Articles | Volume 16, issue 18
https://doi.org/10.5194/gmd-16-5383-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-5383-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Teddy tool v1.1: temporal disaggregation of daily climate model data for climate impact analysis
Department of Geography, Ludwig-Maximilians-Universität München (LMU), Luisenstr. 37, 80333 Munich, Germany
Benjamin Poschlod
Research Unit – Sustainability and Climate Risks, Center for Earth
System Research and Sustainability, Universität Hamburg, Grindelberg 5, 20144 Hamburg, Germany
Related authors
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
Geosci. Model Dev., 18, 1067–1087, https://doi.org/10.5194/gmd-18-1067-2025, https://doi.org/10.5194/gmd-18-1067-2025, 2025
Short summary
Short summary
CropSuite is a new open-source crop suitability model. It provides a GUI and a wide range of options, including a spatial downscaling of climate data. We apply CropSuite to 48 staple and opportunity crops at a 1 km spatial resolution in Africa. We find that climate variability significantly impacts suitable areas but also affects optimal sowing dates and multiple cropping potential. The results provide valuable information for climate impact assessments, adaptation, and land-use planning.
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Abigail Snyder, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Karina Williams, Ziwei Wang, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020, https://doi.org/10.5194/gmd-13-3995-2020, 2020
Short summary
Short summary
Improving our understanding of the impacts of climate change on crop yields will be critical for global food security in the next century. The models often used to study the how climate change may impact agriculture are complex and costly to run. In this work, we describe a set of global crop model emulators (simplified models) developed under the Agricultural Model Intercomparison Project. Crop model emulators make agricultural simulations more accessible to policy or decision makers.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Benjamin Poschlod, Laura Sailer, Alexander Sasse, Anastasia Vogelbacher, and Ralf Ludwig
EGUsphere, https://doi.org/10.5194/egusphere-2025-2483, https://doi.org/10.5194/egusphere-2025-2483, 2025
Short summary
Short summary
Europe was hit by severe droughts in recent years resulting in extreme low flow conditions in rivers. Here, we investigate future climate change effects on river droughts in Bavaria. We find increasing severity for the low peak discharge and low flow duration in a warmer climate. This is caused by hotter and drier summers, where the joint occurrence of heat and drought intensifies. Further, we show that conditions in the year before the drought gain more importance in a warmer climate.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
Geosci. Model Dev., 18, 1067–1087, https://doi.org/10.5194/gmd-18-1067-2025, https://doi.org/10.5194/gmd-18-1067-2025, 2025
Short summary
Short summary
CropSuite is a new open-source crop suitability model. It provides a GUI and a wide range of options, including a spatial downscaling of climate data. We apply CropSuite to 48 staple and opportunity crops at a 1 km spatial resolution in Africa. We find that climate variability significantly impacts suitable areas but also affects optimal sowing dates and multiple cropping potential. The results provide valuable information for climate impact assessments, adaptation, and land-use planning.
Benjamin Poschlod and Anne Sophie Daloz
The Cryosphere, 18, 1959–1981, https://doi.org/10.5194/tc-18-1959-2024, https://doi.org/10.5194/tc-18-1959-2024, 2024
Short summary
Short summary
Information about snow depth is important within climate research but also many other sectors, such as tourism, mobility, civil engineering, and ecology. Climate models often feature a spatial resolution which is too coarse to investigate snow depth. Here, we analyse high-resolution simulations and identify added value compared to a coarser-resolution state-of-the-art product. Also, daily snow depth extremes are well reproduced by two models.
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Abigail Snyder, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Karina Williams, Ziwei Wang, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020, https://doi.org/10.5194/gmd-13-3995-2020, 2020
Short summary
Short summary
Improving our understanding of the impacts of climate change on crop yields will be critical for global food security in the next century. The models often used to study the how climate change may impact agriculture are complex and costly to run. In this work, we describe a set of global crop model emulators (simplified models) developed under the Agricultural Model Intercomparison Project. Crop model emulators make agricultural simulations more accessible to policy or decision makers.
