0,1], which is then mapped to the domain with a function
x3 : [0,1]→ [0,L3], ζ 7−→ x3(ζ). This function can be used
for grid stretching in the vertical direction; the choice of
x3 : ζ 7−→ L3ζ defines a uniform grid. A staggered arrange-
ment of grid points with ζC at the center of the N3 segments

https://doi.org/10.5194/gmd-17-321-2024 Geosci. Model Dev., 17, 321–333, 2024

324 M. F. Schmid et al.: BoundaryLayerDynamics.jl v1.0

and ζI at the N3− 1 interfaces between them, i.e.,

ζC ∈

{
1/2
N3

,
3/2
N3

, . . .,
N3− 1/2
N3

}
(11)

for u1,u2,p,f1,f2,τ
sgs
ii ,τ

sgs
12 , along with

ζI ∈

{
1
N3
,

2
N3
, . . .,

N3− 1
N3

}
(12)

for u3,f3,τ
sgs
13 ,τ

sgs
23 , avoids the need to specify boundary

conditions for the pressure field, prevents odd–even decou-
pling, and results in a smaller effective grid spacing (Ferziger
et al., 2020). When running large-eddy simulations, the dis-
cretization implicitly defines the spatial filter G and the filter
width 1 is taken to be 1= 3

√
111213 (Scotti et al., 1993)

with 11 = L1/N1, 12 = L2/N2, and 13 = 1/N3dx3/dζ .
The horizontal derivatives D̂κ1κ2

1 and D̂κ1κ2
2 can be com-

puted exactly. For the vertical derivative D̂κ1κ2
3 , we use cen-

tral second-order finite differences on the staggered ζ nodes
(Moin and Verzicco, 2016) as well as the analytical derivative
of x3(ζ), i.e.,

D̂
κ1κ2
3 φ̂κ1κ2

∣∣∣
ζ
=

dζ
dx3

∣∣∣∣
ζ

∂φ̂κ1κ2

∂ζ

∣∣∣∣∣
ζ

=
dζ
dx3

∣∣∣∣
ζ

φ̂κ1κ2 (ζ + δζ/2)− φ̂κ1κ2 (ζ − δζ/2)
δζ

+O
(
δζ 2

)
(13)

for any field φ, where δζ ≡ 1/N3 is the grid spacing in the ζ
coordinate. Vertical derivatives are therefore evaluated at the
opposite set of grid points to the ones where φ is defined,
as typical for staggered grids. At the boundary, one-sided
second-order stencils are employed. This approximation of
the vertical derivatives results in a truncation error of order
O
(
δζ 2).

The non-linear advection term of Eq. (7) requires further
approximations. First, some of the terms (e.g., i = 1,j =
3) are evaluated at the opposite set of vertical grid points
than where they are required and have to be interpolated.
With the simple interpolation φ̂ (ζ)= 1/2

(
φ̂ (ζ − δζ/2)+

φ̂ (ζ + δζ/2)
)
+O

(
δζ 2), the truncation error generally in-

creases but remains of the order O
(
δζ 2). Furthermore, the

double sum can only be computed over the resolved range of
wavenumbers, i.e., |κ ′1| ≤ (N1−1)/2 and |κ ′2| ≤ (N2−1)/2,
producing another truncation error that decreases exponen-
tially with the number of resolved wavenumbers. The same
applies to the non-linear expressions involved in the evalua-
tion of τ sgs

ij . This discretization of the advection term in rota-
tional form conserves kinetic energy in the absence of time-
integration errors (Mansour et al., 1979) as long as the grid
is uniform.

To simplify the computation of non-linear terms and avoid
evaluating expensive convolutions, those terms are com-
puted on NPD

1 ×N
PD
2 equidistant grid points in the phys-

ical domain, relying on the fast Fourier transform (FFT)

algorithm for forward and backward transforms (Orszag,
1969, 1971b). In principle,NPD

1 andNPD
2 are parameters that

can be chosen independently of N1 and N2, but the choice
of NPD

i ≥ 1+ 3κmax
i avoids introducing aliasing errors for

a simple product of two variables such as the resolved ad-
vection term (Patterson and Orszag, 1971). In this case, the
physical-domain evaluation is equivalent to a true spectral
Galerkin method computing the convolution of Eq. (7) over
all resolved wavenumbers. Contributions from wavenumbers
|κi |> (Ni − 1)/2 are discarded upon return to the Fourier
domain, and vertical derivatives can be computed before or
after the horizontal Fourier transforms as the two operations
commute.

For the more complex non-linear expressions introduced
by the SGS model, full dealiasing is generally not feasible
and physical-domain evaluations incur aliasing errors in ad-
dition to the truncation errors. This approach, dubbed the
pseudospectral method by Orszag (1971b), can achieve simi-
lar accuracy to a Galerkin method (Orszag, 1972). While it is
common to setNPD

i =Ni for pseudospectral approximations
and only discard the Nyquist wavenumber, NPD

i can in prin-
ciple be chosen freely for more control over aliasing errors.
Furthermore, it can be beneficial to choose different values of
NPD
i for each non-linear term, since computing the resolved

advection requires only 9 transforms and is known to be sen-
sitive to aliasing errors (Kravchenko and Moin, 1997; Mar-
gairaz et al., 2018), while the evaluation of the SGS model
requires 15 transforms.

Combining the velocity components into a single vector û

of length N1×N2× (3N3− 1), the spatially discretized mo-
mentum equation can be written as

dû

dt
= Adv(û)+

1
Re

1û+
1

Re
b̂1−Gp̂+ f̂ . (14)

Here, Adv(·) is the non-linear advection operator that in-
cludes both resolved and subgrid-scale contributions. 1 is
the linear operator that computes the Laplacian of each ve-
locity component, with b̂1 denoting the contributions from
vertical boundary conditions. G is the linear operator that
computes the gradient of the pressure, discretized as a vec-
tor p̂ of size N1×N2×N3. The forcing term f̂ , a vec-
tor of the same length as û, can be constant in time and
space (e.g., pressure-driven channel flow), vary in time only
(e.g., constant-mass-flux channel flow), vary in space only
(e.g., baroclinic flow), or even vary in time and space as a
function of û, which can be used to model vegetation drag or
to represent complex geometry with an immersed boundary
method. The discrete continuity equation,

Dû+ b̂D = 0 , (15)

contains the linear divergence operator D with the contribu-
tions b̂D from the vertical boundary conditions of u3.

