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S1. Data and Validation Metrics

S1.1 Data List

Table S1 Data information for the response variables and explanatory variables

Groups Variables Datasets Time Span and Spatial Citations
Resolution Resolution
Response variables
Fire Impacts Burned area (BA) GFEDA4.1s, FireCCI5.1 1997-2016, monthly 0.25°x0.25° Chuvieco et al., 2018;
Randerson et al., 2015
C emission GFEDA4.1s 1997-2016, monthly 0.25°x0.25° Randerson et al., 2015
Burn date MCD45A1, MCD64A1 2001-2018 500m Giglio et al., 2018; Roy et
al., 2008
Explanatory variables
Atmospheric near-surface temperature (TMP) CRU_ts4.04 1901-2018, monthly 0.5°x0.5° Harris et al., 2020
near-surface temperature minimum (TMN) CRU_ts4.04 1901-2018, monthly 0.5°x0.5°
near-surface temperature maximum (TMX) CRU_ts4.04 1901-2018, monthly 0.5°x0.5°
diurnal temperature range (DTR) CRU ts4.04 1901-2018, monthly 0.5°x0.5°
Precipitation (PRE) CRU ts4.04 1901-2019, monthly 0.5°x0.5°
Evapotranspiration (ET) CRU ts4.04 1901-2018, monthly 0.5°x0.5°
wet day frequency (WET) CRU ts4.04 1901-2018, monthly 0.5°x0.5°
vapor pressure (VAP) CRU ts4.04 1901-2018, monthly 0.5°x0.5°
cloud cover percentage (CLD) CRU ts4.04 1901-2018, monthly 0.5°x0.5°
ground frost frequency (FRT) CRU ts4.04 1901-2018, monthly 0.5°x0.5°
Palmer Drought Severity Index (PDSI) CRU ts4.04 1901-2018, monthly 0.5°x0.5°
Saturated vapor pressure (SVP) (22.46 +TMP) 1901-2018, monthly 0.5°x0.5° World Meteorological
6.112 X e(272.62+TMP) Organization, 2008
relative humidity (RH) (VAP /SVP x 100 1901-2018, monthly 0.5°x0.5°
Vapor pressure deficit (VPD) SVP - VAP 1901-2018, monthly 0.5°x0.5°
2-m windspeed (WIN) MERRA2 1980-2020, 1h 0.5°x 0.625°  Gelaro et al., 2017
Vegetation GPP Madani et al.-2020 1982-2016, monthly 0.083°x0.083° Madani and Parazoo, 2020
NDVI GIMMS3g 1982-2015, monthly 0.083°x0.083° Pinzon and Tucker, 2014
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Groups Variables Datasets Time Span and Spatial Citations

Resolution Resolution
Soil Soil moisture (SMroot and SMsurf) GLEAM v3.3a, v3.3b, 1980-2018, monthly 0.5x0.5 (Martens et al., 2017
ECMWF
Northern Peatland Hugelius-2020 one period 10km (Hugelius et al., 2020
Socioeconomic  Population density (POPD) HYDE v3.2 10000BCE - 2015CE 0.083x0.083 (Klein Goldewijk et al.,
2017
S1.2 Constructed Climate Variables
(22.46 +TMP)

Saturated vapor pressure(SVP) = 6.112 X e(272.62+TMP) | (S1
relative humidity (HR) = % X 100%, (S2
vapor pressure deficit(VPD) = SVP — VAP, (S3

The MERRA-2 2-meter wind-speed product includes the eastward windU2M and northward windV2M, whose synthetic wind-speed is calculated as:

Windspeed(WSP) = /(U2M? + V2M?, (S4



S1.3 List of Abbreviations

Table S2 List of Abbreviations

Abbreviation Definition

ML Machine Learning

BP Boreal Peatland

PLFA Phospholipid Fatty Acid

GFED The Global Fire Emission Database
FireCCI The Fire Climate Change Initiative
MODIS The Moderate Resolution Imaging Spectroradiometer
CRU The Climatic Research Unit

GIMMIS 3g Third-generation Global Inventory Monitoring and Modeling System
BA Burned Area