Cited articles
Ailliot, P., Allard, D., Monbet, V., and Naveau, P.: Stochastic weather
generators: an overview of weather type models,
Journal de la Société Française de Statistique, 156, 101–113,
2015.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A.,
and Wood, E. F.: Present and future Köppen-Geiger climate classification
maps at 1-km resolution, Sci. Data, 5, 180214,
https://doi.org/10.1038/sdata.2018.214, 2018.
Bennett, A., Hamman, J., and Nijssen, B.: MetSim: A python package for
estimation and disaggregation of meteorological data, J. Open Source
Softw., 5, 2042, https://doi.org/10.21105/joss.02042, 2020.
Breinl, K. and Di Baldassarre, G.: Space-time disaggregation of
precipitation and temperature across different climates and spatial scales,
Journal of Hydrology: Regional Studies, 21, 126–146,
https://doi.org/10.1016/j.ejrh.2018.12.002, 2019.
Buck, A. L.: New Equations for Computing Vapor Pressure and Enhancement
Factor, J. Appl. Meteorol. Clim., 20, 1527–1532,
https://doi.org/10.1175/1520-0450(1981)020<1527:Nefcvp>2.0.Co;2, 1981.
Byers, E., Gidden, M., Leclère, D., Balkovic, J., Burek, P., Ebi, K.,
Greve, P., Grey, D., Havlik, P., Hillers, A., Johnson, N., Kahil, T., Krey,
V., Langan, S., Nakicenovic, N., Novak, R., Obersteiner, M., Pachauri, S.,
Palazzo, A., Parkinson, S., Rao, N. D., Rogelj, J., Satoh, Y., Wada, Y.,
Willaarts, B., and Riahi, K.: Global exposure and vulnerability to
multi-sector development and climate change hotspots, Environ. Res.
Lett., 13, 055012, https://doi.org/10.1088/1748-9326/aabf45, 2018.
Chen, C. J.: Temporal disaggregation of seasonal forecasting for streamflow
simulation, World Environmental and Water Resources Congress, 2016, West Palm Beach, Florida, 22–26 May 2016, https://doi.org/10.1061/9780784479858.008,
63–72, 2016.
Chen, D., Dai, A., and Hall, A.: The Convective-To-Total Precipitation Ratio
and the “Drizzling” Bias in Climate Models, J. Geophys.
Res.-Atmos., 126, e2020JD034198,
https://doi.org/10.1029/2020JD034198, 2021.
Coles, S.: An Introduction to Statistical Modeling of Extreme Values,
Springer, London, UK,
https://doi.org/10.1007/978-1-4471-3675-0, 2001.
Colón-González, F. J., Sewe, M. O., Tompkins, A. M., Sjödin, H.,
Casallas, A., Rocklöv, J., Caminade, C., and Lowe, R.: Projecting the
risk of mosquito-borne diseases in a warmer and more populated world: a
multi-model, multi-scenario intercomparison modelling study,
Lancet Planetary Health, 5, e404-e414,
https://doi.org/10.1016/S2542-5196(21)00132-7, 2021.
Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., and Buontempo, C.: WFDE5: bias-adjusted ERA5 reanalysis data for impact studies, Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, 2020.
Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., Cagnazzo, C., and Buontempo, C.: Near surface meteorological variables from 1979 to 2019 derived from bias-corrected reanalysis, version 2.1, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.20d54e34, 2022.
Dai, A. and Trenberth, K. E.: The Diurnal Cycle and Its Depiction in the
Community Climate System Model, J. Climate, 17, 930–951,
https://doi.org/10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2, 2004.
Debele, B., Srinivasan, R., and Yves Parlange, J.: Accuracy evaluation of
weather data generation and disaggregation methods at finer timescales,
Adv. Water Resour., 30, 1286–1300,
https://doi.org/10.1016/j.advwatres.2006.11.009, 2007.
