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Abstract. Climate models provide the required input data
for global or regional climate impact analysis in temporally
aggregated form, often in daily resolution to save space on
data servers. Today, many impact models work with daily
data; however, sub-daily climate information is becoming in-
creasingly important for more and more models from differ-
ent sectors, such as the agricultural, water, and energy sec-
tors. Therefore, the open-source Teddy tool (temporal dis-
aggregation of daily climate model data) has been devel-
oped to disaggregate (temporally downscale) daily climate
data to sub-daily hourly values. Here, we describe and val-
idate the temporal disaggregation, which is based on the
choice of daily climate analogues. In this study, we ap-
ply the Teddy tool to disaggregate bias-corrected climate
model data from the Coupled Model Intercomparison Project
Phase 6 (CMIP6). We choose to disaggregate temperature,
precipitation, humidity, longwave radiation, shortwave ra-
diation, surface pressure, and wind speed. As a reference,
globally available bias-corrected hourly reanalysis WFDE5
(WATCH Forcing Data methodology applied to ERA5) data
from 1980–2019 are used to take specific local and seasonal
features of the empirical diurnal profiles into account. For
a given location and day within the climate model data, the
Teddy tool screens the reference data set to find the most sim-
ilar meteorological day based on rank statistics. The diurnal
profile of the reference data is then applied on the climate
model. The physical dependency between variables is pre-
served, since the diurnal profile of all variables is taken from
the same, most similar meteorological day of the historical
reanalysis dataset. Mass and energy are strictly preserved by

the Teddy tool to exactly reproduce the daily values from the
climate models.

For evaluation, we aggregate the hourly WFDE5 data to
daily values and apply the Teddy tool for disaggregation.
Thereby, we compare the original hourly data with the data
disaggregated by Teddy. We perform a sensitivity analysis
of different time window sizes used for finding the most
similar meteorological day in the past. In addition, we per-
form a cross-validation and autocorrelation analysis for 30
globally distributed samples around the world that represent
different climate zones. The validation shows that Teddy is
able to reproduce historical diurnal courses with high correla-
tions > 0.9 for all variables, except for wind speed (> 0.75)
and precipitation (> 0.5). We discuss the limitations of the
method regarding the reproduction of precipitation extremes,
interday connectivity, and disaggregation of end-of-century
projections with strong warming. Depending on the use case,
sub-daily data provided by the Teddy tool could make cli-
mate impact assessments more robust and reliable.

1 Introduction

Sub-daily climate data are becoming increasingly important
in climate impact analysis. This type of data, which captures
variations in temperature, precipitation, and other weather
variables at intervals of less than a day, can provide a more
detailed representation of local and regional climate condi-
tions and temporal variations. This information can be cru-
cial for evaluating the impacts of climate change on various
sectors, such as agriculture, water resources, energy produc-
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Table 1. Variables and units of used hourly (h) and daily (d) climate data and the Teddy output. For WFDE5, the specific variable name is
provided in parentheses. WFDE5 variables have instantaneous values, while SWdown, LWdown, Rainf, and Snowf have average values over
the next hour at each time step.

Variable WFDE5 (h) ISIMIP climate model (d) Teddy (flexible)

Air temperature (tas) K (Tair) K K
tasmin – K –
tasmax – K –
Humidity (hurs/huss) kg/kg (Qair) % %
Shortwave radiation (rsds) W m−2 (SWdown) W m−2 W m−2

Longwave radiation (rlds) W m−2 (LWdown) W m−2 W m−2

Precipitation (pr) kg m−2 s−1 (Rainf+Snowf) kg m−2 s−1 mm per time step
Air pressure (ps) Pa (PSurf) Pa hPa
Wind speed (sfcwind) m s−1 (Wind) m s−1 m s−1

Figure 1. Procedure to identify the most similar meteorological day in the population of WFDE5 reference data for the default day of year
(DOY) window of ±11 d around the actual DOY. Daily values refer to the daily sum for precipitation and daily mean values for all other
variables.