This hybrid approach, relying on spectral approximations
in horizontal direction (pseudospectral for the evaluation of

Geosci. Model Dev., 17, 321–333, 2024 https://doi.org/10.5194/gmd-17-321-2024

M. F. Schmid et al.: BoundaryLayerDynamics.jl v1.0 325

τ
sgs
ij) and second-order-accurate finite differences in vertical

direction, has long been employed for computational stud-
ies of turbulent flows in channel geometries (Moin and Kim,
1982; Moeng, 1984; Albertson and Parlange, 1999a, b). It
combines the fast convergence and low dissipation of spectral
methods (Giacomini and Giometto, 2021) with the ease of
parallelization and simple handling of boundary conditions
of finite differences. Conversely, handling complex domains
and non-periodic boundaries can be problematic, though still
possible (Chester et al., 2007; Schmid, 2015; Li et al., 2016).

Following Perot (1993), we obtain the expressions for time
integration through a block LU decomposition of the fully
discretized equations. This results in expressions in the style
of the fractional step method (Chorin, 1968; Temam, 1969),
but it avoids the need for boundary conditions for the inter-
mediate velocity and the pressure on a staggered grid and can
easily be adapted when new terms are included or different
numerical methods are employed.

Adams–Bashforth methods solving ordinary differential
equations of the form du/dt = f (u), u(t0)= u0 can be writ-
ten as u(n+1)

= u(n)+1t
∑s−1
i=0βif (u

(n−i)), where βi are
the coefficients of the method, s is the order of accuracy,
and superscripts denote the time step (Hairer et al., 1993).
With β0 = 1 this corresponds to the forward Euler method
(s = 1), while β0 = 3/2,β1 =−1/2 gives second-order ac-
curacy (s = 2). Applied to the momentum Eq. (14), this can
be written as

û(n+1)
= û(n)+1t

s−1∑
i=0

βi

(
F(û(n−i))−Gp̂(n−i)

)
, (16)

where terms are grouped with the definition F(û)≡
Adv(û)+ 1

Re1û+ 1
Re b̂1+f̂ to simplify the notation. Together

with the continuity Eq. (15), the fully discretized equations
become

û(n+1)
+Gϕ̂(n+1)

= û(n)+1t

s−1∑
i=0

βiF
(
û(n−i)

)
(17)

and

Dû(n+1)
=−b̂D (18)

if we group the pressure contributions with
ϕ̂(n+1)

≡1t
∑s−1
i=0βi p̂

(n−i). Similarly, explicit s-
stage Runge–Kutta methods can be written as
u(n,i) =

∑i−1
k=0

(
αiku

(n,k)
+1tβikf (u

(n,k))
)

for i = 1, . . ., s,
with u(n,0) = u(n) and u(n+1)

= u(n,s) (Gottlieb et al., 2009).
This is referred to as the Shu–Osher form (Shu and Osher,
1988), where the coefficients αik and βik are not uniquely
determined by the Butcher tableau of the method and can be
chosen to minimize storage requirements. In this case, the
fully discretized equations can be written as

û(n,i)+Gϕ̂(n,i) =

i−1∑
k=0

(
αikû

(n,k)
+1tβikF

(
û(n,k), t (n,k)

))
(19)

and

Dû(n,i) =−b̂D (20)

with the definition ϕ̂(n,i) ≡1t
∑i−1
k=0βik p̂(n,k).

Each step or stage requires the solution of a system of
equations in the form û+Gϕ̂ = â and Dû= b̂. This can be
solved with the LU decomposition:(

I G
D 0

)(
û

ϕ̂

)
=

(
I 0
D −DG

)(
I G
0 I

)(
û

ϕ̂

)
=

(
I 0
D −DG

)(
û?

ϕ̂

)
=

(
â

b̂

)
, (21)

where û? ≡ û+Gϕ̂ has been introduced. The steps to com-
pute the solution are therefore

û? = â ,

DGϕ̂ = Dû?− b̂ , and
û= û?−Gϕ̂ , (22)

where the second step requires solving a linear system.
Since the operator (DG) has no coupling between differ-
ent wavenumbers, Eq. (22) can be decomposed into N1×N2
tridiagonal systems of size N3. For κ1 = κ2 = 0 the system
is singular due to the fact that the governing equations only
include the gradient of the pressure and do not place any
restrictions on the absolute magnitude of the pressure vari-
able. This system therefore has to be solved iteratively or
the equations have to be regularized, e.g., by specifying an
arbitrary value for one element of ϕ̂. The current imple-
mentation relies on the Thomas algorithm (Quarteroni et al.,
2007) to solve the tridiagonal systems and includes the for-
ward Euler and second-order Adams–Bashforth methods for
time integration as well as the strong stability preserving
Runge–Kutta methods SSPRK (2,2) and SSPRK (3,3) (Got-
tlieb et al., 2009). Adding other explicit methods is straight-
forward, provided they can be formulated in a similar fash-
ion.

The simulation code is written in the Julia programming
language, relying on the Julia bindings to the FFTW library
(Frigo and Johnson, 2005) for fast Fourier transforms. For
parallelization, the domain is vertically split into up to N3
blocks that are computed by separate processes exchanging
information through the Message Passing Interface (MPI).

3 Model validation

The validation efforts presented in this section aim to confirm
that the numerical methods are implemented faithfully and
that these methods produce physically relevant results. To
maintain this confidence as the code is inevitably modified, a

https://doi.org/10.5194/gmd-17-321-2024 Geosci. Model Dev., 17, 321–333, 2024

326 M. F. Schmid et al.: BoundaryLayerDynamics.jl v1.0

Figure 1. Error convergence for transient two-dimensional laminar flows. The left panel shows second-order convergence as the vertical grid
resolution is refined for flows set up along the vertical direction and a randomly chosen horizontal direction. The other panels show first-,
second-, and third-order convergence as the time resolution is refined for a Taylor–Green vortex set up along the two horizontal directions,
in which case the spatial discretization is exact and the order of convergence of the time integration methods is measured. Grid lines show
the formal order of convergence for each case.

focus is placed on automated tests that can be rerun after ev-
ery change. A set of automated unit tests verifies the expected
order of accuracy when computing individual terms of the
discretized equations for prescribed velocity fields and when
applying the time-integration algorithms to ordinary differ-
ential equations. A set of automated integration tests verifies
that the solution to canonical transient two-dimensional lam-
inar flows can be simulated with the expected order of ac-
curacy. Finally, fully turbulent flow solutions are computed
and compared to published results produced with different
codes. These tests are not automated since they require sig-
nificant computational resources and have no analytical solu-
tion to compare against so there is some degree of judgment
required to evaluate the quality of the solution.