Degife, A. W., Zabel, F., and Mauser, W.: Climate change impacts on
potential maize yields in Gambella region, Ethiopia,
Reg. Environ. Change, 21, 12, https://doi.org/10.1007/s10113-021-01773-3, 2021.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Förster, K., Hanzer, F., Winter, B., Marke, T., and Strasser, U.: An open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST v0.1.1), Geosci. Model Dev., 9, 2315–2333, https://doi.org/10.5194/gmd-9-2315-2016, 2016.
Franke, J. A., Müller, C., Minoli, S., Elliott, J., Folberth, C.,
Gardner, C., Hank, T., Izaurralde, R. C., Jägermeyr, J., Jones, C. D.,
Liu, W., Olin, S., Pugh, T. A. M., Ruane, A. C., Stephens, H., Zabel, F.,
and Moyer, E. J.: Agricultural breadbaskets shift poleward given adaptive
farmer behavior under climate change, Glob. Change Biol., 28, 167–181,
https://doi.org/10.1111/gcb.15868, 2022.
Golub, M., Thiery, W., Marcé, R., Pierson, D., Vanderkelen, I., Mercado-Bettin, D., Woolway, R. I., Grant, L., Jennings, E., Kraemer, B. M., Schewe, J., Zhao, F., Frieler, K., Mengel, M., Bogomolov, V. Y., Bouffard, D., Côté, M., Couture, R.-M., Debolskiy, A. V., Droppers, B., Gal, G., Guo, M., Janssen, A. B. G., Kirillin, G., Ladwig, R., Magee, M., Moore, T., Perroud, M., Piccolroaz, S., Raaman Vinnaa, L., Schmid, M., Shatwell, T., Stepanenko, V. M., Tan, Z., Woodward, B., Yao, H., Adrian, R., Allan, M., Anneville, O., Arvola, L., Atkins, K., Boegman, L., Carey, C., Christianson, K., de Eyto, E., DeGasperi, C., Grechushnikova, M., Hejzlar, J., Joehnk, K., Jones, I. D., Laas, A., Mackay, E. B., Mammarella, I., Markensten, H., McBride, C., Özkundakci, D., Potes, M., Rinke, K., Robertson, D., Rusak, J. A., Salgado, R., van der Linden, L., Verburg, P., Wain, D., Ward, N. K., Wollrab, S., and Zdorovennova, G.: A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector, Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, 2022.
Görner, C., Franke, J., Kronenberg, R., Hellmuth, O., and Bernhofer, C.:
Multivariate non-parametric Euclidean distance model for hourly
disaggregation of daily climate data, Theor. Appl. Climatol.,
143, 241–265, https://doi.org/10.1007/s00704-020-03426-7, 2021.
Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J.,
Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A., Fuchs, K.,
Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T., Jain, A. K., Kelly,
D., Khabarov, N., Lange, S., Lin, T.-S., Liu, W., Mialyk, O., Minoli, S.,
Moyer, E. J., Okada, M., Phillips, M., Porter, C., Rabin, S. S., Scheer, C.,
Schneider, J. M., Schyns, J. F., Skalsky, R., Smerald, A., Stella, T.,
Stephens, H., Webber, H., Zabel, F., and Rosenzweig, C.: Climate impacts on
global agriculture emerge earlier in new generation of climate and crop
models, Nature Food, 2, 873–885, https://doi.org/10.1038/s43016-021-00400-y,
2021.
Juckes, M., Taylor, K. E., Durack, P. J., Lawrence, B., Mizielinski, M. S., Pamment, A., Peterschmitt, J.-Y., Rixen, M., and Sénési, S.: The CMIP6 Data Request (DREQ, version 01.00.31), Geosci. Model Dev., 13, 201–224, https://doi.org/10.5194/gmd-13-201-2020, 2020.
Kumar, D., Mishra, V., and Ganguly, A. R.: Evaluating wind extremes in CMIP5
climate models, Clim. Dynam., 45, 441–453,
https://doi.org/10.1007/s00382-014-2306-2, 2015.
Kunstmann, H. and Stadler, C.: High resolution distributed
atmospheric-hydrological modelling for Alpine catchments, J.
Hydrol., 314, 105–124, https://doi.org/10.1016/j.jhydrol.2005.03.033,
2005.