tion, and human health (Golub et al., 2022; Trinanes and
Martinez-Urtaza, 2021; Colón-González et al., 2021; Titten-
sor et al., 2021; Byers et al., 2018; Jägermeyr et al., 2021;
Poschlod and Ludwig, 2021; Degife et al., 2021). A better

representation of the diurnal course of temperature, extreme
precipitation events, and other weather variables is also im-
portant for adaptation assessments which depend on behav-
ior or processes with high temporal dynamics, such as the
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Figure 2. Distribution of 30 global samples used for the cross-validation on (a) annual total harvested area of rainfed and irrigated crops in
hectare per pixel on a 30 arcmin grid (Portmann et al., 2010) and (b) for Köppen–Geiger climate zones calculated for 1980–2019 WFDE5
temperature and precipitation values (Beck et al., 2018). Samples are ordered by climate zone affiliation and their distance to the Equator.

energy demand, labor activity, the heat stress of crops, or
flood events (Minoli et al., 2022; Zabel et al., 2021; Reed
et al., 2022; Orlov et al., 2021; Franke et al., 2022; Poschlod,
2022). Research has shown that using sub-daily climate data
can result in more robust and reliable impact assessments
when compared to using daily data (Orlov et al., 2023).

Today, most climate model data are available for down-
load at a daily resolution because of the high storage require-
ments for sub-daily climate data (Juckes et al., 2020). How-
ever, the demand for sub-daily data is increasing, with future
developments in data management expected to handle this
demand with decreasing costs for storage and computing re-
sources (Lüttgau and Kunkel, 2018). Different methods ex-
ist to disaggregate available daily climate data to sub-daily,
most often hourly, values. These can be roughly divided into
statistical methods, weather generators, and mechanistic ap-

proaches, although mixed forms also exist (Förster et al.,
2016).

Mechanistic methods use regional climate models to dy-
namically downscale atmospheric conditions in time and
space, usually for a limited area (Vormoor and Skaugen,
2013; Liu et al., 2011; Kunstmann and Stadler, 2005).
Weather generators generate synthetic sequences of hourly
weather variables by using random number generators that
match statistics (Ailliot et al., 2015; Mezghani and Hingray,
2009). Various statistical methods exist for temporal dis-
aggregation of daily climate data, ranging from simple in-
terpolations or deterministic approaches to non-parametric
approaches and methods that derive statistical relationships
from historical data or look for climate analogues (Bennett
et al., 2020; Breinl and Di Baldassarre, 2019; Chen, 2016;
Debele et al., 2007; Förster et al., 2016; Görner et al., 2021;
Liston and Elder, 2006; Park and Chung, 2020; Verfaillie et
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Figure 3. Time series for all variables comparing daily climate model data, using disaggregated hourly results of Teddy from the performed
cross-validation and the original hourly WFDE5 data, shown for sample location 16 in Ethiopia with a DOY window size of seven for the
10 d period of 29 June–8 July 2010. The Pearson correlation coefficient (R), the Nash–Sutcliffe model efficiency coefficient (NSE), the root
mean squared error (RMSE), and the mean absolute error (MAE) are displayed for the shown time period for each variable.

al., 2017; Poschlod et al., 2018; Zhao et al., 2021). Each of
these methods has its own advantages and limitations, and
the choice of method depends on factors such as the specific
needs of the impact assessment, the quality of the available
data, and the computational resources.

Here, we introduce the Teddy tool (temporal disaggre-
gation of daily climate model data), which uses statistical
methods for temporal disaggregation of daily climate model
data. Existing statistical approaches are often only valid for
a specific location and cannot be applied globally. In addi-
tion, available disaggregation tools often focus on only one
variable (e.g., Pui et al., 2012) and therefore do not consider
physical interdependencies between different variables, such
as precipitation, humidity, temperature, and radiation. Teddy
has been specifically developed as a globally applicable tool
for climate impact studies. For this purpose, Teddy strictly
preserves the mass and energy of daily climate model data

for each variable throughout the disaggregation procedure.
Teddy additionally aims at taking regional and seasonal cli-
mate characteristics into account and considers the physical
consistency between variables.

Teddy represents an easy-to-use tool that can be applied
for climate impact assessments in different sectors that allow
a physically consistent temporal disaggregation of daily cli-
mate model data. The Teddy tool has been written in MAT-
LAB and is available as open-source code via Zenodo (see
the Code availability section at the end of the paper ).