C Carbon

TMP Near-surface Temperature

TMN Near-surface Temperature Minimum
T™X Near-surface Temperature Maximum
DTR Diurnal temperature range

PRE Precipitation

ET Evapotranspiration

WET Wet Day Frequency

VAP Vapor Pressure

CLD Cloud Cover Percentage

FRT Ground Frost Frequency

PDSI Palmer Drought Severity Index

SVP Saturated Vapor Pressure

RH Relative Humidity

VPD Vapor Pressure Deficit

WIN 2-m Windspeed

GPP Gross Primary Productivity

SMsurf Suface Soil Moisture

SMroot Root Soil Moisture

NDVI Normalized Difference Vegetation Index
POPD Population Density

FDR False Discovery Rate

FOR False Omission Rate

PPV Positive Predictive Value

NPV Negative Predictive Value

TP True Positive

TN True Negative

FP False Positive

FN False Negative

SMOTE Synthetic Minority Oversampling Techniques
LogR Logistic Regression

SVMs Support Vector Machines

BAG Bagging

KNN K-nearest neighbors

GNB Gaussian Naive Bayes

LASSO Least Absolute Shrinkage and Selection Operator
AdaBoost Adaptive Boosting

RF Random Forest

Table S2 continued



GBR Gradient Boosting

Bayes Bayesian regression

EN Elastic Net

Kernel Kernel Ridge

DT Decision tree

CBR CatBoost

LGBR Light Gradient boosting
XGBR Extreme Gradient boosting

S1.4 Validation metrics
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Figure S1 The histogram plots of accuracy metrices between ML predicted and observed fire/no-fire classes based on
FireCCI burned area dataset. The FN stands for False Negative prediction, whose value is -1, which means that observed
fires are wrongly predicted as no-fires; TP and FN stand for Ture Positive and False Negative predictions respectively,
whose value is 0, meaning fires or no-fires are both correctly predicted; and FP stands for False Positive prediction, whose
values is 1, meaning observed no-fire months are wrongly predicted as fire months.



Table S3 The testing evaluation metrics of simulations with different datasets; the mean value and standardized error are calculated from multiple machine learning