Lange, S.: Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0), Geosci. Model Dev., 12, 3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019.
Lange, S. and Büchner, M.: ISIMIP3b bias-adjusted atmospheric climate input data (v1.1), ISIMIP Repository [data set], https://doi.org/10.48364/ISIMIP.842396.1, 2021.
Li, X., Meshgi, A., Wang, X., Zhang, J., Tay, S. H. X., Pijcke, G., Manocha,
N., Ong, M., Nguyen, M. T., and Babovic, V.: Three resampling approaches
based on method of fragments for daily-to-subdaily precipitation
disaggregation, Int. J. Climatol., 38, e1119–e1138,
https://doi.org/10.1002/joc.5438, 2018.
Liston, G. E. and Elder, K.: A Meteorological Distribution System for
High-Resolution Terrestrial Modeling (MicroMet), J.
Hydrometeorol., 7, 217–234, https://doi.org/10.1175/jhm486.1, 2006.
Liu, C., Ikeda, K., Thompson, G., Rasmussen, R., and Dudhia, J.:
High-Resolution Simulations of Wintertime Precipitation in the Colorado
Headwaters Region: Sensitivity to Physics Parameterizations, Mon. Weather
Rev., 139, 3533–3553, https://doi.org/10.1175/MWR-D-11-00009.1, 2011.
Lüttgau, J. and Kunkel, J.: Cost and Performance Modeling for Earth System
Data Management and Beyond, in: High Performance Computing, edited by: Yokota, R., Weiland, M., Shalf, J., and Alam, S., ISC High Performance 2018, Lecture Notes
in Computer Science, Springer, Cham, 11203, https://doi.org/10.1007/978-3-030-02465-9_2, 2018.
Mengel, M., Treu, S., Lange, S., and Frieler, K.: ATTRICI v1.1 – counterfactual climate for impact attribution, Geosci. Model Dev., 14, 5269–5284, https://doi.org/10.5194/gmd-14-5269-2021, 2021.
Meredith, E., Ulbrich, U., Rust, H. W., and Truhetz, H.: Present and future
diurnal hourly precipitation in 0.11∘ EURO-CORDEX models and at
convection-permitting resolution, Environ. Res. Commun., 3,
055002, https://doi.org/10.1088/2515-7620/abf15e, 2021.
Mezghani, A. and Hingray, B.: A combined downscaling-disaggregation weather
generator for stochastic generation of multisite hourly weather variables
over complex terrain: Development and multi-scale validation for the Upper
Rhone River basin, J. Hydrol., 377, 245–260,
https://doi.org/10.1016/j.jhydrol.2009.08.033, 2009.
Minoli, S., Jägermeyr, J., Asseng, S., Urfels, A., and Müller, C.:
Global crop yields can be lifted by timely adaptation of growing periods to
climate change, Nat. Commun., 13, 7079,
https://doi.org/10.1038/s41467-022-34411-5, 2022.
Orlov, A., Daloz, A. S., Sillmann, J., Thiery, W., Douzal, C., Lejeune, Q.,
and Schleussner, C.: Global Economic Responses to Heat Stress Impacts on
Worker Productivity in Crop Production, Economics of Disasters and Climate
Change, 5, 367–390, https://doi.org/10.1007/s41885-021-00091-6, 2021.
Orlov, A., et al.: Human heat stress could offset economic benefits of the
CO2 fertilisation effect in crop production, Nat. Commun., under
review, 2023.
Papalexiou, S. M., Markonis, Y., Lombardo, F., AghaKouchak, A., and
Foufoula-Georgiou, E.: Precise Temporal Disaggregation Preserving Marginals
and Correlations (DiPMaC) for Stationary and Nonstationary Processes, Water
Resour. Res., 54, 7435–7458, https://doi.org/10.1029/2018WR022726,
2018.
Park, H. and Chung, G.: A Nonparametric Stochastic Approach for
Disaggregation of Daily to Hourly Rainfall Using 3-Day Rainfall Patterns,
Water, 12, 2306, https://doi.org/10.3390/w12082306, 2020.