The automated tests of individual terms make use of the
fact that the implemented numerical methods are exact for
certain velocity fields. The diffusion term and the pressure
solver are exact for a function that is the product of truncated
Fourier series along horizontal dimensions and a quadratic
polynomial in vertical direction. The advection term is only
exact for a linear function in vertical direction due to linear
interpolations, although the term is still second-order accu-
rate. By constructing such a function with randomized pa-
rameters, each term can be computed numerically as well
as analytically, and matching values give a high degree of
confidence in the correctness of the implementation. Further-
more, we can verify the order of convergence when comput-
ing the terms at different grid resolutions for a velocity field
that cannot be handled exactly by the implemented methods.
The time integration methods are verified in a similar way
by solving ordinary differential equations that have analyti-

cal solutions with different time steps. We also verify that the
tridiagonal solver is exact for random inputs.

To test the full solver including time integration, the auto-
mated tests include a number of laminar flow problems, cur-
rently the transient Poiseuille and Couette flows as well as
decaying Taylor–Green vortices. Numerical solutions com-
puted at different resolutions are then compared to the ana-
lytical solution to ensure that the order of convergence corre-
sponds to formal order of the numerical methods, as shown
in Fig. 1. Dimensional parameters such as domain sizes and
velocity scales are again chosen randomly since parame-
ters that are zero or unity can mask errors in the solution.
For Poiseuille and Couette flows, this includes the horizon-
tal direction of the flow. The two-dimensional Taylor–Green
vortices are oriented both in horizontal and vertical planes.
For the former, the spatial discretization is exact so the test
case verifies the order of convergence of the time integration
method.

The above test cases have been verified in single-process
(serial) mode as well as in multi-process (parallel) mode.
Multi-process tests are run both with a vertical resolution
greater than and equal to the number of processes since those
configurations sometimes rely on different code paths. Since
the tests are automated and run within minutes on consumer
hardware, they can be rerun whenever changes are made to
the code to ensure that any future version of the code still
satisfies all the tested properties.

Turbulence-resolving flow simulations require substan-
tially more computation and are therefore not included in the
automated tests that are meant to be run routinely during code
development. The validation cases presented below are cho-
sen such that they represent scientifically relevant flow sys-

Geosci. Model Dev., 17, 321–333, 2024 https://doi.org/10.5194/gmd-17-321-2024

M. F. Schmid et al.: BoundaryLayerDynamics.jl v1.0 327

tems while keeping the computational cost moderate. Each
case can be simulated in about 2 h using 32 MPI processes
on a single compute node of the Intel Skylake generation.

The results of direct numerical simulations are not sup-
posed to depend on the exact method used for modeling
the flow, at least for lower-order flow statistics. For rela-
tively low Reynolds numbers, simulations have been run with
many different codes and with a wide range of parameters
such as domain sizes, aspect ratios, and grid resolutions,
so the expected simulation results are well-established and
have been validated against wind-tunnel measurements (Kim
et al., 1987; del Álamo and Jiménez, 2003; Lee and Moser,
2015).

In Fig. 2, we show a comparison of a closed-channel
flow at Reτ ≈ 180 with data published by Lee and Moser
(2015). The friction Reynolds number Reτ = uτ δ/ν is based
on the half-channel height δ and the friction velocity u2

τ =

ν ∂u1
∂x3

∣∣
x3=0 here. The simulation is run with a bulk Reynolds

number of Reb = Ubδ/ν = 20000/7, where the vertically
averaged bulk velocity Ub is held constant by a dynami-
cally adjusted pressure forcing. The solution is computed
in a domain of size 4πδ in streamwise and 2πδ in cross-
stream direction. The velocity field is discretized with
255× 191 Fourier modes at 96 vertical grid points that are
spaced according to a sinusoidal grid transform x3(ζ)= δ+

δ sin((2ζ − 1)ηπ/2)/sin(ηπ/2) with η = 0.97. The mean
statistics computed over ∼ 17.5 large-eddy turnover times
Tτ = δ/uτ after a spinup time of ∼ 3.5Tτ closely match the
results from Lee and Moser (2015).

For large-eddy simulation, validation is not as straightfor-
ward since results remain relatively sensitive to differences in
the modeling approach and in the grid resolution. To validate
the new implementation, we limit ourselves to a compari-
son with a pre-existing Fortran implementation of the same
physical and numerical models (Giometto et al., 2017) and
refer to previous publications for validation studies and dis-
cussions of limitations of the modeling approach (Porté-Agel
et al., 2000; Yue et al., 2007, 2008; Giometto et al., 2016).

In Fig. 3 we show the results of this comparison for an
open-channel flow at Reτ = 108 driven by a constant body
force f1. The friction Reynolds number Reτ = uτh/ν is
based on the channel height h and the friction velocity u2

τ =

hf1 here. The lower surface is characterized by a roughness
length z0 that results in a non-dimensional channel height of
h/z0 = 104. The solution is computed in a domain of size
2πh in streamwise and (4/3)πh in cross-stream direction.
The velocity field is discretized with 63×63 Fourier modes at
64 equidistant vertical grid points. The mean statistics com-
puted over 200 large-eddy turnover times Tτ = h/uτ after a
spinup time of 50Tτ closely match for the two separate im-
plementations.

Combined, these validation efforts provide ample evidence
that the implementation matches the mathematical formula-
tion of the methods and that those methods are capable of ac-
curately simulating flow physics, within the limitations of the

physical models. A comprehensive set of easily repeatable
validation tests serves both to verify the current implementa-
tion and to ensure that future developments do not jeopardize
correctness. This should not only facilitate adding new func-
tionality but also help make changes to existing functional-
ity and avoid getting locked into design decisions that might
prove suboptimal for future developments.

4 Performance and scaling

Defined in a broad way, performance can be understood as
the time required to obtain a solution at the required quality
given the available computational resources. We can exam-
ine how the time changes as a function of the required qual-
ity and the available resources (relative performance) or how
fast different methods arrive at a solution for fixed quality
and resources (absolute performance). However, it is diffi-
cult to measure the overall quality of a turbulent flow simu-
lation in a quantitative way since the system is chaotic and
analytic solutions are not available. Furthermore, there is a
great diversity of computational resources that vary along
important dimensions such as floating point operations per
second (FLOPS), memory bandwidth and latency, network
bandwidth and latency, and many more. We therefore narrow
the scope of the performance analysis to the question of the
time required to obtain a solution given the specified simula-
tion parameters and the number of compute nodes, as mea-
sured on a fairly typical high-performance computing (HPC)
system.