techniques
Simulations Data Accuracy Recall Precision AUC PPV FDR FOR NPV
all FireCCI BA  0.81 +0.08 0.71+0.12  043+0.13 0.77+0.03 043+0.13 0.57+0.13 0.05+0.01 0.95 +0.01
no-humi FireCCI BA  0.78 +0.09 0.68£0.11 0.37+0.11 0.74+0.02  0.37+0.11 0.63 £0.11 0.06 £0.01 0.94 +£0.01
no-pre FireCCI BA  0.79+0.09 0.70+0.11 0.40+0.11 0.75+0.02 0.40+0.11 0.60+0.11 0.05+0.01 0.95 +0.01
no-soimoi FireCCI BA  0.79+0.09 0.68+0.13 0.40+0.11 0.75+0.03 0.40+0.11 0.60+0.11 0.05+0.02  0.95+0.02
no-tmp FireCCI BA  0.79+0.09 0.71+£0.11 0.40+0.11 0.76 £0.02  0.40+0.11 0.60+0.11 0.05+0.01 0.95 +0.01
no-tmp-hmi FireCCI BA  0.78 +0.08 0.67 +0.08 0.36+£0.10 0.73+0.02  0.36+0.10 0.64+0.10 0.06 £0.01 0.94 +£0.01
no-tmp-pre FireCCI BA  0.79 +0.08 0.70+0.11 0.39+0.11 0.75+0.02 0.39+0.11 0.61+£0.11 0.05+0.01 0.95 +0.01
no-tmp-pre-hmi FireCCI BA  0.78 +0.08 0.66+0.07  0.35+0.10 0.73+0.02  0.35+0.10 0.65+0.10 0.06 £0.01 0.94 +£0.01
no-tmp-smo FireCCI BA  0.79+0.09 0.70+0.12  0.39+0.11 0.75+0.02 0.39+0.11 0.61+£0.11 0.05+0.01 0.95 +0.01
all GFED BA 0.83 £0.07 0.78 +£0.03 0.53+£0.13 0.81+0.03 0.53+£0.13 0.47+0.13 0.05+0.00  0.95+0.00
no-humi GFED BA 0.78 £0.07 0.73+0.06 0.45+0.11 0.76 £0.02 045+0.11 0.55+0.11 0.06 £0.01 0.94 +0.01
no-pre GFED BA 0.80£0.07 0.73 £0.08 048 £0.11 0.77+0.03 048 £0.11 0.52+0.11 0.06 £0.01 0.94 +£0.01
no-soimoi GFED BA 0.80£0.07 0.73 £0.08 048 £0.11 0.77+0.02 0.48+0.11 0.52+0.11 0.06 £0.01 0.94 +£0.01
no-tmp GFED BA 0.80£0.07 0.74+0.06 048 +0.11 0.78+0.02 0.48+0.11 0.52+0.11 0.06 £0.01 0.94 +0.01
no-tmp-hmi GFED BA 0.79 £ 0.06 0.71 £0.05 0.46 +£0.10 0.76 £0.02 0.46+0.10 0.54+0.10 0.07 £0.01 0.93 +£0.01
no-tmp-pre GFED BA 0.80£0.07 0.74+0.07 048 +0.11 0.78+0.02 0.48+0.11 0.52+0.11 0.06 £0.01 0.94 +£0.01
no-tmp-pre-hmi GFED BA 0.80 = 0.06 0.72+0.03 0.47+0.10 0.77+0.03 0.47+0.10 0.53+0.10 0.06+0.00  0.94 +£0.00
no-tmp-smo GFED BA 0.80£0.07 0.74+0.06  047+0.11 0.77+0.02 047+0.11 0.53 £0.11 0.06 £0.01 0.94 +£0.01
all GFED C 0.83 £0.07 0.78 +£0.03 0.53+£0.13 0.81+0.03 0.53+£0.13 0.47+0.13 0.05+0.00  0.95+0.00
no-humi GFED C 0.78 £0.07 0.73+0.06 0.45+0.11 0.76 £0.02 045+0.11 0.55+0.11 0.06 £0.01 0.94 +0.01
no-pre GFED C 0.80£0.07 0.73 £0.08 048 £0.11 0.77+0.03 048 +£0.11 0.52+0.11 0.06 £0.01 0.94 +0.01
no-soimoi GFED C 0.80£0.07 0.73 £0.08 048 £0.11 0.77+0.02 0.48+0.11 0.52+0.11 0.06 £0.01 0.94 +£0.01
no-tmp GFED C 0.80£0.07 0.74+0.06 048 +0.11 0.78+0.02 0.48+0.11 0.52+0.11 0.06 £0.01 0.94 +0.01
no-tmp-hmi GFED C 0.79 £ 0.06 0.71 £0.05 0.46 +£0.10 0.76 £0.02 0.46+0.10 0.54+0.10 0.07 £0.01 0.93 +£0.01
no-tmp-pre GFED C 0.80£0.07 0.74+0.07 048 +0.11 0.78+0.02 0.48+0.11 0.52+0.11 0.06 £0.01 0.94 +0.01
no-tmp-pre-hmi GFED C 0.79 £ 0.06 0.71+£0.04 0.46+0.10 0.76 £0.02 0.46+0.10 0.54+0.10 0.07+0.00  0.93 +£0.00
no-tmp-smo GFED C 0.80 = 0.07 0.74+0.06  0.47+0.11 0.77+0.02  047+0.11 0.53 £0.11 0.06 £ 0.01 0.94 + 0.01




