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Abstract. Wildfires are becoming an increasing challenge to
the sustainability of boreal peatland (BP) ecosystems and can
alter the stability of boreal carbon storage. However, pre-
dicting the occurrence of rare and extreme BP fires proves
to be challenging, and gaining a quantitative understanding
of the factors, both natural and anthropogenic, inducing BP
fires remains elusive. Here, we quantified the predictability
of BP fires and their primary controlling factors from 1997
to 2015 using a two-step correcting machine learning (ML)
framework that combines multiple ML classifiers, regres-
sion models, and an error-correcting technique. We found
that (1) the adopted oversampling algorithm effectively ad-
dressed the unbalanced data and improved the recall rate
by 26.88 %–48.62 % when using multiple datasets, and the
error-correcting technique tackled the overestimation of fire
sizes during fire seasons; (2) nonparametric models outper-
formed parametric models in predicting fire occurrences, and
the random forest machine learning model performed the
best, with the area under the receiver operating characteristic
curve ranging from 0.83 to 0.93 across multiple fire datasets;
and (3) four sets of factor-control simulations consistently in-
dicated the dominant role of temperature, air dryness, and cli-
mate extreme (i.e., frost) for boreal peatland fires, overriding
the effects of precipitation, wind speed, and human activities.
Our findings demonstrate the efficiency and accuracy of ML
techniques in predicting rare and extreme fire events and dis-

entangle the primary factors determining BP fires, which are
critical for predicting future fire risks under climate change.

1 Introduction

Carbon-rich boreal peatlands (BPs) cover only ∼ 2 % of
the Earth’s surface (Gorham, 1991) but have accumulated
∼ 20 %–40 % (450± 150 Pg C) of the global soil carbon,
historically having a net cooling effect on the global radia-
tion balance (Hugelius et al., 2020; Page and Hooijer, 2016;
Scharlemann et al., 2014). This major land carbon pool, how-
ever, is highly vulnerable to current global warming, which
tends to introduce carbon emissions into the atmosphere
through increasing decomposition of peat soil organic matter
and fire combustion (Turetsky et al., 2014). In particular, BP
fire regimes have been undergoing pronounced changes over
recent decades in terms of fire extent, frequency, and duration
(Field and Raupach, 2004; Kelly et al., 2013). In BPs, there
are two types of wildfires – surface flaming and underground
smoldering – that can transition from one to the other at dif-
ferent phases. It is noteworthy that compared to flaming com-
bustion, smoldering combustion is easier to ignite, harder to
suppress, and more persistent in low-temperature and high-
moisture peat (Huang and Rein, 2019). Besides releasing
CO2, smoldering produces more CO, CH4, smoke, and even
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gaseous mercury (Haynes et al., 2017; Urbanski et al., 2008),
altering global carbon balance and threatening public health
(Liu et al., 2015; Reid et al., 2016). Yet smoldering com-
bustion remains poorly understood, despite recent efforts to
use experimental, statistical, and computational tools to in-
vestigate smoldering ignition, spread, extinction, fuel types,
burning depth, and emission estimation (Che Azmi et al.,
2021; French et al., 2004; Rein and Huang, 2021). As a con-
sequence, smoldering is not fully characterized in prevalent
wildfire physical models (Rabin et al., 2017), although peat-
land fires are thought to be modulated by heat transfer and
water content (Frandsen, 1997; Ohlemiller, 1985). Without
an improved understanding of smoldering fires, our current
understanding of BP fires and their predictability is still very
limited, hampering peat fire hazard mitigation and firefight-
ing.

Most studies ascribe the ignition and propagation of flam-
ing fires to the joint impact of a heat source, fire-favoring
climate, fuel, and anthropogenic factors. Flameless smolder-
ing peatland fires are not an exception, although upland flam-
ing fires and underground smoldering in BPs are fundamen-
tally different in chemical and physical aspects (Costafreda-
Aumedes et al., 2017; Rabin et al., 2017; Scott et al., 2013).
However, compared to our understanding of flaming fires and
their drivers and burning processes (Rothermel, 1972), we
still know very little about key factors controlling smoldering
fires. Importantly, Yuan et al. (2021) suggested that the smol-
dering process is a series of exothermic and often nonlinear
events that include three key steps: biological reaction, chem-
ical oxidative reaction, and drying. However, quantifying the
exothermic process is not easy. For example, experiments
using phospholipid fatty acid (PLFA)-based microorganisms
revealed that peat self-heating reactions (soil respiration and
microorganism growth) could happen at temperatures as low
as 25–55 ◦C (Ranneklev and Bååth, 2003), while tempera-
ture could reach 500–700 ◦C during smoldering (Hurley et
al., 2015). The dramatic changes in micro-processes of smol-
dering reactions consequently bring difficulties and uncer-
tainties in measuring parameters for physical models. Fur-
thermore, without a clear understanding of nonlinear inter-
actions of climate, heat transformation, and fire, traditional
bottom-up statistic models can be clueless.

Rather than traditional linear models, more complicated
process-based physical models and data-driven statistical
models – including machine learning (ML) techniques – have
been extensively used to explore the environmental determi-
nants and predictability of peat wildfires (Bedia et al., 2014;
Burgan and Rothermel, 1984; Castelli et al., 2015). Process-
based fire models are primarily based on well-established
mathematical or physical laws that can describe fire pro-
cesses, but these models may struggle with uncertain initi-
ation and boundary conditions, as well as model parameters
(Hantson et al., 2016). According to the Fire Modelling Inter-
comparison Project (Rabin et al., 2017), most fire schemes in
current land surface models focus on forest fire occurrence,