For the implemented explicit time integration schemes, the
computational cost of a single evaluation of the right-hand
side of du/dt = f (u) fully characterizes the overall cost of a
simulation, which is a simple function of the number of steps
and the evaluations per step (i.e., stages of a Runge–Kutta
method). The computational cost of a single evaluation of
f (u) depends primarily on the number of Fourier modes and
vertical grid points and whether a subgrid-scale term is mod-
eled (LES) or not (DNS). The impact of other parameters
such as the type of pressure forcing (constant flux vs. con-
stant force), boundary conditions, and grid transformations
is imperceptible.

To assess relative performance, Fig. 4 shows the time
required to compute the advection, diffusion, and pressure
terms for different numbers of compute nodes and vertical
grid points. The figure displays both strong scaling, where
the number of processes is varied for a problem of fixed size,
and weak scaling, where the problem size is varied in pro-
portion to the computational resources. These results shows
that the advection term contributes most to the overall cost,
while the pressure term exhibits the most problematic scaling
behavior.

Computing the advection term is a global operation in hor-
izontal direction but only involves neighboring nodes in ver-
tical direction. The bulk of the computational work consists

https://doi.org/10.5194/gmd-17-321-2024 Geosci. Model Dev., 17, 321–333, 2024

328 M. F. Schmid et al.: BoundaryLayerDynamics.jl v1.0

Figure 2. Direct numerical simulation (DNS) of a turbulent channel flow at Reτ ≈ 180, validated against data published by Lee and Moser
(2015). Mean profiles are shown for the streamwise velocity u+1 , the advective transport u+1 u

+

3 , the diffusive transport ∂u+1 /∂x
+

3 , as well
as the production P+ and (pseudo)dissipation ε+ of turbulent kinetic energy. The last panel shows contours of the premultiplied turbulent
kinetic energy spectra E+

ii
along the streamwise (k+1 = 2πκ1/L

+

1) and cross-stream (k+2 = 2πκ2/L
+

2) direction. The superscript + marks
values in inner units, i.e., non-dimensionalized with the friction velocity uτ and the kinematic viscosity ν.

Figure 3. Large-eddy simulation (LES) of a turbulent channel flow at Reτ = 108 with an aerodynamically rough wall and a channel height
of h/z0 = 104, validated against a tried and tested Fortran code with the same numerical approach (Giometto et al., 2017). All values are
non-dimensionalized with the friction velocity uτ and the roughness length z0. Mean profiles are shown for the streamwise velocity u1, the
resolved transport u1u3, the subgrid-scale transport τ sgs

13 , as well as the production P and (pseudo-)dissipation ε of resolved turbulent kinetic
energy. The last panel shows contours of the resolved turbulent kinetic energy spectra Eii along the streamwise direction, premultiplied with
the wavenumber k1 = 2πκ1/L1.

of computing discrete Fourier transforms, which are local to
each MPI process and scale as O (N logN), where N is the
number of modes. It appears that this cost dominates over the
cost of communication, resulting in near-perfect strong and
weak scaling. When computing subgrid-scale stresses with a
static Smagorinsky model, additional transforms are required
and the cost increases to almost twice as much without affect-
ing the scaling behavior.

Computing the pressure term has no data dependency be-
tween horizontal modes but is a sequential, global process

in vertical direction (Thomas algorithm). Horizontal modes
can be processed in batches to stagger the sequential passes
up and down the domain, where the size of those batches
is a tuning parameter that represents a trade-off between
maximizing parallelism and minimizing per-batch overhead.
The resulting performance shows imperfect weak and strong
scaling. Scaling appears to improve when there are more
vertical grid points per process, increasing the work-to-
communication ratio. While the overall cost appears to re-
main at most about a quarter of the cost of the advection term,

Geosci. Model Dev., 17, 321–333, 2024 https://doi.org/10.5194/gmd-17-321-2024

M. F. Schmid et al.: BoundaryLayerDynamics.jl v1.0 329

Figure 4. Performance and scaling of individual terms and full time step, as measured on Intel Xeon Ice Lake nodes of the Stampede2 system
at the Texas Advanced Computing Center. Individual terms are computed at a resolution of 256× 256× λNp, where λ ∈ {1,2,4,8,16} is
the number of vertical grid points per MPI process and Np is the total number of MPI processes. Dotted lines indicate weak scaling, dashed
lines indicate strong scaling, and the grid lines correspond to perfect scaling. The last panel shows the overall performance for the resolution
256× 256× 1280 (highlighted in orange on other panels) in comparison to a pre-existing Fortran implementation of the same numerical
approach (Giometto et al., 2017). DNS performance is shown with the symbol +, LES performance with the symbol ×.

it is possible that the two costs are even closer for some com-
binations of hardware configurations and simulation param-
eters, in which case it could be worth optimizing the batch
size parameter of the pressure solver.

Computing the diffusion term only involves neighboring
vertical grid points and has no global data dependencies.
This results in near-perfect weak scaling. Strong scaling is
not quite perfect, which is explained by the fact that there
is very little work to do for each grid point so the work-to-
communication ratio is low. This has no discernible effect on
the overall scaling behavior however, as computing the diffu-
sion term is always at least an order of magnitude less work
than computing the advection term.

To assess absolute performance, Fig. 4 includes a compar-
ison with a Fortran code that implements the same numeri-
cal methods (Giometto et al., 2017). While such a compar-
ison does not answer the question of whether either code is
making optimal use of the computational resources, it does
respond to the practical question of whether there are any
performance trade-offs when substituting the new code for a
codebase that has been actively used for turbulence research
for over 2 decades. The comparison shows that the overall
performance of both implementations is of a similar order
of magnitude, with the new Julia implementation showing
somewhat better scaling and significantly faster DNS perfor-
mance.

It appears that the new Julia code has avoided introducing
excessive overhead without much effort devoted to perfor-
mance optimization. That it even surpasses the performance
of the Fortran implementation is likely explained by two fac-
tors. First, the new code is formulated with the Fourier do-
main representation at its center, which makes it easier to
avoid unnecessary Fourier transforms than in the physical-

space formulation of the Fortran implementation. Second,
the new code makes different trade-offs between work and
communication which appear to be more suitable for mod-
ern hardware. Some of these insights will flow back to the
Fortran implementation, reducing the performance discrep-
ancy between the two codes.

