Articles | Volume 16, issue 20
https://doi.org/10.5194/gmd-16-6029-2023
https://doi.org/10.5194/gmd-16-6029-2023
Methods for assessment of models
 | 
27 Oct 2023
Methods for assessment of models |  | 27 Oct 2023

A standardized methodology for the validation of air quality forecast applications (F-MQO): lessons learnt from its application across Europe

Lina Vitali, Kees Cuvelier, Antonio Piersanti, Alexandra Monteiro, Mario Adani, Roberta Amorati, Agnieszka Bartocha, Alessandro D'Ausilio, Paweł Durka, Carla Gama, Giulia Giovannini, Stijn Janssen, Tomasz Przybyła, Michele Stortini, Stijn Vranckx, and Philippe Thunis

Related authors

Measured and modelled air quality trends in Italy over the period 2003–2010
Ilaria D'Elia, Gino Briganti, Lina Vitali, Antonio Piersanti, Gaia Righini, Massimo D'Isidoro, Andrea Cappelletti, Mihaela Mircea, Mario Adani, Gabriele Zanini, and Luisella Ciancarella
Atmos. Chem. Phys., 21, 10825–10849, https://doi.org/10.5194/acp-21-10825-2021,https://doi.org/10.5194/acp-21-10825-2021, 2021
Short summary
Evaluation of air quality forecasting system FORAIR_IT over Europe and Italy at high resolution for year 2017
Mario Adani, Guido Guarnieri, Lina Vitali, Luisella Ciancarella, Ilaria D'Elia, Mihaela Mircea, Maurizio Gualtieri, Andrea Cappelletti, Massimo D'Isidoro, Gino Briganti, Antonio Piersanti, Milena Stracquadanio, Gaia Righini, Felicita Russo, Giuseppe Cremona, Maria Gabriella Villani, and Gabriele Zanini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-54,https://doi.org/10.5194/gmd-2020-54, 2020
Publication in GMD not foreseen
Short summary

Related subject area

Atmospheric sciences
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024,https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024,https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024,https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024,https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024,https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary

Cited articles

Adani, M., Piersanti, A., Ciancarella, L., D'Isidoro, M., Villani, M. G., and Vitali, L.: Preliminary Tests on the Sensitivity of the FORAIR_IT Air Quality Forecasting System to Different Meteorological Drivers, Atmosphere, 11, 574, https://doi.org/10.3390/atmos11060574, 2020. 
Adani, M., D'Isidoro, M., Mircea, M., Guarnieri, G., Vitali, L., D'Elia, I., Ciancarella, L., Gualtieri, M., Briganti, G., Cappelletti, A., Piersanti, A., Stracquadanio, M., Righini, G., Russo, F., Cremona, G., Villani, M. G., and Zanini, G.: Evaluation of air quality forecasting system FORAIR-IT over Europe and Italy at high resolution for year 2017, Atmos. Pollut. Res., 13, 101456, https://doi.org/10.1016/j.apr.2022.101456, 2022. 
Agarwal, S., Sharma, S., R., S., Rahman, M. H., Vranckx, S., Maiheu, B., Blyth, L., Janssen, S., Gargava, P., Shukla, V. K., and Batra, S.: Air quality forecasting using artificial neural networks with real time dynamic error correction in highly polluted regions, Sci. Total Environ., 735, 139454, https://doi.org/10.1016/j.scitotenv.2020.139454, 2020. 
Alfaro, S. C. and Gomes, L.: Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas, J. Geophys. Res.-Atmos., 106, 18075–18084, https://doi.org/10.1029/2000JD900339, 2001. 
Bai, L., Wang, J., Ma, X., and Lu, H.: Air Pollution Forecasts: An Overview, Int. J. Environ. Res. Publ. He., 15, 780, https://doi.org/10.3390/ijerph15040780, 2018. 
Download
Short summary
Air quality forecasting models play a key role in fostering short-term measures aimed at reducing human exposure to air pollution. Together with this role comes the need for a thorough assessment of the model performances to build confidence in models’ capabilities, in particular when model applications support policymaking. In this paper, we propose an evaluation methodology and test it on several domains across Europe, highlighting its strengths and room for improvement.