Table S3 continued

Simulations Data Accuracy Recall Precision AUC PPV FDR FOR NPV
all MCD45A1 0.89 +0.06 0.89+0.07  0.94+0.02 0.88+0.05  0.94+0.02 0.06 £0.02 0.20+0.09  0.80+0.09
no-humi MCD45A1 0.88 £0.04 0.89+0.05 0.92+0.02 0.87+0.04  0.92+0.02 0.08 £0.02 021+0.07  0.79+0.07
no-pre MCD45A1 0.87 +0.05 0.88+0.07  0.92+0.02 0.87+0.05  0.92+0.02 0.08 £0.02 021+0.09  0.79+0.09
no-s0imoi MCD45A1 0.87 +0.05 0.88+0.07  0.93+0.02 0.87+0.04  0.93+0.02 0.07+£0.02 021+0.08  0.79+0.08
no-tmp MCD45A1 0.87 +0.06 0.87+0.09  0.93+0.03 0.87+0.05 0.93+0.03 0.07 £0.03 022+0.10 0.78+0.10
no-tmp-hmi MCD45A1 0.86 + 0.07 0.86+0.09  0.92+0.03 0.86+0.06 0.92+0.03 0.08 +0.03 024+0.10 0.76 £0.10
no-tmp-pre MCD45A1 0.87 +0.06 0.87+0.09  0.93+0.03 0.87+0.06  0.93+0.03 0.07 £ 0.03 0.23+0.10  0.77+0.10
no-tmp-pre-hmi MCD45A1 0.86 + 0.07 0.86+0.09  0.93+0.03 0.86+0.06 0.93+0.03 0.07 £0.03 024+0.10 0.76 £0.10
no-tmp-smo MCD45A1 0.87 +0.06 0.87+0.09  0.93+0.03 0.86+0.05 0.93+0.03 0.07 £ 0.03 0.23+0.10  0.77+0.10
all MCD64A1 0.79 £ 0.08 0.70+0.09 041+0.11 0.75+0.03 0.41+0.11 0.59+0.11 0.06 £0.01 0.94 +£0.01
no-humi MCD64A1 0.75 +0.09 0.63 £0.11 0.36+£0.10 0.70 £ 0.03 0.36+0.10 0.64 +0.10 0.07 £0.01 0.93 +£0.01
no-pre MCD64A1 0.77 £ 0.09 0.66 £0.11 0.38+0.10 0.72 +£0.03 0.38+0.10 0.62+0.10 0.07 £0.01 0.93 +£0.01
no-s0imoi MCD64A1 0.76 £0.10 0.63£0.13 0.38+0.10 0.71 £ 0.03 0.38+0.10 0.62+0.10 0.07 £0.01 0.93 +£0.01
no-tmp MCD64A1 0.77 £ 0.09 0.65+0.12  0.38+0.10 0.72 +£0.03 0.38+0.10 0.62+0.10 0.07 £0.01 0.93 +£0.01
no-tmp-hmi MCD64A1 0.77 +0.08 0.62+0.09 0.37+0.10 0.71 £ 0.03 0.37+0.10 0.63+0.10 0.07 £0.01 0.93 +£0.01
no-tmp-pre MCD64A1 0.77 £ 0.09 0.67+0.09 0.39+0.11 0.73 £0.03 0.39+0.11 0.61+£0.11 0.06 £0.01 0.94 +0.01
no-tmp-pre-hmi MCD64A1 0.77 £ 0.08 0.62+0.08  0.37+0.10 0.70 £ 0.03 0.37+0.10 0.63+0.10 0.07 £ 0.01 0.93 +0.01
no-tmp-smo MCD64A1 0.76 + 0.09 0.65+0.10  0.37+0.11 0.71 £ 0.03 0.37+0.11 0.63 £0.11 0.07 £ 0.01 0.93 +0.01

Table S4 random forest performances in different simulations with different datasets