Overall, the performance characteristics of the new code
are as expected. The computational cost is dominated by
the Fourier transforms necessary to compute the non-linear
term, while the pressure solver shows the least favorable
scaling properties, and the overall performance is compara-
ble to a Fortran implementation of an equivalent numerical
scheme. The analysis shows that for the implemented numer-
ical scheme and current HPC hardware, performance is opti-
mized by reducing the number and size of Fourier transforms
and choosing an efficient implementation of the fast Fourier
transform algorithm. Other details matter less as long as the
computational cost can be kept significantly below the cost
of the non-linear term.

Future improvements are likely to focus on parallelism
along horizontal coordinate directions, either through multi-
threaded CPU code or through GPGPU computation, allow-
ing the code to scale to larger systems. There is also room
for optimization in how communication is handled, which
might become important if the work-to-communication is
decreased through additional parallelism. However, perfor-
mance optimizations always have to be weighed against their
impact on code simplicity and ease of adaptation. Since the
computational cost of flow simulations is a strongly non-
linear function of the grid resolution, large performance dif-
ferences are required for a practical difference in the scien-
tific problems that can be tackled.

https://doi.org/10.5194/gmd-17-321-2024 Geosci. Model Dev., 17, 321–333, 2024

330 M. F. Schmid et al.: BoundaryLayerDynamics.jl v1.0

On the suitability of Julia for high-performance
computation

Conceptually, there are two main differences in the perfor-
mance characteristics of Julia compared to languages like
Fortran, C, and C++. The first difference concerns the han-
dling of types. For a statically typed language like Fortran,
the type of every variable is specified and therefore available
to the compiler, which can use the information to generate
efficient machine code. In Julia, machine code is generated
when a function is called for the first time, at which point the
types of the function arguments are known. For subsequent
function calls with the same argument types, the compiled
code is reused while a new copy of the function is compiled
for calls with different argument types. If the types of all vari-
ables inside a function can be derived from the type of func-
tion arguments, the compiler has access to the same informa-
tion as for a statically typed language and can in principle
generate the same or equivalent machine code. The second
difference concerns the handling of memory allocations. For
a language with (semi-)manual memory management like
Fortran, memory is allocated and freed either manually with
explicit commands or following deterministic rules. In Julia,
memory is automatically allocated whenever required for the
operation that is performed and the program is periodically
interrupted to examine which of the memory is still in use
and which memory can be freed (garbage collection). Vec-
torized Julia code written in a naive way often allocates large
amounts of memory for intermediate results, but writing Ju-
lia code that operates in place and avoids such allocations is
relatively easy with experience. Therefore, there is no a pri-
ori reason that code written in Julia should be significantly
slower (or faster) than code written in Fortran, C, or C++, al-
though Julia does make it much easier to accidentally include
expensive operations that result in poor performance.

Julia was chosen as implementation language for this code
with the goal of improving the ease of development, hop-
ing that the negative effect on performance could be kept
minimal. However, the experience so far has shown that
the net impact on performance might even be positive. Per-
formance optimizations can be seen as a continuum from
low level (e.g., vectorized CPU instructions, optimal use of
CPU cache) to high level (e.g., choice of algorithms, speed–
accuracy trade-offs). At the lower end of this range, Julia re-
lies on the LLVM compiler framework and a number of pre-
existing libraries, making use of countless hours of optimiza-
tion work, but Julia also makes it rather easy to write code it
cannot optimize very well. Maintaining close-to-optimal per-
formance therefore requires regular measurements and occa-
sional fixes. High-level optimizations on the other hand re-
quire understanding the performance characteristics of dif-
ferent approaches and choosing the right one, often by mea-
suring the performance of different implementations. This
type of optimization work benefits from the Julia language
features and the ease of integrating packages from a growing

ecosystem. The impact of language choice on performance
depends not so much on what optimizations are theoretically
possible but which ones are simple enough that they are done
in practice. It is therefore possible that the choice of Julia will
be a benefit rather than a drawback for the performance of
this code over its lifetime.

5 Conclusions

Turbulence-resolving ABL flow simulations are subject to a
number of competing requirements that have to be consid-
ered when developing simulation code. Availability of phys-
ical and numerical models, performance and scalability, ease
of use and ease of modification, safeguards against imple-
mentation and usage errors, as well as license terms may vary
considerably, and trade-offs are often inevitable. The Julia
programming language is promising more favorable trade-
offs by offering the ergonomics of a modern high-level lan-
guage without sacrificing performance.

In this paper, we have introduced a new code for
turbulence-resolving flow simulations, designed for the re-
quirements of atmospheric boundary-layer research and writ-
ten in Julia. The performance is shown to be in line with
a Fortran implementation of the same modeling approach.
In fact, it even appears that easier experimentation with al-
gorithmic approaches and implementation trade-offs might
have a stronger impact on performance than the remaining
computational overhead compared to highly optimized For-
tran compilers.

The code also places a focus on automated testing and
minimizing the chances for errors both during development
and usage. This is particularly important in exploratory re-
search, where the expected behavior of a new model or flow
system is not known a priori, and it is difficult to discern be-
tween inconspicuous errors and novel results.

The code provides the core functionality for both direct
numerical simulation and large-eddy simulation in channel-
flow geometries. In the future, we expect to expand the scope
by adding functionality such as more advanced subgrid-scale
models, support for temperature, humidity and transport of
passive scalars, and partially resolved complex terrain.

Code and data availability. BoundaryLayerDynamics.jl is open-
source software and available under the MIT License through the
official Julia package repository and on GitHub (https://github.com/
efpl-columbia/BoundaryLayerDynamics.jl, last access: 22 Novem-
ber 2023), where the public repository of the package is currently
hosted. The version described in this article is archived on Zenodo
(https://doi.org/10.5281/zenodo.10105035, Schmid et al., 2023b).
The data and code required to reproduce this paper are also avail-
able on Zenodo (https://doi.org/10.5281/zenodo.7954004, Schmid
et al., 2023a).

Geosci. Model Dev., 17, 321–333, 2024 https://doi.org/10.5194/gmd-17-321-2024

https://github.com/efpl-columbia/BoundaryLayerDynamics.jl
https://github.com/efpl-columbia/BoundaryLayerDynamics.jl
https://doi.org/10.5281/zenodo.10105035
https://doi.org/10.5281/zenodo.7954004

M. F. Schmid et al.: BoundaryLayerDynamics.jl v1.0 331

Author contributions. MFS developed the model code, performed
validation and performance testing, and prepared the manuscript.
MGG, GAL, and MBP acquired project funding, supervised the
work, and reviewed the manuscript. Access to computational re-
sources was provided by MGG.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Financial support. This research has been supported by the
NSERC (Canada), the Swiss National Science Foundation (grant
no. 181459), the Department of Civil Engineering and Engineer-
ing Mechanics at Columbia University, Monash University, and
the University of Rhode Island. This work made use of the Stam-
pede2 system at the Texas Advanced Computing Center (TACC)
through the Extreme Science and Engineering Discovery Environ-
ment (XSEDE; Towns et al., 2014), which is supported by National
Science Foundation (grant no. ACI-1548562).

