Articles | Volume 17, issue 4
https://doi.org/10.5194/gmd-17-1469-2024
https://doi.org/10.5194/gmd-17-1469-2024
Methods for assessment of models
 | 
19 Feb 2024
Methods for assessment of models |  | 19 Feb 2024

Sensitivity of atmospheric rivers to aerosol treatment in regional climate simulations: insights from the AIRA identification algorithm

Eloisa Raluy-López, Juan Pedro Montávez, and Pedro Jiménez-Guerrero

Related authors

A Local Terrain Smoothing Approach for Stabilizing Microscale and High-Resolution Mesoscale Simulations: a Case Study Using FastEddy® (v3.0) and WRF (v4.6.0)
Eloisa Raluy-López, Domingo Muñoz-Esparza, and Juan Pedro Montávez
EGUsphere, https://doi.org/10.5194/egusphere-2025-3744,https://doi.org/10.5194/egusphere-2025-3744, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary

Cited articles

Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a
Algarra, I., Nieto, R., Ramos, A. M., Eiras-Barca, J., Trigo, R. M., and Gimeno, L.: Significant increase of global anomalous moisture uptake feeding landfalling Atmospheric Rivers, Nat. Commun., 11, 5082, https://doi.org/10.1038/s41467-020-18876-w, 2020. a
Baek, S. H. and Lora, J.: Counterbalancing influences of aerosols and greenhouse gases on atmospheric rivers, Nat. Clim. Change, 11, 1–8, https://doi.org/10.1038/s41558-021-01166-8, 2021. a, b
Brands, S.: 20th Century Atmospheric River Archive for Western North America and Europe, Zenodo [data set], https://doi.org/10.5281/zenodo.8010794, 2023. a, b
Brands, S., Gutiérrez, J., and San-Martin, D.: Twentieth-century atmospheric river activity along the west coasts of Europe and North America: algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns, Clim. Dynam., 48, 2771–2795, https://doi.org/10.1007/s00382-016-3095-6, 2017. a, b, c, d
Download
Short summary
Atmospheric rivers (ARs) represent a significant source of water but are also related to extreme precipitation events. Here, we present a new regional-scale AR identification algorithm and apply it to three simulations that include aerosol interactions at different levels. The results show that aerosols modify the intensity and trajectory of ARs and redistribute the AR-related precipitation. Thus, the correct inclusion of aerosol effects is important in the simulation of AR behavior.
Share