Dataset Mod Simulation Type Accurac  Recal Precisio F1- AUC PPV FDR FOR NPV

el y 1 n score
FireCCI_B
A RF all testing 0.90 0.62 0.61 0.61 078 0.61 039 006 0.94
FireCCI_B
A RF no-tmp testing 0.89 0.60 0.56 058 077 056 044 006 094
FireCCI_B
A RF no-pre testing 0.89 0.60 0.55 057 076 055 045 0.06 094
FireCCI_B
A RF no-humi testing 0.88 0.57 0.53 055 075 053 047 006 094
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Dataset  Model Simulation Type Accuracy Recall Precision Fl-score AUC PPV FDR FOR NPV
MCD45A1 RF no-tmp testing 0.93 0.93 0.95 094 092 095 0.05 0.13 0.87
MCD45A1 RF no-pre testing 0.92 0.94 0.95 094 092 095 0.05 0.13 0.87
MCD45A1 RF no-humi testing 0.92 0.94 0.95 094 092 095 0.05 0.12 0.8
MCD45A1 RF no-soimoi testing 0.92 0.94 0.95 094 092 095 0.05 0.13 0.87
MCD45A1 RF no-tmp-pre testing 0.93 0.94 0.96 095 092 096 0.04 0.12 0.88
MCD45A1 RF no-tmp-hmi testing 0.92 0.93 0.95 094 092 095 0.05 0.13 0.87
MCD45A1 RF no-tmp-smo testing 0.92 0.93 0.95 094 092 095 0.05 0.13 0.87
MCD45A1 RF no-tmp-pre-hmi  testing 0.92 0.93 0.95 094 092 095 0.05 0.13 0.87
MCD64A1 RF all testing 0.88 0.60 0.56 058 076 056 044 0.07 093
MCD64A1 RF no-tmp testing 0.87 0.55 0.53 054 074 053 047 0.08 092
MCD64A1 RF no-pre testing 0.86 0.54 0.52 053 073 052 048 0.08 092
MCD64A1 RF no-humi testing 0.86 0.52 0.52 052 072 052 048 0.08 092
MCD64A1 RF no-soimoi testing 0.86 0.52 0.52 052 072 052 048 0.08 092
MCD64A1 RF no-tmp-pre testing 0.87 0.56 0.55 056 074 055 045 0.07 093
MCD64A1 RF no-tmp-hmi testing 0.86 0.54 0.52 053 073 052 048 0.08 092
MCD64A1 RF no-tmp-smo testing 0.86 0.53 0.52 052 072 052 048 0.08 092
MCD64A1 RF no-tmp-pre-hmi testing 0.86 0.54 0.52 0.53 073 0.52 048 0.08 0.92




Table S5 validation accuracy for the ALL-simulation with SMOTE using RF

Data Sim. Step Accuracy Recall Precision F1- AUC PPV FDR FOR NPV
score
FireCCI BA ALL testing 0.90 0.62 0.61 0.61 0.78 0.61 039 0.06 094
GFED BA  ALL testing 0.90 0.74 0.70 072 084 070 030 0.05 095
GFED C ALL testing 0.90 0.74 0.70 072 084 070 030 0.05 095
MCD45A1 ALL testing 0.94 0.94 0.96 095 093 09 0.04 0.11 0.89
MCD64A1 ALL testing 0.88 0.60 0.56 0.58 0.76 0.56 044 0.07 0.93
Table S6 validation accuracy for the ALL-simulation without SMOTE using RF
F1-
Data Sim. Step Accuracy Recall Precision score AUC PPV FDR FOR NPV
FireCCI BA ALL testing 0.91 0.42 0.77 0.54 0.70 0.77 023 0.08 0.92
GFED BA  ALL testing 0.91 0.61 0.81 0.69 0.79 0.81 0.19 0.08 0.92
GFED C ALL testing 0.91 0.61 0.81 0.69 0.79 0.81 0.19 0.08 0.92
MCD45A1 ALL testing 0.94 0.96 0.96 096 093 096 0.04 0.09 091
MCD64A1 ALL testing 0.89 0.42 0.72 0.53 0.70 0.72 028 0.09 091

Table S7 The validation matrices of machine learning regression models with direct application