spread, distinction, and associated impact assessment. Few
models (e.g., the Community Land Model, Li et al., 2013;
Rabin et al., 2017) explicitly characterize peatland fire im-
pacts with constrains from climate (e.g., BP wetness and
tropical dryness), peat fraction, water table depth, and grid
cell area (Li et al., 2013). Substantial gaps in the knowledge
and understanding of peat fire combustion, the solution to
primal and inverse problems, and the unavailable large-scale
peat soil and peat burning characteristic data are still obsta-
cles in building peat fire combustion theory and parameteriz-
ing peat fire in process-based models (Grishin et al., 2009).
Unlike general statistic models which require assumptions
and unlike physical models which are supported by physical
mechanisms, ML models require very few assumptions and
can achieve high performance in solving nonlinear fitting and
predictions (Jain et al., 2020). These benefits have led to the
application of a broad range of ML algorithms in wildfire sci-
ence research, such as fire detection, fire weather exploration,
fire behavior prediction, fire impact evaluation, and fire man-
agement (Jain et al., 2020). ML algorithms are not only used
to attribute the primary causes of fires (Yu et al., 2020) but
also applied to model evaluation and diagnosis (Forkel et al.,
2019). However, the majority of ML research focuses on for-
est fires, and just a small number of recent studies have used
ML in the study of BP fires. For example, Rudiyanto et al.
(2018) applied artificial intelligence in peatland monitoring
and mapping with the support of remote sensing data, while
some others investigated peat fire risk prediction and attribu-
tion with different ML methods (Bali et al., 2021; Horton et
al., 2021; Rosadi et al., 2020). However, it is noteworthy that
the recall or precision rate of peat fires was typically low in
these ML studies, despite generally high (> 70 %) prediction
accuracies (Bali et al., 2021; Horton et al., 2021; Rosadi et
al., 2020). These low recall or precision rates (i.e., high type
I and type II errors) are likely caused by unbalanced fire data,
which also indicated that predicting severely unbalanced fire
by single models could still be full of challenges, and further
studies are needed to deal with such commission and omis-
sion problems as well as to improve the predictability of peat
fires.

For that reason, by collating and harmonizing monthly
climate-, vegetation-, soil-, and human-related variables from
1997 to 2015, we created a two-step ML framework with
various ML classification and regression techniques to eval-
uate the model reproducibility and predictability for severely
skewed fire data, and a series of sensitivity tests was per-
formed on each of multiple fire datasets to address possible
drivers of BP fires. Specific research goals include to (1) ex-
amine the performances of multiple ML algorithms in repro-
ducing and predicting fire occurrence, fire counts, and fire
impacts (i.e., burned area and carbon emissions); (2) diag-
nose dominant environmental controls on peatland fire activi-
ties; and (3) quantify uncertainties in the two-step ML frame-
work and to correct predicting errors and improve the ML
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predicting accuracy that is suppressed by severely skewed
input data.

2 Data

Multiple sources of environmental data – including climate-,
vegetation-, soil-, and human-related data – and multiple fire
products were used in this study, as listed in Table S1 in the
Supplement. All datasets were re-gridded to 1◦× 1◦ with a
monthly time resolution, covering the period from 1997 to
2015.

2.1 Response variables

To evaluate ML framework robustness for difference re-
sponse variables, five fire datasets were used in this study:
the Global Fire Emission Database (GFED) version 4.1s
(GFED4.1s) carbon emissions, the GFED4.1s burned area
(BA), the Fire Climate Change Initiative (FireCCI) ver-
sion 5.1 (FireCCI5.1) BA, the Moderate Resolution Imaging
Spectroradiometer (MODIS) active fire product MCD45A1,
and the product MCD64A1 burning date. The monthly
BA fraction and carbon emissions from GFED4.1s span
from 1997 to 2016 with a spatial resolution of 0.25◦×
0.25◦ (Giglio et al., 2013; Randerson et al., 2012; van der
Werf et al., 2017). The FireCCI5.1 BA dataset ranges from
2001 to present and has a spatial resolution of 250 m at
monthly or biweekly temporal resolutions (Chuvieco et al.,
2018; Lizundia-Loiola et al., 2020). Monthly MCD45A1 and
MCD64A1 burn date datasets were derived from the MODIS
Terra and Aqua satellite products at a spatial resolution of
500 m. MCD45A1 was derived from surface reflectance dy-
namics by a bidirectional reflectance-distribution function-
based change detection approach (Roy et al., 2002), whereas
MCD64A1 was produced by a burn-sensitive vegetation in-
dex algorithm based on a combination of reflectance data and
active fire observations (Giglio et al., 2018). Because only
burn dates were provided, both MCD45A1 and MCD64A1
were only applied for evaluating fire occurrences rather than
fire impacts.

2.2 Explanatory variables

2.2.1 Meteorology data

To reflect the climate from 1997 to 2015, this study used
the monthly 0.5◦× 0.5◦ gridded Climatic Research Unit
(CRU) time series data version 4.04 (Harris et al., 2020).
CRU data provide meteorological variables, including mean
temperature (TMP), temperature minimum (TMN), temper-
ature maximum (TMX), cloud cover (CLD), diurnal tem-
perature range (DTR), ground frost frequency (FRS), wet
day frequency (WET), evapotranspiration (ET), precipita-
tion (PRE), and vapor pressure (VP). Additionally, the CRU
Palmer Drought Severity Index (PDSI) and the Modern-Era

Retrospective analysis for Research and Applications Ver-
sion 2 (MERRA-2) 2 m wind speed (WIN) were included
as feature inputs (Gelaro et al., 2017). Using the CRU satu-
rated VP (SVP) and relative humidity (RH), we also calcu-
lated the VP deficit (VPD) based on the transforming formu-
lations shown in Table S1.

2.2.2 Vegetation data

Monthly third-generation Global Inventory Monitoring and
Modeling System (GIMMS-3g) NDVI from 1982 to 2015
with a spatial resolution of 0.83◦× 0.83◦ was used to char-
acterize the vegetation growth condition (Pinzon and Tucker,
2014). The 8 km gridded monthly GIMMS-3g gross primary
productivity (GPP) from 1982 to 2016 was also included in
this study to characterize the fuel availability (Madani and
Parazoo, 2020).

2.2.3 Soil moisture data

To estimate the effects of soil moisture on BP fire initia-
tion and expansion, the Global Land Evaporation Amster-
dam Model (version 3.3) surface soil moisture (SMsurf) and
root-zone soil moisture (SMroot) were used (Martens et al.,
2017; Miralles et al., 2011). These two datasets, which range
from 1980 to 2018, were gridded at a spatial resolution of
0.5◦× 0.5◦ for each month.

2.2.4 Human activity data

The population density data were used as a proxy for human
activities. The History Database of the Global Environment
(version 3.2) was interpolated and re-gridded into a monthly
scale at a spatial resolution of 0.5◦× 0.5◦ (Klein Goldewijk
et al., 2017).

