Articles | Volume 17, issue 4
https://doi.org/10.5194/gmd-17-1525-2024
https://doi.org/10.5194/gmd-17-1525-2024
Development and technical paper
 | 
21 Feb 2024
Development and technical paper |  | 21 Feb 2024

Quantifying wildfire drivers and predictability in boreal peatlands using a two-step error-correcting machine learning framework in TeFire v1.0

Rongyun Tang, Mingzhou Jin, Jiafu Mao, Daniel M. Ricciuto, Anping Chen, and Yulong Zhang

Related authors

China Wildfire Emission (ChinaWED v1) for the period 2012–2022
Zhengyang Lin, Ling Huang, Hanqin Tian, Anping Chen, and Xuhui Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-170,https://doi.org/10.5194/gmd-2024-170, 2024
Preprint under review for GMD
Short summary
Multiscale assessment of North American terrestrial carbon balance
Kelsey T. Foster, Wu Sun, Yoichi P. Shiga, Jiafu Mao, and Anna M. Michalak
Biogeosciences, 21, 869–891, https://doi.org/10.5194/bg-21-869-2024,https://doi.org/10.5194/bg-21-869-2024, 2024
Short summary
Historical and projected future runoff over the Mekong River basin
Chao Wang, Stephen Leisz, Li Li, Xiaoying Shi, Jiafu Mao, Yi Zheng, and Anping Chen
Earth Syst. Dynam., 15, 75–90, https://doi.org/10.5194/esd-15-75-2024,https://doi.org/10.5194/esd-15-75-2024, 2024
Short summary
Global evaluation of terrestrial biogeochemistry in the Energy Exascale Earth System Model (E3SM) and the role of the phosphorus cycle in the historical terrestrial carbon balance
Xiaojuan Yang, Peter Thornton, Daniel Ricciuto, Yilong Wang, and Forrest Hoffman
Biogeosciences, 20, 2813–2836, https://doi.org/10.5194/bg-20-2813-2023,https://doi.org/10.5194/bg-20-2813-2023, 2023
Short summary
Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022,https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary

Related subject area

Climate and Earth system modeling
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024,https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024,https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024,https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024,https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024,https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary

Cited articles

Arief, A. T., Nukman, and Elwita, E.: Self-Ignition Temperature of Peat, J. Phys. Conf. Ser., 1198, 042021, https://doi.org/10.1088/1742-6596/1198/4/042021, 2019. 
Bali, S., Zheng, S., Gupta, A., Wu, Y., Chen, B., Chowdhury, A., and Khim, J.: Prediction of Boreal Peatland Fires in Canada using Spatio-Temporal Methods, Climate Change AI. ICML 2021 Workshop on Tackling Climate Change with Machine Learning. Climate Change AI, https://www.climatechange.ai/papers/icml2021/12 (last access: 19 January 2023), 2021. 
Bedia, J., Herrera, S., and Gutiérrez, J. M.: Assessing the predictability of fire occurrence and area burned across phytoclimatic regions in Spain, Nat. Hazards Earth Syst. Sci., 14, 53–66, https://doi.org/10.5194/nhess-14-53-2014, 2014. 
Behrangi, A., Christensen, M., Richardson, M., Lebsock, M., Stephens, G., Huffman, G. J., Bolvin, D., Adler, R. F., Gardner, A., Lambrigtsen, B., and Fetzer, E.: Status of high-latitude precipitation estimates from observations and reanalyses, J. Geophys. Res.-Atmos., 121, 4468–4486, https://doi.org/10.1002/2015JD024546, 2016. 
Buch, J., Williams, A. P., Juang, C. S., Hansen, W. D., and Gentine, P.: SMLFire1.0: a stochastic machine learning (SML) model for wildfire activity in the western United States, Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023, 2023. 
Download
Short summary
Carbon-rich boreal peatlands are at risk of burning. The reproducibility and predictability of rare peatland fire events are investigated by constructing a two-step error-correcting machine learning framework to tackle such complex systems. Fire occurrence and impacts are highly predictable with our approach. Factor-controlling simulations revealed that temperature, moisture, and freeze–thaw cycles control boreal peatland fires, indicating thermal impacts on causing peat fires.