Model Stage  MSE MAE R? Model Stage  MSE MAE R?
Ada training  953.03  6.84 0.39 Lasso  training 145272 11.06 0.07
testing  1068.78 691  0.12 testing 1141.87 10.65 0.06
Bag training 15447 238 0.90 LGBR training 34476  4.51 0.78
testing 927.57 631 0.23 testing 76145  7.03 0.37
Bayes  training 1450.62 11.26 0.07 LinR training 144834 11.45 0.07
testing  1142.95 10.85 0.05 testing  1146.44 11.04 0.05
CBR training 63.89 3.13 0.96 RF training  139.32 240 091
testing 810.75 649 033 testing 92829 642 0.23
DT training 0.00 0.00 1.00 Ridge training 1450.14 11.38 0.07
testing  1841.74  7.53 -0.62 testing  1144.92 11.00 0.05
EN training 1498.48  9.52  0.04 Stack  training  244.76  2.57 0.84
testing  1159.71 899 0.04 testing 804.62 555 0.33
GBR  training 1302.99 855 0.17 XGBR training 1550.82  6.73 0.01
testing  1123.06 831  0.07 testing 1198.16  6.25 0.01
Kernel training 1450.86 11.41 0.07
testing 114722 11.03  0.05




S2. Research Area
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Figure S2 Research Area. Peatland fires are defined as fires happen in peatland area where histosol fraction greater than
30%ad. The research area mainly locates in Hudson Bay area (a), West Siberian (b), and very few area of East Europe (c).

S3. Spatial Validation on Predicted Fire Counts

In this section, we mainly present the validating results of the predicted fire counts, spatially (in
section S3) and temporally (in Section S4), with different datasets from the testing stage. These
datasets include FireCCI BA, GFED BA, GFED C, MCD64A1 active fire, and MCD45A1 active
fire.

S3.1 FireCCI BA
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Figure S3 Spatial validation of observed and ML model predicted fire counts, based on FireCCI burned area. Subfigures
in column (x-1) and (x-2) represent the data/results at Hudson Bay area (x-1) and west Siberian (x-2), respectively, where
x stands for (a) observations, (b) Random Forest, (c) bagging, (d) K-nearest-neighbour, (e) logistic regression, (f) support
vector machine, and (g) Gaussian Naive Bayes model predictions.



S3.2 GFED BA
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Figure S4 Spatial validation of observed and ML model predicted fire counts, based on GFED burned area. Subfigures in
column (x-1) and (x-2) represent the data/results at Hudson Bay area (x-1) and west Siberian (x-2), respectively, where x
stands for (a) observations, (b) Random Forest, (c) bagging, (d) K-nearest-neighbour, (e) logistic regression, (f) support
vector machine, and (g) Gaussian Naive Bayes model predictions.

GFED C emission
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Figure S5 Spatial validation of observed and ML model predicted fire counts, based on FireCCI C emission. Subfigures in
column (x-1) and (x-2) represent the data/results at Hudson Bay area (x-1) and west Siberian (x-2), respectively, where x
stands for (a) observations, (b) Random Forest, (c) bagging, (d) K-nearest-neighbour, (e) logistic regression, (f) support
vector machine, and (g) Gaussian Naive Bayes model predictions.



S3.3

MCD64AL1 active fire
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Figure S6 Spatial validation of observed and ML model predicted fire counts, based on MCD64A1 active fire. Subfigures
in column (x-1) and (x-2) represent the data/results at Hudson Bay area (x-1) and west Siberian (x-2), respectively, where
x stands for (a) observations, (b) Random Forest, (c) bagging, (d) K-nearest-neighbour, (e) logistic regression, (f) support

vector machine, and (g) Gaussian Naive Bayes model predictions.
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Figure S7 Spatial validation of observed and ML model predicted fire counts, based on MCD45A1 active fire. Subfigures
in column (x-1) and (x-2) represent the data/results at Hudson Bay area (x-1) and west Siberian (x-2), respectively, where
x stands for (a) observations, (b) Random Forest, (c) bagging, (d) K-nearest-neighbour, (e) logistic regression, (f) support
vector machine, and (g) Gaussian Naive Bayes model predictions.



S4. Temporal Validation of Predicted Fire Counts Seasonality

In this section, we mainly present the validating the seasonal distribution of predicted fire counts
from the testing stage, with multiple fire datasets. These datasets include FireCCI BA, GFED
BA, GFED C, MCD64A1 active fire, and MCD45A1 active fire.

S4.1 GFED BA
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Figure S8 Temporal validation of observed and ML model predicted fire counts with GFED burned area data.
Predictions (red bars) from (a) Random Forest, (b) bagging, (c) K-nearest-neighbour, (d) logistic regression, (¢) support
vector machine, and (f) Gaussian Naive Bayes model are compared with observations (black bars) in seasonal
distributions.