3 Methods

3.1 Study area

Our study focuses on boreal peatland areas with a minimum
of 30 % histosol soil content. This criterion was set in place
to ensure the dominance of conditions favoring smoldering
over other types of fires. Histosols, which are organic-rich
soils commonly found in boreal regions, are the result of the
accumulation of partially decomposed plant material. They
typically form in environments such as bogs and fens, where
a high-level water table and an abundance of sphagnum moss
and other vegetation contribute to peat formation. The sur-
vival and growth of trees can be challenging in those environ-
mental conditions due to factors such as high acidity, a lack
of essential nutrients, and waterlogged environments, though
certain adaptive species such as black spruce can thrive. We
limited the peatland area to regions with more than 30 % his-
tosol content, aiming to ensure the presence of adequate soil
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fuel for smoldering while limiting the aboveground fuel such
as forests or grasses. By doing so, we also addressed the limi-
tations of satellite-based fire products which differentiate be-
tween subsurface smoldering fires and surface fires.

3.2 The two-step hierarchy machine learning
framework

Given our assumption of predominantly smoldering fires
within our defined research areas, we introduced an ML
framework specifically designed to predict rare and extreme
fire events. The datasets fed into the framework were selected
to ensure relevancy to our study objective. In this research,
we proposed a two-step error-correcting ML framework that
integrates imbalanced data processing, classification, regres-
sion, and error-correcting techniques. Given that over 70 %
of months record no fire events, our framework aims to ad-
dress this data imbalance. Furthermore, it seeks to adapt to
the intricate nonlinear nature of extreme BP fires and en-
hance prediction accuracy. The likelihood of wrong predic-
tions was expressed by evaluation metrics from step one, de-
noting a broad-based uncertainty for the framework system,
that are used at step two to correct the error being propa-
gated to fire size prediction. The evaluation accuracy results
are listed in Tables S2–S5 in the Supplement. We also con-
ducted a range of factor-control simulations using a method
akin to backward selection to investigate the key contributors
to BP fire occurrences and to understand the BP smoldering
fire mechanisms. The two-step ML framework is detailed in
Fig. 1.

We began by pre-processing the data, which encompassed
data integration, treatment of missing values, and standard-
ization. Subsequently, the data were divided into 70 % for
training and 30 % for testing. Given the nature of BP fires
as predominantly rare and extreme events, there is a notable
imbalance in months with and without fire occurrences; only
20 % of the data records in GFED BA indicate fire occur-
rences. To combat overfitting arising from this dataset im-
balance, we employed the synthetic minority oversampling
technique (SMOTE). This algorithm enhances the training
set by producing synthetic samples from the minority class
– namely, the fire occurrence presence. It operates by select-
ing a minority class instance and determining its k-nearest
neighbors (typically five for our model). From these neigh-
bors, one is randomly selected, and synthetic samples are
generated between the chosen instance and its neighbors.
This method persists until there is an approximate balance
between records of fire occurrence presence and absence.

In step one, we applied six prevalent classification algo-
rithms to classify monthly fire occurrences for each grid.
These algorithms include logistic regression (LogR), linear
support vector machines (SVMs), random forest (RF), bag-
ging (BAG), k-nearest neighbors (KNN), and Gaussian naïve
Bayes (GNB). Each algorithm determines the likelihood of
a fire “occurrence” using unique computational methods.

While the in-depth mechanics of these algorithms extend be-
yond the scope of this study, it is important to note that by
leveraging this probability, we ultimately derived binary clas-
sifications, which serve as our fire occurrence predictions,
indicating the presence or absence of fires each month at ev-
ery geographical location. Subsequently, the algorithms rank
the key factors influencing peat fire occurrences to identify
the most contributive feature subset. For RF and BAG, fea-
ture importance is calculated based on the mean decrease in
node impurity, specifically using the Gini index, adjusted by
the probability of samples reaching each node. In the cases
of LogR and SVM, feature importance is assessed through
the coefficients present in LogR’s decision functions and lin-
ear SVM’s weights. Unlike the others, the KNN and GNB
classifiers do not provide straightforward methods for fea-
ture importance evaluation. Instead, this study leverages a
permutation approach that determines importance based on
the loss function and the rise in prediction error upon feature
shuffling. Due to the varied range of feature importance val-
ues obtained from these methods, normalization was applied
for uniform comparison. By processing these values using
their normalized absolute value, a consistent comparison was
achieved. The mean and standard variation of these normal-
ized values from different ML models help define the rela-
tive significance of driving factors and the variances between
models.

In step two, we employed regression models to estimate
fire sizes (or impacts) based on the fire occurrence determi-
nations from step one. Leveraging the monthly fire occur-
rence predictions from the most efficient ML classifier, we
extracted the relevant fire data to predict fire sizes, which en-
compassed burned area and C emissions. For months with no
fire occurrences, fire impacts were initially assessed as zero,
with subsequent error correction. We conducted the experi-
ments with 14 regression techniques, including simple linear
(LinR), ridge (ridge), least absolute shrinkage and selection
operator (LASSO), adaptive boosting (Ada), gradient boost-
ing (GBR), bagging (Bag), random forest (RF), Bayesian re-
gression (Bayes), elastic net (EN), kernel ridge (kernel), de-
cision tree (DT), CatBoost (CBR), and light gradient boost-
ing (LGBR) regressions, to predict the extent of fire impacts.
A core presumption of our method was the absolute accu-
racy of all classifications when setting up regression model
inputs. This assumption, however, is not foolproof given the
potential for misclassifications. To quantify the likelihood of
such errors, we analyzed the confusion matrix from the clas-
sification phase. Subsequently, multiple uncertainty assess-
ment matrices were integrated during the regression phase
to rectify any propagated errors. The specifics of this error
correction process are elaborated upon below.

3.3 Error corrections

More specifically, at the first step, we defined the fire occur-
rence classes for the training dataset according to the value of
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Figure 1. The two-step ML framework, where PPV, FDR, FOR, and NPV stand for positive predictive value, false discovery rate, false
omission rate, and negative predictive value, respectively. SMOTE represents the oversampling algorithm – synthetic minority oversampling
technique. The error-correcting process is detailed in the Methods part.

C emissions and burned area. Data records with a value equal
to 0 indicate the no-fire months, represented as class 0. Con-
versely, data records with a value exceeding 0 mark the fire
months, designated as class 1. This allowed us to distinguish
between months with fires (Xmf) and without fires (Xmn).

For months showing fire activity (C emissions or burned
area > 0, namely class 1), we employed the regression model
Rmf to predict the fire impact:

Rmf(Xmf)= Ymf, (1)

where Xmf represents the explanatory data in month m with
fire, and Ymf is the predictive variable (C emission to burned
area) in month m.