2 Data and data requirements

In principle, the Teddy tool can be used with any climate
input but has specifically been developed to be used with
daily climate data for historical time periods and future sce-
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Figure 4. Hourly values for the year 2010 between disaggregated values generated by the Teddy tool and the original WFDE5 data used for
the cross-validation, exemplarily for sample location 16 in Ethiopia with a DOY window size of seven. The Pearson correlation coefficient
(R), the Nash–Sutcliffe model efficiency coefficient (NSE), the root mean squared error (RMSE), and the mean absolute error (MAE) are
displayed for each variable.

narios from the Inter-Sectoral Impact Model Intercomparison
Project (ISIMIP). ISIMIP offers a framework for consistently
projecting the impacts of climate change across affected sec-
tors and spatial scales (Warszawski et al., 2014). To guaran-
tee cross-sectoral consistency in ISIMIP, all sectors are pro-
vided with the same climate data for historical (1850–2014)
and future time periods (2015–2100) for different scenar-
ios (SSP126, SSP370, and SSP585). ISIMIP provides bias-
corrected climate model data from the Coupled Model In-

tercomparison Project Phase 6 (CMIP6; Eyring et al., 2016)
and trend-preserving reanalysis climate data (Lange, 2019).
Within ISIMIP, some modeling communities from different
sectors have expressed their need for sub-daily climate data,
including the agricultural and the energy sectors.

Daily bias-corrected climate model data are provided
by ISIMIP at 0.5◦ spatial resolution for air temperature
(tas), humidity (hurs), shortwave radiation (rsds), longwave
radiation (rlds), air pressure (ps), wind speed (sfcwind),
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Figure 5. Pearson correlation coefficient between disaggregated hourly values generated by the Teddy tool and the original WFDE5 data
used for the cross-validation for different DOY window sizes averaged over all 30 samples for the year 2010 for all variables. The scaling of
the color bar differs between variables.

and precipitation (pr; Lange, 2019; Lange and Büchner,
2021). For air temperature, the daily maximum (tasmax)
and minimum (tasmin) values are additionally provided.
ISIMIP provides CMIP6 data for the climate models GFDL-
ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0,
and UKESM1-0-LL.

Teddy requires hourly climate data as a reference for tem-
poral disaggregation. Therefore, we use the WFDE5 dataset,
which has been generated using the WATCH Forcing Data
(WFD) methodology applied to ERA5 reanalysis data (Cuc-
chi et al., 2020). The bias-adjusted hourly WFDE5 data are
globally available for the time period between 1979 and 2019
at 0.5◦ spatial resolution (Cucchi et al., 2022). It is consistent
with the bias-adjustment procedure within ISIMIP (Lange,
2019) and thus provides a consistent hourly reference data
for Teddy. Table 1 gives an overview of the available vari-
ables and the required datasets at their temporal resolution.
The temporal resolution of the Teddy output is adjustable by
the user and can be set to 1, 2, 3, 4, 6, 8, or 12 h values.

3 Methods

Teddy uses an empirical approach, which (1) selects the
“most similar meteorological day” for the daily climate
model data (here ISIMIP CMIP6 data) within the reference
climate data (here WFDE5) at the same location. (2) Teddy
applies the location-specific diurnal course to each variable
of the daily climate model data for a day of interest. In the
following, the procedure is explained in detail, where the ex-

ample case of ISIMIP climate data and WFDE5 reference
data is used for further illustration.