S4.2 GFED C emission
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Figure S9 Temporal validation of observed and ML model predicted fire counts with GFED carbon emission. Predictions
(red bars) from (a) Random Forest, (b) bagging, (¢c) K-nearest-neighbour, (d) logistic regression, (e) support vector
machine, and (f) Gaussian Naive Bayes model are compared with observations (black bars) in seasonal distributions.

S4.3 MCD64AL1 active fire
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Figure S10 Temporal validation of observed and ML model predicted fire counts with MCD64A1 active fire data.
Predictions (red bars) from (a) Random Forest, (b) bagging, (c) K-nearest-neighbour, (d) logistic regression, (¢) support
vector machine, and (f) Gaussian Naive Bayes model are compared with observations (black bars) in seasonal
distributions.



S4.4 MCD45A1 active fire
(a) RF (b) BAG (c) KNN
m RF Em BAG mmm KNN
HEEm Obs. EEm Obs. EEE Obs.
600 -
%]
€
3
8 400 A
e
E
200 4
0- i
JFMAM)] JASOND JFMAM)] JASOND JFMAM] JASOND
(d) LogReg (e) SVM (f) GNB
EEE LogReg . SVM = GNB
HEN Obs. HEN Obs. HEEE Obs.
600 - B
2]
€
>
8§ 400 A 4
e
=
200 1 B

Figure S11 Temporal validation of observed and ML model predicted fire counts with MCD45A1 active fire data.
Predictions (red bars) from (a) Random Forest, (b) bagging, (c) K-nearest-neighbour, (d) logistic regression, (¢) support
vector machine, and (f) Gaussian Naive Bayes model are compared with observations (black bars) in seasonal
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distributions.

SS. Validation on Major Contributing Factors with Factor-control Simulations and Multi-datasets

In this section, we mainly present the feature importance ranking from multiple factor-
controlling simulations in multi-datasets. These datasets include GFED BA, GFED C,
MCDG64A1 active fire, and MCD45A1 active fire. As the FireCCI-based simulation results are
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presented in the main text, we will not present it here.



S5.1 Feature importance from simulations based on GFED BA
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Figure S12 The synthesised factor contribution importance ranking in a range of factor-control simulations: (a) include
all factor, (b) exclude features in the temperature group (marked in blue), (c) exclude features in Precipitation
group(yellow), (c) exclude air-dryness group(pink), (¢) exclude soil moisture group (orange), (f) exclude both temperature
and precipitation,(g) exclude temperature and soil moisture, (h) exclude temperature and air-dryness, and (i) exclude
temperature, precipitation, and air dryness, where the vertical lines are the mean importance of grouped features with

the same colour.



S5.2 Feature importance from simulations based on GFED C emission
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Figure S13 The synthesised factor contribution importance ranking in a range of factor-control simulations: (a) include
all factor, (b) exclude features in the temperature group (marked in blue), (c) exclude features in Precipitation
group(yellow), (c) exclude air-dryness group(pink), (¢) exclude soil moisture group (orange), (f) exclude both temperature
and precipitation,(g) exclude temperature and soil moisture, (h) exclude temperature and air-dryness, and (i) exclude
temperature, precipitation, and air dryness, where the vertical lines are the mean importance of grouped features with

the same colour.
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S5.3 Feature importance from simulations based on MCD64A1
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Figure S14 The synthesised factor contribution importance ranking in a range of factor-control simulations: (a) include
all factor, (b) exclude features in the temperature group (marked in blue), (c) exclude features in Precipitation
group(yellow), (c) exclude air-dryness group(pink), (¢) exclude soil moisture group (orange), (f) exclude both temperature
and precipitation,(g) exclude temperature and soil moisture, (h) exclude temperature and air-dryness, and (i) exclude
temperature, precipitation, and air dryness, where the vertical lines are the mean importance of grouped features with

the same colour.