For fire-free months, we utilized the regression mode Rmn,
predicting no impact:

Rmn (Xmn)= 0, (2)

where Xmn represents the explanatory data in month m with-
out fires occurrences.

Every month’s (m) training dataset was bifurcated into
fire months Xmf and non-fire months Xmn while the testing
dataset was segmented into X′f m (with fires) and X′nm (with-
out fires). Using the same input data, 14 different regression
techniques were employed, ranging from a linear regressor
to stacking regressor.

For each month (m) in {1,2,3. . .12} and every regres-
sion model (Rr ) in {R1R2,R3, . . .R15

}, we created regres-
sion models Rr

mf for months with fires and Rr
mn for fire-free

months:

Rr
mf(Xmf)= yr

mf, (3)
Rr

mn(Xmn)= yr
mn = 0. (4)

Then, with testing data, we predict fire size by employing
model Rr

mf.
We then predicted fire impacts based on the classification

and addressed potential uncertainties related to both fire and
non-fire months. For fire month m (class 1) in testing data,
the predicted fire size P r

mf is

P r
mf = Rr

mf
(
X′mf

)
. (5)

A possible uncertainty related to fire size predictions based
on months with fire is that no fires actually occurred, which
could be expressed by EPmn,

EPr
mn = Rr

mn
(
X′mf

)
= 0, (6)

while for months without fires (class 0), the original pre-
dicted fire size P r

mn is

P r
mn = Rr

mn
(
X′mn

)
= 0. (7)

A possible uncertainty related to fire size predictions in
months without fire is that fire events did happen in reality,
which could be expressed by

EPr
mf = Rr

mf
(
X′mn

)
. (8)
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To correct for inaccuracies, we integrated four evaluation
metrics from classification – positive predictive value (PPV),
false discovery rate (FDR), false omission rate (FOR), and
negative predictive value (NPV). By applying these metrics
to actual and potentially misclassified predictions, we ac-
quired an error-adjusted prediction. The four evaluation met-
rics from classification are as follows.

Positive predictive value (PPV)=
True positive (TP)

TP+ false positive (FP)
(9)

False discovery rate (FDR)=
FP

TP+FP
(10)

False omission rate (FOR)=
False negative (FN)

FN+ true negative (TN)
(11)

Negative predictive value (NPV)=
TN

FN+TN
(12)

Applying classification evaluation metrics to the actual fire
size predictions (Ps) and erroneous predictions (EPs) that
may arise from potentially incorrect classification, we could
obtain the error-corrected prediction AP′rmp for the record of
(p,m) ∈X′ (in the testing set).

AP′rmp =

{
PPV×P r

mf+FDR×EPr
mn, if Z′mp = 1

NPV×P r
mn+FOR×EPr

mf, if Z′mp = 0
(13)

Here, (f,n) ∈ p, and Z′mp stands for the original classifica-
tion prediction in testing data.

3.4 Analysis and validation

Feature importance was further validated through factorial
simulations, categorizing features with similar physical im-
plications. We designed experiments to include all attributes
and selectively exclude certain features to gauge the rela-
tive importance of grouped factors. The temperature-related
group contains TMP, TMN, and TMX; PRE is the only PRE-
related feature. The air-dryness-related group includes SVP,
VAP, VPD, RH, WET, ET, and PDSI. The soil-moisture-
related features are SMsurf and SMroot, and the “Oth-
ers” group includes features representing vegetation biomass
(e.g., GPP and NDVI), wind speed (WIN), cloud cover per-
centage (CLD), climate extremes (e.g., FRS and DTR), and
anthropogenic activities (e.g., POPD). The complete simula-
tion setup is listed in Table 1. During the first round of simu-
lation, we incorporated all features, labeled as ALL. As dis-
cussed in Sect. 4.3, features within the “Others” group typi-
cally rank lower. Despite this, we retained this group in sub-
sequent factor-controlling simulations. The rationale behind
this decision is that the “Others” group comprises diverse
features (like wind speed and vegetation types) not captured
by the primary four feature categories: temperature, precip-
itation, air dryness, and soil moisture. This diverse feature
set is a benefit for reverse verification, ensuring a more com-
prehensive analysis. In the second round of simulation, each

run excluded one feature group to discern the most influ-
ential among the four. For instance, by omitting the TMP
(temperature) group in the NO-TMP simulation, we gauged
the significance of remaining groups. This process was re-
peated, resulting in simulations like NO-PRE, NO-HUMI,
and NO-SOM. Notably, the temperature group consistently
ranked the highest in several evaluations. The third simula-
tion set aimed to rank the relative importance of the PRE,
air dryness, soil moisture, and “Others” groups, considering
the temperature group had already emerged as the most in-
fluential. As such, the temperature group was excluded from
all third-set simulations. We further designed simulations
like NO-TMP-PRE, NO-TMP-SOM, and NO-TMP-HUMI
to probe the comparative significance of groups. The air dry-
ness group topped the ranks in this set, with PRE consistently
at the bottom. Subsequently, in the fourth set, we introduced
the NO-TMP-PRE-HUMI simulation to examine the com-
parative weight between soil moisture and other factors per-
taining to vegetation and human activities.

Our two-step hierarchy ML framework has been designed
with multi-datasets and multi-algorithms to validate the
framework’s predictive performance. Yet, we had not gauged
its robustness against the direct application of machine learn-
ing algorithms. To rigorously evaluate the relative efficacy of
our framework, we set up a comparative experiment using the
same 14 regression models we mentioned earlier and, addi-
tionally, the extreme gradient boosting (XGBR). These mod-
els were trialed without the hierarchical structure our frame-
work introduces. Performance metrics, including the mean
squared error (MSE), mean absolute error (MAE), and the
R-squared value (R2), were documented and are detailed in
Table S7.

4 Results

4.1 Fire occurrence predictability

The averaged area under the receiver operating characteristic
curve (AUC), which indicates the diagnostic ability of classi-
fication ranged from 0.70± 0.03 (MCD64A1, the No-TMP-
PRE-HUMI simulation) to 0.88± 0.05 (MCD45A1, the ALL
simulation) for multiple MLTs (Table S3). The ALL simu-
lation had an AUC value of 1 at the training stage and an
AUC value of 0.72–0.93 at the testing stage. The RF algo-
rithm showed the best predictive performance for fire occur-
rences (i.e., fire counts) (Table S4) and provided a basis for
fire impact prediction. Among all datasets, MCD45A1 had
the highest recall rate (0.94) and highest precision (0.96), in-
dicating that a few months were incorrectly classified (Ta-
ble S4). MCD64A1 had the lowest recall rate and precision
rate, indicating discrepancies among different data sources.
Using the SMOTE oversampling algorithm, the testing recall
rate was effectively improved at an average rate of 26.88 %
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Table 1. Simulation experiments for assessing environmental factor cluster impacts on ML predictability.