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000–Global monthly
irrigated and rainfed crop areas around the year 2000: A new high-resolution
data set for agricultural and hydrological modeling, Global Biogeochem.
Cy., 24, GB1011, https://doi.org/10.1029/2008GB003435, 2010.
Poschlod, B.: Using high-resolution regional climate models to estimate return levels of daily extreme precipitation over Bavaria, Nat. Hazards Earth Syst. Sci., 21, 3573–3598, https://doi.org/10.5194/nhess-21-3573-2021, 2021.
Poschlod, B.: Attributing heavy rainfall event in Berchtesgadener Land to
recent climate change – Further rainfall intensification projected for the
future, Weather and Climate Extremes, 38, 100492,
https://doi.org/10.1016/j.wace.2022.100492, 2022.
Poschlod, B. and Ludwig, R.: Internal variability and temperature scaling of
future sub-daily rainfall return levels over Europe, Environ. Res.
Lett., 16, 064097, https://doi.org/10.1088/1748-9326/ac0849, 2021.
Poschlod, B., Hodnebrog, Ø., Wood, R. R., Alterskjær, K., Ludwig, R.,
Myhre, G., and Sillmann, J.: Comparison and Evaluation of Statistical
Rainfall Disaggregation and High-Resolution Dynamical Downscaling over
Complex Terrain, J. Hydrometeorol., 19, 1973–1982,
https://doi.org/10.1175/jhm-d-18-0132.1, 2018.
Poschlod, B., Ludwig, R., and Sillmann, J.: Ten-year return levels of sub-daily extreme precipitation over Europe, Earth Syst. Sci. Data, 13, 983–1003, https://doi.org/10.5194/essd-13-983-2021, 2021.
Pui, A., Sharma, A., Mehrotra, R., Sivakumar, B., and Jeremiah, E.: A
comparison of alternatives for daily to sub-daily rainfall disaggregation,
J. Hydrol., 470, 138–157, https://doi.org/10.1016/j.jhydrol.2012.08.041,
2012.
Reed, C., Anderson, W., Kruczkiewicz, A., Nakamura, J., Gallo, D., Seager,
R., and McDermid, S. S.: The impact of flooding on food security across
Africa, P. Natl. Acad. Sci. USA, 119, e2119399119,
https://doi.org/10.1073/pnas.2119399119, 2022.
Sharma, A. and Srikanthan, S.: Continuous Rainfall Simulation: A
Nonparametric Alternative, in: 30th Hydrology & Water Resources
Symposium: Past, Present & Future, 4–7 December 2006, Launceston,
Tasmania, p. 86, 2006.
Stephens, A. M.: Tests based on EDF statistics, in: Goodness-of-fit techniques, edited by: D'Agostino, R. B. and
Stephens, M. A., Marcel Dekker, New York, 1986.
Sun, Y., Solomon, S., Dai, A., and Portmann, R. W.: How Often Does It Rain?,
J. Climate, 19, 916–934, https://doi.org/10.1175/jcli3672.1, 2006.
Tittensor, D. P., Novaglio, C., Harrison, C. S., Heneghan, R. F., Barrier,
N., Bianchi, D., Bopp, L., Bryndum-Buchholz, A., Britten, G. L.,
Büchner, M., Cheung, W. W. L., Christensen, V., Coll, M., Dunne, J. P.,
Eddy, T. D., Everett, J. D., Fernandes-Salvador, J. A., Fulton, E. A.,
Galbraith, E. D., Gascuel, D., Guiet, J., John, J. G., Link, J. S., Lotze,
H. K., Maury, O., Ortega-Cisneros, K., Palacios-Abrantes, J., Petrik, C. M.,
du Pontavice, H., Rault, J., Richardson, A. J., Shannon, L., Shin, Y.-J.,
Steenbeek, J., Stock, C. A., and Blanchard, J. L.: Next-generation ensemble
projections reveal higher climate risks for marine ecosystems, Nat. Clim.