Review statement. This paper was edited by Ludovic Räss and re-
viewed by Michael Schlottke-Lakemper and Cedrick Ansorge.

References

Albertson, J. D. and Parlange, M. B.: Surface length scales
and shear stress: implications for land–atmosphere interac-
tion over complex terrain, Water Resour. Res., 35, 2121–2132,
https://doi.org/10.1029/1999wr900094, 1999a.

Albertson, J. D. and Parlange, M. B.: Natural integration of scalar
fluxes from complex terrain, Adv. Water Resour., 23, 239–252,
https://doi.org/10.1016/s0309-1708(99)00011-1, 1999b.

Bardina, J., Ferziger, J. H., and Reynolds, W. C.: Improved subgrid-
scale models for large-eddy simulation, in: 13th Fluid and Plas-
maDynamics Conference, American Institute of Aeronautics and
Astronautics, https://doi.org/10.2514/6.1980-1357, 1980.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A
fresh approach to numerical computing, SIAM Review, 59, 65–
98, https://doi.org/10.1137/141000671, 2017.

Bou-Zeid, E., Meneveau, C., and Parlange, M. B.: A Scale-
Dependent Lagrangian Dynamic Model for Large Eddy Simu-
lation of Complex Turbulent Flows, Phys. Fluids, 17, 025105,
https://doi.org/10.1063/1.1839152, 2005.

Chen, G., Xiong, Q., Morris, P. J., Paterson, E. G., Sergeev, A.,
and Wang, Y.-C.: OpenFOAM for computational fluid dynam-
ics, Notices of the American Mathematical Society, 61, 354,
https://doi.org/10.1090/noti1095, 2014.

Chester, S., Meneveau, C., and Parlange, M. B.: Model-
ing turbulent flow over fractal trees with renormalized
numerical simulation, J. Comput. Phys., 225, 427–448,
https://doi.org/10.1016/j.jcp.2006.12.009, 2007.

Chorin, A. J.: Numerical solution of the Navier–Stokes equations,
Math. Comput., 22, 745–762, https://doi.org/10.1090/s0025-
5718-1968-0242392-2, 1968.

Deardorff, J. W.: Similarity Principles for Numeri-
cal Integrations of Neutral Barotropic Planetary
Boundary Layers and Channel Flows, J. Atmos.
Sci., 26, 763–767, https://doi.org/10.1175/1520-
0469(1969)026<0763:SPFNIO>2.0.CO;2, 1969.

Deardorff, J. W.: A Three-dimensional Numerical Investigation of
the Idealized Planetary Boundary Layer, Geophys. Fluid Dy-
nam., 1, 377–410, https://doi.org/10.1080/03091927009365780,
1970a.

Deardorff, J. W.: A numerical study of three-dimensional turbulent
channel flow at large Reynolds numbers, J. Fluid Mech., 41, 453–
480, https://doi.org/10.1017/S0022112070000691, 1970b.

del Álamo, J. C. and Jiménez, J.: Spectra of the very large
anisotropic scales in turbulent channels, Phys. Fluids, 15, L41,
https://doi.org/10.1063/1.1570830, 2003.

Ferziger, J. H., Perić, M., and Street, R. L.: Computational methods
for fluid dynamics, Springer Nature Switzerland AG, 4th edn.,
https://doi.org/10.1007/978-3-319-99693-6, 2020.

Frigo, M. and Johnson, S. G.: The design and im-
plementation of FFTW3, Proc. IEEE, 93, 216–231,
https://doi.org/10.1109/jproc.2004.840301, 2005.

Germano, M., Piomelli, U., Moin, P., and Cabot, W. H.: A dynamic
subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 1760–
1765, https://doi.org/10.1063/1.857955, 1991.

Giacomini, B. and Giometto, M. G.: On the suitability of second-
order accurate finite-volume solvers for the simulation of at-
mospheric boundary layer flow, Geosci. Model Dev., 14, 1409–
1426, https://doi.org/10.5194/gmd-14-1409-2021, 2021.

Giometto, M. G., Christen, A., Meneveau, C., Fang, J., Krafczyk,
M., and Parlange, M. B.: Spatial Characteristics of Rough-
ness Sublayer Mean Flow and Turbulence Over a Real-
istic Urban Surface, Bound.-Lay. Meteorol., 160, 425–452,
https://doi.org/10.1007/s10546-016-0157-6, 2016.

Giometto, M. G., Christen, A., Egli, P. E., Schmid, M. F., Tooke,
R. T., Coops, N. C., and Parlange, M. B.: Effects of Trees
on Mean Wind, Turbulence and Momentum Exchange Within
and Above a Real Urban Environment, Adv. Water Resour.,
106, 154–168, https://doi.org/10.1016/j.advwatres.2017.06.018,
2017.

Gottlieb, S., Ketcheson, D. I., and Shu, C.-W.: High order strong sta-
bility preserving time discretizations, J. Sci. Comput., 38, 251–
289, https://doi.org/10.1007/s10915-008-9239-z, 2009.

Hairer, E., Nørsett, S. P., and Wanner, G.: Solving Ordinary
Differential Equations I, Springer Series in Computational
Mathematics, Springer-Verlag Berlin, Heidelberg, 2nd edn.,
https://doi.org/10.1007/978-3-540-78862-1, 1993.