Simulations Explanatory variable groups

Temperature Precipitation Air dryness Soil moisture Others
related related related related

(i.e., humidity)

First ALL Yes Yes Yes Yes Yes

Second NO-TMP No Yes Yes Yes Yes
NO-PRE Yes No Yes Yes Yes
NO-HUMI Yes Yes No Yes Yes
NO-SOM Yes Yes Yes No Yes

Third NO-TMP-PRE No No Yes Yes Yes
NO-TMP-SOM No Yes Yes No Yes
NO-TMP-HUMI No Yes No Yes Yes

Fourth NO-TMP-PRE-HUMI No No No Yes Yes

and with the highest growth of 48.62 % for the FireCCI BA
dataset (Tables S5 and S6).

Besides evaluation metrics, the spatial disparities of pre-
dicted fires from MLTs and multiple datasets were also ex-
amined against corresponding observations. The BP with
a histosol fraction greater than 30 % is mainly located in
the Hudson Bay Lowland (HBL) and western Siberia (WS)
(Fig. S2 in the Supplement). Observations from FireCCI BA,
GFED BA, GFED carbon emissions, and MCD64A1 fire de-
tection consistently show that there were fewer than 60 fire
events in the HBL region from 1997 to 2015, but the fire
count in WS during the same time period ranged from 30
to more than 150. This demonstrates the spatial disparity of
peatland fire occurrences in boreal areas and possibly implies
that WS is more fire-prone than the HBL (Figs. S3–S6a-1
and a-2 in the Supplement). FireCCI, GFED, and MCD64A1
showed good consistency among these three products with
respect to the data distribution. Unlike these three datasets,
MCD45A1 had higher estimation and lower spatial hetero-
geneity of fire counts in BP (Fig. S7a-1 and a-2 in the Sup-
plement). The more evenly distributed data in MCD45A1
may be the primary reason why MCD45A1 had the high-
est predicting accuracy and best performance in reproducing
the distribution of fire counts spatially and temporally in the
testing stage (Fig. S11 in the Supplement).

Predictability discrepancies were also compared among
multiple ML algorithms. The validation results demonstrate
that the bootstrap-based ML algorithms (i.e., RF, BAG, and
KNN) – in which there is no requirement for data distribu-
tion assumption, and resampling supports the inference of the
population distribution – had better predictability than other
algorithms (i.e., LogR, linear SVM, and GNB) (Figs. S1
in the Supplement and 2). For RF and BAG, the reproduc-
ing accuracy rate (i.e., true positive rate and true negative
rate) was over 90 % with the FireCCI data (Fig. S1). The
inaccurate predictions of KNN, LogReg, SVM, and GNB

were significantly influenced by the overestimated fire occur-
rence (namely false positive) during the fire season (April–
October), as shown in Fig. 2. Without a prescribed under-
lying function, the nonparametric RF and BAG models ex-
hibited advantages over other ML algorithms in reproducing
peatland fire distributions spatially (Figs. S3–S6b-1, b-2, c-
1, c-2, d-1, and d-2) and temporally (Fig. 2). Therefore, the
predictions of fire occurrence from the best-performing RF
were employed as the basis of fire impact predictions.

4.2 Fire impact predictability

ML regression models exhibit moderate predictabilities of
fire sizes (Fig. S22 in the Supplement). Both ML classifi-
cation at step one and regression models at step two over-
estimated fire size during the fire season (Figs. S19–S21 in
the Supplement). This study developed an error-correcting
technique to tackle the error propagation and overestimation
during the fire season and achieved satisfying performance
(Fig. 3 and S19–S21).

In the WS area, there are more occurrences of fire events
and thus higher carbon emissions compared to those ob-
served in the HBL area (Figs. S16–18 in the Supplement).
The predicted carbon emissions from the stacked ML algo-
rithms were overall consistent with the observations in WS
and western Canada but had overestimations in the HBL
(Fig. S18). The error-correcting technique could slightly
lower the overestimation in the HBL (Fig. S18) but could
greatly lower the overestimation temporally, especially in
July (Fig. S21). Meanwhile, the underestimation of fire im-
pacts in June remained a common problem for all 14 regres-
sion models (Fig. S21).

GFED BA and FireCCI BA were used to determine the re-
liability of fire impact predictions within the two-step ML
framework. In terms of spatial reproducibility, the predic-
tions from GFED BA (Fig. S17d–f) were more accurate than
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Figure 2. Seasonality of observational and predicted fire counts from the six ML algorithms with the FireCCI BA dataset.

those from FireCCI BA (Fig. S16a–c), particularly in the
HBL, where the BA is less than 50 km2 (Figs. S16–S18a-1
and b-1). Figures S16–S18a-2 and b-2 show that the frame-
work underestimated burned area in northern WS and over-
estimated burned area in the northern HBL for FireCCI BA
(Figs. S16–S18a-1 and b-1). Different BA datasets can also
have temporal inconsistencies. FireCCI BA has its fire sea-
son from March to May, whereas GFED BA has its fire sea-
son from March to October. Despite the fact that April and
May were the fire peak months according to both FireCCI
BA and GFED BA, the burned areas predicted by the frame-
work based on FireCCI and GFED show differences in BP.
According to FireCCI, the predicted entire burned area in
May has about 55 792 km2, whereas the prediction based
on GFED is only about 12 183 km2. A further investiga-
tion shows that GFED BA has a bimodal distribution, while
FireCCI BA is unimodally distributed (Figs. S19 and S20
in the Supplement). Therefore, it is important to determine
whether ML is applicable for various datasets.

Overall, the 14 tested regression models were able to re-
produce fire impact magnitudes and seasonality well for
FireCCI BA, GFED BA, and GFED carbon emissions
(Figs. S19–21). Those ML regression models appear to

overestimate the fire effects, including carbon emissions
and burned area, during fire season. However, the error-
correcting approach could successfully reduce this bias
(Figs. S19–21). Discrepancies among model predictabilities
were small. For example, for the FireCCI data, the decision
tree had the best performance with estimations that were
4.05 % higher than the observations, whereas bagging had
the worst performance with estimations that were 10.84 %
higher than the observations. Such small biases and discrep-
ancies verified the reproducibility and predictability of the
two-step ML framework.

