Articles | Volume 16, issue 22
https://doi.org/10.5194/gmd-16-6593-2023
https://doi.org/10.5194/gmd-16-6593-2023
Methods for assessment of models
 | 
16 Nov 2023
Methods for assessment of models |  | 16 Nov 2023

Monte Carlo drift correction – quantifying the drift uncertainty of global climate models

Benjamin S. Grandey, Zhi Yang Koh, Dhrubajyoti Samanta, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew

Related authors

Tide–surge interaction observed at Singapore and the east coast of Peninsular Malaysia using a semi-empirical model
Zhi Yang Koh, Benjamin S. Grandey, Dhrubajyoti Samanta, Adam D. Switzer, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Ocean Sci., 20, 1495–1511, https://doi.org/10.5194/os-20-1495-2024,https://doi.org/10.5194/os-20-1495-2024, 2024
Short summary
Impacts on cloud radiative effects induced by coexisting aerosols converted from international shipping and maritime DMS emissions
Qinjian Jin, Benjamin S. Grandey, Daniel Rothenberg, Alexander Avramov, and Chien Wang
Atmos. Chem. Phys., 18, 16793–16808, https://doi.org/10.5194/acp-18-16793-2018,https://doi.org/10.5194/acp-18-16793-2018, 2018
Short summary
Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG
Benjamin S. Grandey, Daniel Rothenberg, Alexander Avramov, Qinjian Jin, Hsiang-He Lee, Xiaohong Liu, Zheng Lu, Samuel Albani, and Chien Wang
Atmos. Chem. Phys., 18, 15783–15810, https://doi.org/10.5194/acp-18-15783-2018,https://doi.org/10.5194/acp-18-15783-2018, 2018
Short summary
Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires
Benjamin S. Grandey, Hsiang-He Lee, and Chien Wang
Atmos. Chem. Phys., 16, 14495–14513, https://doi.org/10.5194/acp-16-14495-2016,https://doi.org/10.5194/acp-16-14495-2016, 2016
Short summary
The contribution of the strength and structure of extratropical cyclones to observed cloud–aerosol relationships
B. S. Grandey, P. Stier, R. G. Grainger, and T. M. Wagner
Atmos. Chem. Phys., 13, 10689–10701, https://doi.org/10.5194/acp-13-10689-2013,https://doi.org/10.5194/acp-13-10689-2013, 2013

Related subject area

Climate and Earth system modeling
Advanced climate model evaluation with ESMValTool v2.11.0 using parallel, out-of-core, and distributed computing
Manuel Schlund, Bouwe Andela, Jörg Benke, Ruth Comer, Birgit Hassler, Emma Hogan, Peter Kalverla, Axel Lauer, Bill Little, Saskia Loosveldt Tomas, Francesco Nattino, Patrick Peglar, Valeriu Predoi, Stef Smeets, Stephen Worsley, Martin Yeo, and Klaus Zimmermann
Geosci. Model Dev., 18, 4009–4021, https://doi.org/10.5194/gmd-18-4009-2025,https://doi.org/10.5194/gmd-18-4009-2025, 2025
Short summary
ICON-HAM-lite 1.0: simulating the Earth system with interactive aerosols at kilometer scales
Philipp Weiss, Ross Herbert, and Philip Stier
Geosci. Model Dev., 18, 3877–3894, https://doi.org/10.5194/gmd-18-3877-2025,https://doi.org/10.5194/gmd-18-3877-2025, 2025
Short summary
Process-based modeling framework for sustainable irrigation management at the regional scale: integrating rice production, water use, and greenhouse gas emissions
Yan Bo, Hao Liang, Tao Li, and Feng Zhou
Geosci. Model Dev., 18, 3799–3817, https://doi.org/10.5194/gmd-18-3799-2025,https://doi.org/10.5194/gmd-18-3799-2025, 2025
Short summary
Implementing deep soil and dynamic root uptake in Noah-MP (v4.5): impact on Amazon dry-season transpiration
Carolina A. Bieri, Francina Dominguez, Gonzalo Miguez-Macho, and Ying Fan
Geosci. Model Dev., 18, 3755–3779, https://doi.org/10.5194/gmd-18-3755-2025,https://doi.org/10.5194/gmd-18-3755-2025, 2025
Short summary
Reducing time and computing costs in EC-Earth: an automatic load-balancing approach for coupled Earth system models
Sergi Palomas, Mario C. Acosta, Gladys Utrera, and Etienne Tourigny
Geosci. Model Dev., 18, 3661–3679, https://doi.org/10.5194/gmd-18-3661-2025,https://doi.org/10.5194/gmd-18-3661-2025, 2025
Short summary

Cited articles

Bouttes, N., Gregory, J. M., and Lowe, J. A.: The Reversibility of Sea Level Rise, J. Climate., 26, 2502–2513, https://doi.org/10.1175/JCLI-D-12-00285.1, 2013. a
Brunetti, M. and Vérard, C.: How to Reduce Long-Term Drift in Present-Day and Deep-Time Simulations?, Clim. Dynam., 50, 4425–4436, https://doi.org/10.1007/s00382-017-3883-7, 2018. a, b
Choudhury, D., Sen Gupta, A., Sharma, A., Mehrotra, R., and Sivakumar, B.: An Assessment of Drift Correction Alternatives for CMIP5 Decadal Predictions, J. Geophys. Res.-Atmos., 122, 10282–10296, https://doi.org/10.1002/2017JD026900, 2017. a
Cuesta-Valero, F. J., García-García, A., Beltrami, H., and Finnis, J.: First assessment of the earth heat inventory within CMIP5 historical simulations, Earth Syst. Dynam., 12, 581–600, https://doi.org/10.5194/esd-12-581-2021, 2021. a
Davies, J. H. and Davies, D. R.: Earth's surface heat flux, Solid Earth, 1, 5–24, https://doi.org/10.5194/se-1-5-2010, 2010. a
Download
Short summary
Global climate models are susceptible to spurious trends known as drift. Fortunately, drift can be corrected when analysing data produced by models. To explore the uncertainty associated with drift correction, we develop a new method: Monte Carlo drift correction. For historical simulations of thermosteric sea level rise, drift uncertainty is relatively large. When analysing data susceptible to drift, researchers should consider drift uncertainty.
Share