Articles | Volume 17, issue 4
https://doi.org/10.5194/gmd-17-1469-2024
https://doi.org/10.5194/gmd-17-1469-2024
Methods for assessment of models
 | 
19 Feb 2024
Methods for assessment of models |  | 19 Feb 2024

Sensitivity of atmospheric rivers to aerosol treatment in regional climate simulations: insights from the AIRA identification algorithm

Eloisa Raluy-López, Juan Pedro Montávez, and Pedro Jiménez-Guerrero

Data sets

AIRA (Atmospheric Rivers Identification Algorithm) input dataset and results E. Raluy-López et al. https://doi.org/10.5281/zenodo.7898400

Model code and software

AIRA (Atmospheric Rivers Identification Algorithm) software E. Raluy-López et al. https://doi.org/10.5281/zenodo.7885383

Download
Short summary
Atmospheric rivers (ARs) represent a significant source of water but are also related to extreme precipitation events. Here, we present a new regional-scale AR identification algorithm and apply it to three simulations that include aerosol interactions at different levels. The results show that aerosols modify the intensity and trajectory of ARs and redistribute the AR-related precipitation. Thus, the correct inclusion of aerosol effects is important in the simulation of AR behavior.