4.3 Validation

The predicting results with direct application of machine
learning algorithms are presented in Table S7. We could see
that the majority of the models display subpar performance,
exhibiting a considerable bias and a low value of explained
variances during both training and testing phases. By em-
ploying our hierarchical ML framework, the explained vari-
ance typically exceeds 50 % in the testing phase. In contrast,
in this instance, the variance hovers around 1 %, which is sig-
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Figure 3. Seasonality of the observed, non-adjusted, and error-adjusted FireCCI BA based on the testing phase from multiple ML regres-
sion models: (a) linear, (b) Bayesian linear, (c) ridge, (d) LASSO, (e) elastic net, (f) kernel ridge, (g) decision tree, (h) bagging, (i) RF,
(j) AdaBoost, (k) gradient boosting, (l) light gradient boosting, (m) CatBoost, and (n) stacking.

nificantly lower compared to the results obtained using our
framework.

Notably, the RF, BGA, CBR, LGBR, and stack models
demonstrate commendable performance during the training
phase but falter significantly during testing. This decline
suggests typical overfitting issues, largely attributed to se-
vere data imbalances, underscoring the poor predictability of
these models.

4.4 Primary causes of BP fires

To exclude feature collinearity, four sets of simulations in
Table 1 were designed by opting out grouped features to
confirm the importance ranking of features (Fig. 4). The
first two sets of simulations (i.e., ALL, NO-TEMP, NO-PRE,
NO-HUMI, and NO-SOIMOI) showed that the temperature-
related feature group had the highest importance (Fig. S3a
and c–e in the Supplement). The third set of simulations,
which removed two feature groups, showed that the air dry-
ness had the highest importance among the remaining four
feature groups, namely the PRE, air dryness, soil dryness,
and other groups. PRE was found to be the third-ranked fea-
ture according to the first three sets of simulations. The last

set of simulations was conducted to compare the relative im-
portance of soil moisture and the other human and natural
features and found that frost (FRS) and vegetation biomass
(GPP) in the other human and natural features group were
more important than soil moisture (Fig. 4i). Such ranks were
also indicated by other simulations in Fig. 4a, c, d, f, and h.
Thus, this study found that BP fires were significantly af-
fected by temperature, air dryness, frost, and GPP (Fig. 4a),
which collectively account for more than 80 % of the pre-
dictive interpretability (Fig. 4a). Moreover, BP fires were not
sensitive to PRE, soil moisture, wind speed, and human ac-
tivities.

The feature importance ranks were validated not only
by FireCCI BA but also by GFED BA, GFED carbon,
MCD45A1, and MCD64A1. The rankings from GFED BA
and GFED carbon emissions were highly consistent with
those from FireCCI (Figs. 4, S12, and S13 in the Supple-
ment), in which temperature, air dryness, frost, and GPP
were more important than PRE, soil moisture, wind speed,
and other natural and anthropogenic factors. Feature rank
discrepancies were found when the ML algorithms were ap-
plied to MCD64A1 and MCD45A1, for which the top three
features were still air dryness, temperature, and FRS, but soil
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Figure 4. The bar plot stands for the factor importance rank of multiple simulation scenarios using FireCCI BA as the target variable in which
the importance was determined by the standardized mean and uncertainty range (minimum and maximum) from multiple ML algorithms; the
dashed vertical line indicates the group mean importance of temperature (blue), PRE (yellow), air dryness (purple), soil moisture (orange),
and other factors (green).

moisture was more significant than GPP (Figs. S14 and S15
in the Supplement).

Collectively, the multisource datasets and multi-feature
simulation experiments consistently suggested that air-
dryness-related variables (RH, VPD, and VAP), temperature-
related variables (TMN, TMP, TMX), and FRS play more
important roles in peat fires than other factors, such as PRE,
wind speed, and other natural and human factors. In terms
of importance, soil moisture and GPP were both ranked at

a middle level, but their relative rankings could not be deter-
mined because soil moisture was considered more significant
than GPP according to MCD64A1 and MCD45A1 but GPP
was viewed as more important based on FireCCI, GFED BA,
and GFED carbon emission datasets.
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5 Discussion and limitations

5.1 ML predictability

In this study, a two-step error-correcting framework was built
to investigate the BP fire predictability and the individual
impacts from meteorological, vegetational, soil, and anthro-
pogenic factors. Machine learning algorithms are increas-
ingly utilized in wildfire research for various applications
(Coffield et al., 2019; Jain et al., 2020; Sayad et al., 2019;
Wang and Wang, 2020; Yu et al., 2020). However, the lit-
erature is insufficient on detailed criteria for selecting ap-
propriate ML models for these tasks, and the interpretability
of these machine learning algorithms continues to be a sig-
nificant challenge for scientific research where understand-
ing the decision-making process of the models for causality
purposes is crucial (Li et al., 2023; Buch et al., 2023). To
achieve higher predictive accuracy, uncertainties from ML
algorithms and the input data are discussed. In this study, re-
sults from six classification models and 14 regression mod-
els indicate that nonparametric ML algorithms, including RF,
bagging, and KNN, outperformed the other employed para-
metric models, such as LogR, linear SVM, and GNB, by
overcoming the severe imbalance of fire data (the non-fire
classes have 6 times as many records as fire classes) (Figs. 2
and 3). Unlike parametric models that are highly restricted to
specified functional forms and a fixed number of parameters,
nonparametric models can fit various functional forms, and
the number of parameters grows with the size of the training
set, promoting the performance of model predictability.

In BPs, it is challenging to predict fire occurrence be-
cause of the extremely unbalanced fire data. Several previ-
ous studies have employed ML to investigate peatland fire
predictability. For example, Rosadi et al. (2020) employed a
variety of ML algorithms to predict fire occurrence in peat-
land and used accuracy as the only evaluation metric. Such
an evaluation method could fail to measure fire predictability
once the fire data are imbalanced. According to another study
that predicted peatland fire occurrence in Canada (Bali et al.,
2021), the recall rates were very high (0.82–0.99) but the pre-
cision metrics were very low (0.002–0.05), which indicates
a high type I error. In our study, RF regressions yielded high
precision metrics (0.56–0.96) and recall rate (0.6–0.94), as
well as clearly identified fire months, suggesting relatively
low type I and type II errors.