Kim, J., Moin, P., and Moser, R. D.: Turbulence Statistics in Fully
Developed Channel Flow At Low Reynolds Number, J. Fluid
Mech., 177, 133, https://doi.org/10.1017/s0022112087000892,
1987.

https://doi.org/10.5194/gmd-17-321-2024 Geosci. Model Dev., 17, 321–333, 2024

https://doi.org/10.1029/1999wr900094
https://doi.org/10.1016/s0309-1708(99)00011-1
https://doi.org/10.2514/6.1980-1357
https://doi.org/10.1137/141000671
https://doi.org/10.1063/1.1839152
https://doi.org/10.1090/noti1095
https://doi.org/10.1016/j.jcp.2006.12.009
https://doi.org/10.1090/s0025-5718-1968-0242392-2
https://doi.org/10.1090/s0025-5718-1968-0242392-2
https://doi.org/10.1175/1520-0469(1969)026<0763:SPFNIO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1969)026<0763:SPFNIO>2.0.CO;2
https://doi.org/10.1080/03091927009365780
https://doi.org/10.1017/S0022112070000691
https://doi.org/10.1063/1.1570830
https://doi.org/10.1007/978-3-319-99693-6
https://doi.org/10.1109/jproc.2004.840301
https://doi.org/10.1063/1.857955
https://doi.org/10.5194/gmd-14-1409-2021
https://doi.org/10.1007/s10546-016-0157-6
https://doi.org/10.1016/j.advwatres.2017.06.018
https://doi.org/10.1007/s10915-008-9239-z
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1017/s0022112087000892

332 M. F. Schmid et al.: BoundaryLayerDynamics.jl v1.0

Kravchenko, A. G. and Moin, P.: On the effect of numerical errors
in large eddy simulations of turbulent flows, J. Comput. Phys.,
131, 310–322, https://doi.org/10.1006/jcph.1996.5597, 1997.

Lee, M. and Moser, R. D.: Direct Numerical Simulation of Tur-
bulent Channel Flow Up To Reτ ≈ 5200, J. Fluid Mech., 774,
395–415, https://doi.org/10.1017/jfm.2015.268, 2015.

Li, Q., Bou-Zeid, E., and Anderson, W.: The Impact and Treatment
of the Gibbs Phenomenon in Immersed Boundary Method Sim-
ulations of Momentum and Scalar Transport, J. Comput. Phys.,
310, 237–251, https://doi.org/10.1016/j.jcp.2016.01.013, 2016.

Mansour, N. N., Moin, P., Reynolds, W. C., and Ferziger, J. H.:
Improved Methods for Large Eddy Simulations of Turbulence,
in: Turbulent Shear Flows I, edited by: Durst, F., Launder, B. E.,
Schmidt, F. W., and Whitelaw, J. H., 386–401, Springer-Verlag,
Berlin Heidelberg, 1979.

Margairaz, F., Giometto, M. G., Parlange, M. B., and Calaf, M.:
Comparison of dealiasing schemes in large-eddy simulation of
neutrally stratified atmospheric flows, Geosci. Model Dev., 11,
4069–4084, https://doi.org/10.5194/gmd-11-4069-2018, 2018.

Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R.,
Fröhlich, D., Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S.,
Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoff-
mann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ke-
telsen, K., Khan, B. A., Knigge, C., Knoop, H., Krč, P., Kurppa,
M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M.,
Pavlik, D., Pfafferott, J., Resler, J., Rissmann, S., Russo, E.,
Salim, M., Schrempf, M., Schwenkel, J., Seckmeyer, G., Schu-
bert, S., Sühring, M., von Tils, R., Vollmer, L., Ward, S., Witha,
B., Wurps, H., Zeidler, J., and Raasch, S.: Overview of the
PALM model system 6.0, Geosci. Model Dev., 13, 1335–1372,
https://doi.org/10.5194/gmd-13-1335-2020, 2020.

Mason, P. J. and Callen, N. S.: On the magnitude of
the subgrid-scale eddy coefficient in large-eddy simulations
of turbulent channel flow, J. Fluid Mech., 162, 439–462,
https://doi.org/10.1017/s0022112086002112, 1986.

Mason, P. J. and Thomson, D. J.: Stochastic backscatter in large-
eddy simulations of boundary layers, J. Fluid Mech., 242, 51–78,
https://doi.org/10.1017/S0022112092002271, 1992.

Meneveau, C. and Katz, J.: Scale-Invariance and Turbulence Mod-
els for Large-Eddy Simulation, Annu. Rev. Fluid Mech., 32, 1–
32, https://doi.org/10.1146/annurev.fluid.32.1.1, 2000.

Meneveau, C., Lund, T. S., and Cabot, W. H.: A Lagrangian dy-
namic subgrid-scale model of turbulence, J. Fluid Mech., 319,
353, https://doi.org/10.1017/s0022112096007379, 1996.

Moeng, C.-H.: A large-eddy-simulation model for the
study of planetary boundary-layer turbulence, J. At-
mos. Sci., 41, 2052–2062, https://doi.org/10.1175/1520-
0469(1984)041<2052:alesmf>2.0.co;2, 1984.

Moin, P. and Kim, J.: Numerical investigation of tur-
bulent channel flow, J. Fluid Mech., 118, 341–377,
https://doi.org/10.1017/s0022112082001116, 1982.

Moin, P. and Mahesh, K.: Direct Numerical Simulation: A Tool
in Turbulence Research, Annu. Rev. Fluid Mech., 30, 539–578,
https://doi.org/10.1146/annurev.fluid.30.1.539, 1998.

Moin, P. and Verzicco, R.: On the suitability of second-
order accurate discretizations for turbulent flow
simulations, Eur. J. Mec. B/Fluids, 55, 242–245,
https://doi.org/10.1016/j.euromechflu.2015.10.006, 2016.

Orszag, S. A.: Numerical methods for the simulation of turbulence,
Phys. Fluids, 12, II–250, https://doi.org/10.1063/1.1692445,
1969.

Orszag, S. A.: Numerical simulation of incompressible flows
within simple boundaries: accuracy, J. Fluid Mech., 49, 75–112,
https://doi.org/10.1017/s0022112071001940, 1971a.

Orszag, S. A.: Numerical simulation of incompressible
flows within simple boundaries. I. Galerkin (spec-
tral) representations, Stud. Appl. Math., 50, 293–327,
https://doi.org/10.1002/sapm1971504293, 1971b.

Orszag, S. A.: Comparison of pseudospectral and spec-
tral approximation, Stud. Appl. Math., 51, 253–259,
https://doi.org/10.1002/sapm1972513253, 1972.

Panton, R. L.: Incompressible Flow, John Wiley & Sons, Inc.,
Hoboken, New Jersey, https://doi.org/10.1002/9781118713075,
2013.

Patterson, Jr., G. S. and Orszag, S. A.: Spectral calculations of
isotropic turbulence: efficient removal of aliasing interactions,
Phys. Fluids, 14, 2538, https://doi.org/10.1063/1.1693365, 1971.

Perot, J. B.: An analysis of the fractional step method, J. Com-
put. Phys., 108, 51–58, https://doi.org/10.1006/jcph.1993.1162,
1993.