In a first precalculation step, in order to minimize com-
putational resources, hourly WFDE5 data are aggregated to
daily values and stored as NetCDF files. The daily aggrega-
tion uses mean values for all variables and daily sums for
precipitation. In addition, rainfall and snowfall fluxes must
be summed up for WFDE5. Daily maximum and minimum
temperature are calculated from the hourly data. Units of cli-
mate inputs are converted to match the Teddy output (see
Table 1). For the conversion of specific humidity to relative
humidity, the Buck equation is applied (Buck, 1981). After
reading the daily climate model data for the selected location
(latitude and longitude) that determines a specific grid cell at
0.5◦ resolution, the daily mean values of all ISIMIP variables
(see Table 1) are compared to the aggregated daily values of
WFDE5 for a specific time step in order to identify the most
similar meteorological day. For the comparison, a day-of-
year (DOY) window can be selected by the user that allows
for a selection of days around the DOY of the actual time
step. By default, the DOY window size is set to 11, which
means a sequence of ±11 d around the actual DOY. As a re-
sult, 23 d are selected from each of the 40 WFDE5 reference
years (1980–2019). These 920 d now serve as the statistical
population for further calculations (Fig. 1). In a next step, the
climate model day of interest and the statistical population of
920 WFDE5 days are classified according to their precipita-
tion state (wet or dry). As climate models tend to produce
too many days with low-intensity precipitation called “driz-
zle bias” (Chen et al., 2021), days with aggregated daily pre-
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cipitation values below 1 mm per day are considered to be dry
days (Sun et al., 2006). Depending on the precipitation state
of the previous day, the day of interest, and the following
day, there are eight classes, namely dry–dry–dry, dry–dry–
wet, wet–dry–dry, wet–dry–wet, dry–wet–dry, dry–wet–wet,
wet–wet–dry, and wet–wet–wet. This step is included to bet-
ter reproduce the interday connectivity of precipitation (Li
et al., 2018). Only days with the same precipitation class as
the climate model day of interest are selected for the further
course. Next, the absolute error (AE) between the daily cli-
mate model and aggregated daily WFDE5 data for each vari-
able is calculated for the remaining statistical population and
ranked in ascending order. The ranking approach is chosen,
since the absolute or relative errors of the different meteo-
rological variables cannot be compared to each other. The
ranks are cumulated with equal weight over all variables for
each day of the statistical population. In this context, we de-
fine the most similar meteorological day as the day with the
minimum sum of ranks (Fig. 1). Thus, the most similar me-
teorological day refers to the statistically derived similarity
of all available daily near-surface meteorological variables at
a given location and time. The approach works under the as-
sumption that similar daily values would have a similar sub-
daily profile (Li et al., 2018; Pui et al., 2012; Sharma and
Srikanthan, 2006). Finally, the hourly values are taken from
the most similar meteorological day of the WFDE5 reference
dataset for each variable and are divided by the WFDE5 daily
mean (sum for precipitation) value of the selected day, in or-
der to refer to relative diurnal profiles without absolute vari-
ations (Fig. 1). The hourly profile is then applied for each
variable to the daily mean (sum for precipitation) value from
the climate model. Thus, the daily mean value (sum for pre-
cipitation) of the climate model is conserved and reproduced
by the disaggregated values.

For temperature, the resulting hourly temperature is fur-
ther scaled between the provided minimum and maximum.
The scaling is performed in a way that the daily mean value
is preserved with an accuracy of four decimals. Relative hu-
midity is limited to 100 %, thus considering the preservation
of the daily mean value.

On the one hand, large selected DOY windows increase
the statistical population, but on the other hand, they might
distort climatic characteristics with a strong seasonal course
such as shortwave radiation values for the actual DOY.
Therefore, we preprocessed hourly potential (cloud-free) so-
lar radiation for each DOY globally at 0.5◦ spatial resolution.
These data are used as an upper bound to limit the result-
ing hourly values for the corresponding DOY, while the daily
mean value is preserved.

In a final step, the hourly values are aggregated to the tem-
poral resolution, as set by the user.

In rare cases, precipitation cannot be distributed, due to
no precipitation being present in the reference data. This can
happen in dry deserts, where 40 years of WFDE5 data show
no precipitation record within the range of the moving DOY

Figure 6. Pearson correlation coefficient between disaggregated
hourly values generated by the Teddy tool and the original WFDE5
data used for the cross-validation for different DOY window sizes
averaged over the samples for each Köppen–Geiger climate zone
(A is tropical, B is arid, C is temperate, and D is continental).