To address the extreme data imbalance, this study used
both pre-processing (oversampling) and post-processing (er-
ror correcting) in the two-step ML framework to improve
predictability. In step one, the SMOTE algorithm signifi-
cantly improved the recall rate by∼ 26.88 %–48.66 % across
all fire datasets. Processing approaches (e.g., oversampling
and undersampling) were also found beneficial in earlier
studies for certain ML algorithms (Farquad and Bose, 2012;
Malik et al., 2021; Zhou et al., 2020). Through a comparative
experiment against the direct application of machine learn-

ing algorithms, our two-step hierarchical framework demon-
strated superiority in mitigating the overfitting issue. How-
ever, predicting rare and extreme fire sizes remains a chal-
lenge. To quantify and reduce uncertainty sources and er-
ror propagations in ML frameworks, procedures are typically
highly tailored for specific research challenges and ML algo-
rithms (Jiang and Nachum, 2020; Pan et al., 2019; Wang et
al., 2020). In our two-step ML framework, applying evalu-
ation metrics from the classification step (step one) in error
correcting effectively lowered the overestimated BA and car-
bon emissions during fire season (Figs. S19–S21).

Although our hierarchical machine learning framework
showed some supremacy and robustness, predicting fire
sizes is fraught with challenges, stemming from many as-
pects. In addition to severely imbalanced data, comprehen-
sive ground-based data in BP regions are sparse, making
satellite validation difficult, especially given that the smol-
dering nature of these fires often eludes satellite detection.
Thus, it indicates that satellite-based datasets are not per-
fect when applying them in studying broad-scale smolder-
ing fires, especially in terms of carbon emissions due to high
correlation with the burning depth. However, applying them
at a regional scale could be acceptable, as the uncertainties
are generally comparable due to spatial homogeneity. Addi-
tionally, the role of intricate local factors, like peat depth and
moisture content, is pivotal in influencing fire behavior, and
lacking these datasets can affect predictions. Moreover, the
evolving dynamics of climate change and unpredictable hu-
man activities, such as land use changes, introduce further
variations, making effective BP fire prediction a multidisci-
plinary challenge.

5.2 Primary driving factors of peatland fires

ML-derived statistical correlations do not necessarily indi-
cate causality, and biophysical or biochemical principles are
thus needed to further examine whether such relationships
are reasonable (Schölkopf et al., 2021). We have incorpo-
rated a great number of factors believed to influence smol-
dering fires into our model, as one of our intentions behind
developing this machine learning framework was to comple-
ment existing tools in identifying potential drivers of smol-
dering fires. By identifying the most influential factors, we
sought to align them with existing scientific theories to un-
derstand their potential roles in driving smoldering fires but
not to quantify all the causalities due to the absence of mea-
surement for particular factors. Thus, we will connect our
discoveries to existing findings to discuss theoretical sup-
port rather than implementing specific analysis at the current
stage.

In this study, four sets of ML simulations were designed
to determine the primary driving factors of peatland fires by
removing feature groups sequentially. The results revealed
that the feature importance rank exhibited general consis-
tency in multiple fire datasets. PRE in boreal or sub-arctic
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regions is primarily in the form of snow rather than rain-
fall due to cold weather (Behrangi et al., 2016), which has
little impact on BP fires. Moreover, smoldering fires can
persist for a long time (months to years) even in rainfall
weather (Lin et al., 2020). This low importance was ver-
ified by our ML simulations. Similarly, in sparsely popu-
lated boreal peatland, human activities showed a marginal
effect. Factorial simulations consistently demonstrated that
temperature (i.e., minimum, maximum, and average values),
air-dryness-related variables (e.g., RH, VPD, VAP, ET), and
FRS were the primary factors driving the BP wildfire activi-
ties (Figs. 4 and S12–S13). Although these factors eventually
lead to dry and combustible conditions for peatland fire oc-
currence and propagation, the processes in which they play
roles are quite different.

BP fires are intimately tied to weather, and warming ap-
pears to increase ignitions, fire frequency, and fire severity
(Duffy et al., 2005; Flannigan et al., 2005; Kohlenberg et al.,
2018). In peatlands without frost (Fig. 5a), rising tempera-
tures increase saturation vapor pressure (SVP) and continu-
ally induce an increase in vapor pressure deficit (VPD) if ac-
tual atmospheric VP does not increase as much as SVP. A re-
cent investigation indicates that RH (i.e., ratio of actual water
VP to SVP) has plunged rapidly since the year 2000, leading
to a sharp rise in VPD on a global scale (Yuan et al., 2019).
Such a warming-induced increase in VPD increases evapo-
transpiration (ET) more in peatlands than in forests with a
simulated percentage of up to 30 % (Helbig et al., 2020). Be-
cause atmospheric demand (i.e., VPD) dominates the limita-
tion of ET over the soil moisture (Helbig et al., 2020; Novick
et al., 2016), the water table turns out to be the water sup-
plier in response to rising VPD, which consequently results
in a decrease in water table depth. The water table depth de-
crease tends to change the physical characteristics of peat
in many aspects, such as by lowering the capacity of water
storage, causing the peat volume to shrink and volumetric
soil moisture to decrease (Price and Schlotzhauer, 1999), as
well as inducing surface subsidence with a concomitant de-
crease in bulk density and an increase in peat oxidation and
decomposition (Leifeld et al., 2011; Whittington and Price,
2006). These changes ultimately lead to more carbon be-
ing released into the atmosphere and the formation of drier
and more flammable peat soil (Fig. 5a). In peatlands with
frost, frost heaving deepens the active layers (Jones et al.,
2015; Wang et al., 2020), changes the hydrological and ther-
mal properties of peatland, promotes microbial and chemical
exothermic reactions, strengthens peatland dryness, and con-
sequently facilitates more frequent peatland fires (Kim et al.,
2020) (Fig. 5b).