S5.4 Feature importance from simulations based on MCD45A1
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Figure S15 The synthesized factor contribution importance ranking in a range of factor-control simulations: (a) include
all factor, (b) exclude features in the temperature group (marked in blue), (c) exclude features in Precipitation
group(yellow), (c) exclude air-dryness group(pink), (¢) exclude soil moisture group (orange), (f) exclude both temperature
and precipitation,(g) exclude temperature and soil moisture, (h) excludes temperature and air-dryness, and (i) exclude
temperature, precipitation, and air dryness, where the vertical lines are the mean importance of grouped features with
the same color.

S6. Spatial Validation on Predicted Fire Impact Sizes

In this section, we validated the spatial distribution of predicted fire sizes either burned area or C
emission from the testing stage, with multiple fire datasets. These datasets include FireCCI BA,
GFED BA, and GFED C emission.
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Figure S16 Spatial validation of observed, stacked machine learning predicted, and the error-adjusted burned area
magnitudes, based on FireCCI burned area dataset. Subfigures in column (x-1) and (x-2) represent the data/results at
Hudson Bay area (x-1) and west Siberian (x-2), respectively, where x stands for(a) observations, (b) stacked model
predictions, and (c) model prediction with error-correction.
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Figure S17 Spatial validation of observed, stacked machine learning predicted, and the error-adjusted burned area
magnitudes, based on GFED burned area dataset. Subfigures in column (x-1) and (x-2) represent the data/results at
Hudson Bay area (x-1) and west Siberian (x-2), respectively, where x stands for(a) observations, (b) stacked model
predictions, and (c) model prediction with error-correction.
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Figure S18 Spatial validation of observed, stacked machine learning predicted, and the error-adjusted burned area
magnitudes, based on FireCCI burned area dataset. Subfigures in column (x-1) and (x-2) represent the data/results at
Hudson Bay area (x-1) and west Siberian (x-2), respectively, where x stands for(a) observations, (b) stacked model
predictions, and (c) model prediction with error-correction.

S7. Temporal Validation of Predicted Fire Impact Sizes

In this section, we validated the temporal distribution of predicted fire size, either burned area or
C emission, at the testing stage with multiple fire datasets. These datasets include FireCCI BA,
GFED BA, and GFED C emission.
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Figure S19 Seasonality of the observed, modelled, and error adjusted FireCCI burned area from multiple machine
learning leaners: (a) Linear Regression; (b) Bayesian linear Regression;( ¢) Ridge regression; (d) Lasso regression; (e)
Elastic Net; (f) Kernel ridge regression; (g) Decision tree; (h) Bagging; (i) Random forests; (j) Adaptive boosting
regression; (k) Gradient boosting regression; (I) Light gradient boosting regression;( m) Cat boosting regression; and (n)
stacking.
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Figure S20 Seasonality of the observed, modelled, and error adjusted GFED burned area from multiple machine learning
leaners: (a) Linear Regression; (b) Bayesian linear Regression;( ¢) Ridge regression; (d) Lasso regression; (e) Elastic Net;
(f) Kernel ridge regression; (g) Decision tree; (h) Bagging; (i) Random forests; (j) Adaptive boosting regression; (k)
Gradient boosting regression; (I) Light gradient boosting regression;( m) Cat boosting regression; and (n) stacking.
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Figure S21 Seasonality of the observed, modelled, and error adjusted GFED C emission from multiple machine learning
leaners: (a) Linear Regression; (b) Bayesian linear Regression;( ¢) Ridge regression; (d) Lasso regression; (e) Elastic Net;
(f) Kernel ridge regression; (g) Decision tree; (h) Bagging; (i) Random forests; (j) Adaptive boosting regression; (k)
Gradient boosting regression; (1) Light gradient boosting regression;( m) Cat boosting regression; and (n) stacking.

S8. Evaluation on the Error-correcting Effects
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Figure S22 The scatter plots of observed and model predicted fire sizes. Model predictions—both error-adjusted (red
triangle) and not-adjusted (black dot) predictions—are presented for (a) FireCCI burned area, (b) GFED burned area,
and (c¢) GFED C emissions. The R?,, and R?, refer to the determination coefficients that without and with error

adjustments, respectively.
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