window (Fig. S1 in the Supplement shows a map indicat-
ing where this is the case). To handle this exception, several
options are implemented. First, the DOY window is auto-
matically expanded to ±50 d around the actual DOY in or-
der to increase the statistical population and thus the prob-
ability of including a precipitation event. If still no precip-
itation event is found in the reference, then a linear regres-
sion between the precipitation amount and the precipitation
duration is performed for the specific location across the en-
tire available data spectrum. The linear regression determines
the usual duration of the selected precipitation event. Subse-
quently, an hour is randomly selected for the start of the pre-
cipitation event. A goal of Teddy was to consider the phys-
ical consistency of intervariable relationships. Precipitation
generally affects other climate variables (e.g., humidity, ra-
diation, and temperature; Meredith et al., 2021). During the
night, physical interdependencies between precipitation and
other variables are generally lower because radiation is not
affected and less energy is available to affect other variables.
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Figure 7. Pearson correlation coefficient between disaggregated hourly values generated by the Teddy tool and the original WFDE5 data
used for the cross-validation for different DOY window sizes averaged over the samples for the four seasons. The Northern Hemisphere
spring is March, April, and May (MAM); summer is June, July, and August (JJA); autumn is September, October, and November (SON); and
winter is December, January and February (DJF). The Southern Hemisphere spring is SON, summer is DJF, autumn is MAM, and winter
is JJA. The heatmap is averaged over the samples for each Köppen–Geiger climate zone (A is tropical, B is arid, C is temperate, and D is
continental).
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Figure 8. Extended validation statistics for the sensitivity analysis of the DOY window size for the year 2010. The difference in autocorrela-
tion refers to the average over all 30 samples and lag durations between one and 24 h. Wet hours are defined as precipitation intensities above
0.1 mm h−1, and low wind speeds refer to hours with sfcwind < 2.5 m s−1.

This might have an effect for impact models because, as an
example, evapotranspiration might be unrealistically high if
precipitation occurs at the same time as when there is full
solar irradiation during noon. In order to reduce possible in-
consistencies with other variables that could lead to implica-
tions in impact models, the precipitation is only distributed to
hours at nighttime. Alternatively, we implemented the option
for the user to write not a number (NaN) values instead.

Drizzle precipitation (values below 1 mm d−1) is also dis-
aggregated to sub-daily values in order to ensure mass and
energy conservation. If no historical precipitation event is
found for this case, then precipitation noise is again randomly
distributed to an hour at nighttime. If no hour without radi-
ation occurs (e.g., high latitudes in northern summer), then
the precipitation is distributed to local midnight.

The calculation procedure can be performed either for uni-
versal time (UT) or for local solar time (LST). The latter di-
vides the world into equal time zones of 15◦, with the central
time zone (±7.5◦) at Greenwich.

4 Results

In a first step, Teddy is applied for 30 globally distributed
samples (Fig. 2) for the year 2010. To be able to validate the
results, we perform a cross-validation. Therefore, WFDE5
data for 2010 aggregated to daily values serve as an input for

Teddy. The same year is excluded from the statistical popu-
lation during the cross-validation. As a result, it can be tested
to see how well WFDE5 hourly values for the year 2010
are reproduced with the statistical population of the other
39 years. The 30 samples are chosen to represent globally
relevant agricultural production regions in different climate
zones (Fig. 2). To evaluate the sensitivity of the different
DOY window sizes, we run the cross-validation with differ-
ent DOY window sizes, ranging from 1 to 25, in steps of
two, including the option to disable the DOY window (DOY
window size = 0). In order to additionally validate the per-
formance for extreme events, we perform a second cross-
validation for all available 40 years (1980–2019), with DOY
window sizes of 11 for sample location 29, which is located
in southern Germany.

4.1 Validation

As an example, for sample location 16 in Ethiopia, Fig. 3
shows the results of the temporal disaggregation series for
the cross-validation for a 10 d time series in 2010 in com-
parison with the daily climate input and the original hourly
WFDE5 data. The hourly courses show high correlations for
the randomly selected time series for all variables, except for
precipitation (Fig. 3 and scatterplots in Fig. 4 for the entire
year; Figs. S2 and S3 alternatively show sample location 22
in China).
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Figure 9. Pearson correlation coefficient between disaggregated hourly values generated by the Teddy tool and the original WFDE5 data
used for the cross-validation for each year from 1980 to 2019 for sample location 29 and a DOY window size of 11 d. The scaling of the
color bar differs between variables.