Change, 11, 973–981, https://doi.org/10.1038/s41558-021-01173-9, 2021.
Trinanes, J. and Martinez-Urtaza, J.: Future scenarios of risk of Vibrio
infections in a warming planet: a global mapping study, Lancet Planetary
Health, 5, e426–e435, https://doi.org/10.1016/S2542-5196(21)00169-8, 2021.
Verfaillie, D., Déqué, M., Morin, S., and Lafaysse, M.: The method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface models, Geosci. Model Dev., 10, 4257–4283, https://doi.org/10.5194/gmd-10-4257-2017, 2017.
Vormoor, K. and Skaugen, T.: Temporal Disaggregation of Daily Temperature
and Precipitation Grid Data for Norway, J. Hydrometeorol., 14,
989–999, https://doi.org/10.1175/jhm-d-12-0139.1, 2013.
Wang, K. and Clow, G. D.: The Diurnal Temperature Range in CMIP6 Models:
Climatology, Variability, and Evolution, J. Climate, 33, 8261–8279,
https://doi.org/10.1175/jcli-d-19-0897.1, 2020.
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and
Schewe, J.: The Inter-Sectoral Impact Model Intercomparison Project
(ISI–MIP): Project framework, P. Natl. Acad.
Sci. USA, 111, 3228–3232, https://doi.org/10.1073/pnas.1312330110, 2014.
Watters, D., Battaglia, A., and Allan, R.: The Diurnal Cycle of
Precipitation according to Multiple Decades of Global Satellite
Observations, Three CMIP6 Models, and the ECMWF Reanalysis, J.
Climate, 34, 5063–5080, https://doi.org/10.1175/JCLI-D-20-0966.1, 2021.
Wehner, M., Lee, J., Risser, M., Ullrich, P., Gleckler, P., and Collins, W.
D.: Evaluation of extreme sub-daily precipitation in high-resolution global
climate model simulations, Philos. T. Roy. Soc.
A, 379, 20190545,
https://doi.org/10.1098/rsta.2019.0545, 2021.
Zabel, F. and Mauser, W.: 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5, Hydrol. Earth Syst. Sci., 17, 1705–1714, https://doi.org/10.5194/hess-17-1705-2013, 2013.
Zabel, F. and Poschlod, B.: Teddy tool v1.1: Temporal Disaggregation of Daily Climate Model Data (1.1), Zenodo [code], https://doi.org/10.5281/zenodo.8124111, 2023.
Zabel, F., Mauser, W., Marke, T., Pfeiffer, A., Zängl, G., and Wastl, C.: Inter-comparison of two land-surface models applied at different scales and their feedbacks while coupled with a regional climate model, Hydrol. Earth Syst. Sci., 16, 1017–1031, https://doi.org/10.5194/hess-16-1017-2012, 2012.
Zabel, F., Müller, C., Elliott, J., Minoli, S., Jägermeyr, J.,
Schneider, J. M., Franke, J. A., Moyer, E., Dury, M., Francois, L.,
Folberth, C., Liu, W., Pugh, T. A. M., Olin, S., Rabin, S. S., Mauser, W.,
Hank, T., Ruane, A. C., and Asseng, S.: Large potential for crop production
adaptation depends on available future varieties, Glob. Change Biol., 27,
3870–3882 https://doi.org/10.1111/gcb.15649, 2021.
Zhao, W., Kinouchi, T., and Nguyen, H. Q.: A framework for projecting future
intensity-duration-frequency (IDF) curves based on CORDEX Southeast Asia
multi-model simulations: An application for two cities in Southern Vietnam,
J. Hydrol., 598, 126461,
https://doi.org/10.1016/j.jhydrol.2021.126461, 2021.
Short summary
Today, most climate model data are provided at daily time steps. However, more and more models from different sectors, such as energy, water, agriculture, and health, require climate information at a sub-daily temporal resolution for a more robust and reliable climate impact assessment. Here we describe and validate the Teddy tool, a new model for the temporal disaggregation of daily climate model data for climate impact analysis.
Today, most climate model data are provided at daily time steps. However, more and more models...