Our ML-based sensitivity simulations demonstrated the
power of using big data to determine the primary causes
of peat fires: temperature, atmospheric dryness (e.g., RH,
VAP, VPD, ET), and frost (i.e., FRS). These simulations also
helped identify the less important factors and processes. For
example, wind speed and population density were ranked at

the bottom, suggesting that human activities may not be the
main causes of peatland fire occurrence and that wind speed,
unlike forest fires, does not significantly affect peatland fire
spread. Another intriguing discovery is that the simulations
in this study consistently revealed the important role that FRS
has played in causing peatland fires and their spread, though
FRS has been understudied in previous studies. Dixon et al.
(2018) revealed that the seasonal frost layer alters spring
water balance, induces a drier spring, and enhances risks
of deep smoldering. More specifically, ground-freezing frost
can greatly change the structure and properties of peatlands.
During the water icing process, the pore diameter is enlarged,
which consequently results in peat volume expansion, water
tension decreases, water storage capacity increases, and air
capacity surges (Dijk and Boekel, 1965). As the air capacity
increases, the oxidation of the soil organic carbon is likely
to increase. This oxidation produces heat and makes the soil
temperature increase, which can start peatland fires by self-
ignition (Arief et al., 2019; Restuccia et al., 2017). During
the seasonal freezing process, soil water diffuses vertically
from the bottom unfrozen layer to the upper frozen layer
(frost front) (Nagare et al., 2012). After cycles of freezing
and thawing (i.e., frost heaving), surface peat soil becomes
drier, and the freezing surface becomes thicker in the form
of surface lift above the water table. At low temperatures,
heat generated from respiration and the growth of microor-
ganisms dominates heat generated from chemical oxidation
in the peat decomposition (Yuan et al., 2021). If frost heaving
causes the peatland to dry out year by year, exothermic pro-
cesses from biological reactions may intensify chemical ox-
idation with high temperatures and thus induce spontaneous
peatland fires (Fig. 5b).

Collectively, the important factors uncovered by the ML
framework indicated two peatland fire mechanisms that suit
two types of peat soil: unfrozen and seasonal frozen peat-
lands (Fig. 5a and b). Temperature, air dryness, and facil-
itated warming and drying in an underground environment
may start fires in unfrozen peatlands. For seasonal freezing
and thawing in seasonally frozen peatland, frost heaving in-
duces a deep drying and oxygen-rich underground environ-
ment and may speed up exothermic progress in biological
reactions, thereby promoting peatland fire occurrences.

There are several limitations of this study. Because of a
lack of gridded burned depth data and bulk density, this ML-
based work could not predict and evaluate peat fire severity.
The satellite-based fire datasets used in this study do not pro-
vide underground smoldering peat fire as a single product.
Fires detected by satellites could be a mixture of peatland
surface flaming fires and smoldering fires because the de-
tected radiant signature of smoldering is much weaker than
that of flaming fires (Rein and Huang, 2021). In addition,
peat fire C emissions have been estimated largely by multi-
plying detected burned area by a range of parameters, such as
average burning depth, combustion completeness, and emis-
sion factors of major carbon species. Those estimated param-
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Figure 5. Processes in which environmental factors participate in self-heating peatland fires. ML-identified primary factors are marked in
blue; green arrows indicate negative correlation between the two connected factors, and orange arrows indicate positive correlation between
the two connected factors.

eters may induce large uncertainties due to the limited abil-
ity of optical satellites to detect underground smoldering and
burning depth (Graham et al., 2022). The limited data avail-
ability, such as vegetation types (moss and vascular plants),
burning depth, bulk density, water table depth, and soil tem-
perature, makes ML algorithms limited in fully accounting
for all contributing factors. Moreover, since the relationships
identified by the ML framework do not automatically imply
causality, the underlying physical mechanisms still need to
be further validated by future experimental work or theoret-
ical analyses, such as the overriding control of temperature-
related variables on inducing boreal peatland fires and the
mechanism by which frost impacts peat drying and smolder-
ing (Dixon et al., 2018).

6 Conclusion

This study constructed a two-step error-correcting ML
framework to explore the predictability of peatland fire oc-
currences and impacts (including burned area and C emis-
sions). Major climate, vegetation, soil, and human factors
that possibly induce BP fires were included in a range of fac-
torial simulations. The framework successfully predicted the
fire counts (occurrences) and fire impacts with accuracy, in
general, greater than 80 %, demonstrating the framework’s

utility in predicting rare and extreme fire events. Tempera-
ture and air dryness were suggested to dominate the fires in
unfrozen BPs, while FRS was determined to dominate fire
in frozen BPs through the impacts of frost heaving (seasonal
freezing–thawing) on changing thermal–hydrological char-
acteristics of peat soil. Our research provides preliminary in-
sights into the overriding impacts of temperature (including
temperature-related air dryness and frost heaving) on BP fires
via big data and ML. To overcome the ML’s limitations in in-
ferencing causality from data association and to further val-
idate the underlying physical mechanisms in BPs fire, more
field data (such as peat soil properties and peat burning prop-
erties), as well as additional site experimental, statistical, or
computational works, are needed in the future.

Code and data availability. The model code and data example
for supporting the findings in this study have been archived
on Zenodo (https://doi.org/10.5281/zenodo.10072144, Tang,
2023) under the GNU General Public License V2.0 or later.
The data used for this model are all publicly available from
various sources. The GFED4.1s product can be accessed
at https://www.geo.vu.nl/~gwerf/GFED/GFED4/ (Vrije Uni-
versiteit Amsterdam, 13 June 2019). The FireCCI5.1 data
are available at https://geogra.uah.es/fire_cci/firecci51.php
(ESA, 2018; Chuvieco et al., 2018; Lizundia-Loiola et al.,
2020). MODIS products (MCD45A1 and MCD64A1) can
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be obtained from https://e4ftl01.cr.usgs.gov/MOTA/ (Roy et
al., 2002; Giglio et al., 2018). The CRU TS 4.04 data are
archived at https://crudata.uea.ac.uk/cru/data/hrg/ (Harris et
al., 2020). MERRA-2 2 m wind speed data can be found
at https://goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2/
M2T1NXSLV.5.12.4/ (Gelaro et al., 2017). GPP data are avail-
able at https://doi.org/10.3334/ORNLDAAC/1789 (Madani and
Parazoo, 2020). GIMMS3g NDVI data are obtained from https://
data.tpdc.ac.cn/en/data/9775f2b4-7370-4e5e-a537-3482c9a83d88/
(The National Center for Atmospheric Research, 2018). GLEAM
soil moisture data can be accessed at https://www.gleam.eu/
(Martens et al., 2017; Miralles et al., 2011). HYDE population den-
sity data are available at https://doi.org/10.17026/dans-25g-gez3
(Klein Goldewijk, 2017). The boreal peatland map is obtained from
https://doi.org/10.17043/hugelius-2020-peatland-1 (Hugelius et al.,
2020).

For a more detailed list of data information, please refer to Sup-
plement Table S1.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-1525-2024-supplement.
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