Piomelli, U. and Balaras, E.: Wall-layer models for large-
eddy simulations, Annu. Rev. Fluid Mech., 34, 349–374,
https://doi.org/10.1146/annurev.fluid.34.082901.144919, 2002.

Porté-Agel, F., Meneveau, C., and Parlange, M. B.:
A Scale-Dependent Dynamic Model for Large-Eddy
Simulation: Application To a Neutral Atmospheric
Boundary Layer, J. Fluid Mech., 415, 261–284,
https://doi.org/10.1017/s0022112000008776, 2000.

Quarteroni, A., Sacco, R., and Saleri, F.: Numerical mathe-
matics, Texts in Applied Mathematics, Springer New York,
https://doi.org/10.1007/b98885, 2007.

Schmid, M. F.: Resolution of the Gibbs Phenomenon for
Navier–Stokes Simulations, Master’s thesis, Ecole Polytech-
nique Fédérale de Lausanne, 2015.

Schmid, M. F., Giometto, M. G., Lawrence, G. A., and Parlange,
M. B.: Data & code for “BoundaryLayerDynamics.jl v1.0: a
modern codebase for atmospheric boundary-layer simulations”,
Zenodo [data set], https://doi.org/10.5281/zenodo.7954004,
2023a.

Schmid, M. F., Giometto, M. G., Lawrence, G. A., and Parlange,
M. B.: BoundaryLayerDynamics.jl: v1.0.0, Zenodo [code],
https://doi.org/10.5281/zenodo.10105035, 2023b.

Schumann, U.: Subgrid scale model for finite difference sim-
ulations of turbulent flows in plane channels and annuli,
J. Comput. Phys., 18, 376–404, https://doi.org/10.1016/0021-
9991(75)90093-5, 1975.

Scotti, A., Meneveau, C., and Lilly, D. K.: Generalized Smagorin-
sky model for anisotropic grids, Phys. Fluids A, 5, 2306–2308,
https://doi.org/10.1063/1.858537, 1993.

Shu, C.-W. and Osher, S.: Efficient implementation of essentially
non-oscillatory shock-capturing schemes, J. Comput. Phys., 77,
439–471, https://doi.org/10.1016/0021-9991(88)90177-5, 1988.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z.,
Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M.,
and Huang, X.-Y.: A description of the Advanced Research WRF
Version 4, Tech. rep., National Center for Atmospheric Research,
https://doi.org/10.5065/1dfh-6p97, 2021.

Geosci. Model Dev., 17, 321–333, 2024 https://doi.org/10.5194/gmd-17-321-2024

https://doi.org/10.1006/jcph.1996.5597
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1016/j.jcp.2016.01.013
https://doi.org/10.5194/gmd-11-4069-2018
https://doi.org/10.5194/gmd-13-1335-2020
https://doi.org/10.1017/s0022112086002112
https://doi.org/10.1017/S0022112092002271
https://doi.org/10.1146/annurev.fluid.32.1.1
https://doi.org/10.1017/s0022112096007379
https://doi.org/10.1175/1520-0469(1984)041<2052:alesmf>2.0.co;2
https://doi.org/10.1175/1520-0469(1984)041<2052:alesmf>2.0.co;2
https://doi.org/10.1017/s0022112082001116
https://doi.org/10.1146/annurev.fluid.30.1.539
https://doi.org/10.1016/j.euromechflu.2015.10.006
https://doi.org/10.1063/1.1692445
https://doi.org/10.1017/s0022112071001940
https://doi.org/10.1002/sapm1971504293
https://doi.org/10.1002/sapm1972513253
https://doi.org/10.1002/9781118713075
https://doi.org/10.1063/1.1693365
https://doi.org/10.1006/jcph.1993.1162
https://doi.org/10.1146/annurev.fluid.34.082901.144919
https://doi.org/10.1017/s0022112000008776
https://doi.org/10.1007/b98885
https://doi.org/10.5281/zenodo.7954004
https://doi.org/10.5281/zenodo.10105035
https://doi.org/10.1016/0021-9991(75)90093-5
https://doi.org/10.1016/0021-9991(75)90093-5
https://doi.org/10.1063/1.858537
https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.5065/1dfh-6p97

M. F. Schmid et al.: BoundaryLayerDynamics.jl v1.0 333

Smagorinsky, J.: General Circulation Experiments
With The Primitive Equations, Mon. Weather
Rev., 91, 99–164, https://doi.org/10.1175/1520-
0493(1963)091<0099:gcewtp>2.3.co;2, 1963.

Stoll, R., Gibbs, J. A., Salesky, S. T., Anderson, W., and
Calaf, M.: Large-eddy simulation of the atmospheric
boundary layer, Bound.-Lay. Meteorol., 177, 541–581,
https://doi.org/10.1007/s10546-020-00556-3, 2020.

Temam, R.: Sur l’approximation de la solution des équa-
tions de Navier–Stokes par la méthode des pas frac-
tionnaires (II), Arch. Ration. Mech. An., 33, 377–385,
https://doi.org/10.1007/bf00247696, 1969.

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K.,
Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson,
G. D., Roskies, R., Scott, J. R., and Wilkins-Diehr, N.: XSEDE:
accelerating scientific discovery, Comput. Sci. Eng., 16, 62–74,
https://doi.org/10.1109/mcse.2014.80, 2014.

Yue, W., Parlange, M. B., Meneveau, C., Zhu, W., Van Hout, R.,
and Katz, J.: Large-eddy simulation of plant canopy flows us-
ing plant-scale representation, Bound.-Lay. Meteorol., 124, 183–
203, https://doi.org/10.1007/s10546-007-9173-x, 2007.

Yue, W., Meneveau, C., Parlange, M. B., Zhu, W., Kang, H. S., and
Katz, J.: Turbulent kinetic energy budgets in a model canopy:
comparisons between LES and wind-tunnel experiments, Envi-
ron. Fluid Mech., 8, 73–95, https://doi.org/10.1007/s10652-007-
9049-0, 2008.

https://doi.org/10.5194/gmd-17-321-2024 Geosci. Model Dev., 17, 321–333, 2024

https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
https://doi.org/10.1007/s10546-020-00556-3
https://doi.org/10.1007/bf00247696
https://doi.org/10.1109/mcse.2014.80
https://doi.org/10.1007/s10546-007-9173-x
https://doi.org/10.1007/s10652-007-9049-0
https://doi.org/10.1007/s10652-007-9049-0

	Abstract
	Introduction
	Governing equations and numerical methods
	Model validation
	Performance and scaling
	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Financial support
	Review statement
	References