4.2 Sensitivity analysis DOY window size

The sensitivity analysis averaged over all 30 samples shows
that the Pearson correlation coefficient of hourly values for
the year 2010 shows high correlations for all variables (r >

0.9), except wind speed (r > 0.7) and precipitation (r > 0.4),
which are generally more difficult to disaggregate (Fig. 5;

in the Supplement, Fig. S4 additionally shows the Nash–
Sutcliffe model efficiency coefficient). The selected DOY
window size has an effect on the quality of the results. While
no DOY window (size = 0) results in the lowest correlation
coefficient across all variables, the DOY window size does
significantly affect the correlation for precipitation and wind
speed (Fig. 5).

Geosci. Model Dev., 16, 5383–5399, 2023 https://doi.org/10.5194/gmd-16-5383-2023
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Figure 10. Number of wet hours per month for sample location 29
in Germany. Solid lines show the median over 40 years, whereas the
dashed lines denote the inner 90 % of the 40-year period. MAE and
RMSE are calculated separately for every year and averaged over
40 years.

For precipitation, the impact of the DOY window size on
the correlation varies between regions. Larger DOY windows
are mainly beneficial for precipitation in arid regions, while
showing lower increases in correlation in regions with pro-
nounced seasons (Fig. 6). The results also show that the cor-
relation for precipitation is generally larger in tropical re-
gions than in continental regions.

While hourly precipitation can be best reproduced for win-
ter seasons in continental and arid regions, winter seasons
show the lowest correlation for temperate regions. Tropical
regions only show relatively low variations over the year,
and these are independent of the selected DOY window size
(Fig. 7). Especially in arid regions, the length of the DOY
window size affects the results differently in different sea-
sons. Here, larger DOY windows decrease the correlation
during the rainy season (winter and spring), while correlation
is increased during the dry season (summer and autumn).

Furthermore, we evaluate the sensitivity of the DOY win-
dow size to the reproduction of temporal autocorrelation
(Fig. 8). Therefore, the autocorrelation over lag times be-
tween 1 and 24 h is calculated for precipitation and wind
speed. Autocorrelation refers to the similarity of a time se-
ries to a lag-duration-shifted version of the same time series.
This allows sub-daily patterns and interhour connectivity to
be statistically captured and validated in time series of pre-
cipitation and wind speed. In addition, we also check the re-
production of wet hours (precipitation above 0.1 mm h−1) in
2010 and the number of hours with low wind speeds (sfcwind
< 2.5 m s−1) referring to the typical cut-in wind speed of
wind turbines.

Here, we find that short DOY window sizes below 5 d are
not beneficial to all statistics. The autocorrelation of precipi-
tation (wind speed) is reproduced more accurately with win-
dow sizes of 9 d or longer. The number of wet hours is better

recreated with window sizes above 15 d. For hours with low
wind speed, a minor improvement is found above 9 d.

4.3 Multiyear evaluation

The previous validation has assessed the disaggregation per-
formance for all sample locations for the year 2010 and dif-
ferent DOY window sizes. For the analysis of the whole time
period of 1980–2019, we evaluate each year of the 40-year
time series for sample location 29 and a window size of 11 d.
Figures 9 and S5 show the correlation coefficient and mean
absolute error, respectively, for each year to assess the inter-
annual variability in the disaggregation performance. For tas,
hurs, rsds, rlds, and ps, the performance shows only very mi-
nor differences, whereas sfcwind and pr show a higher degree
of interannual fluctuations.

4.4 Evaluation of precipitation: wet proportions and
intensities

For a further evaluation of precipitation characteristics, we
additionally assess the disaggregated time series over the
whole period 1980–2019 for sample location 29. In order
to evaluate the reproduction of wet : dry proportions, the
monthly cycle of wet hours is provided (Fig. 10). Wet hours
above 0.1 mm h−1 are recreated by the Teddy tool, with
minor differences for the median over 40 years (Fig. 10).
The error measures are calculated for every year separately,
amounting to a mean absolute error of 13.02 h equaling
7.8 %.

For the evaluation of the range of precipitation intensi-
ties, Fig. 11 shows intensities above 1 mm h−1 plotted against
its percentage of exceedance for sub-daily durations. We
find that the disaggregated precipitation intensities match the
original data, except for extreme precipitation.

4.5 Evaluation of precipitation extremes

As the ISIMIP database is used for future impact modeling
and historical attribution science (Mengel et al., 2021), the
extremes are of major interest to the community. The abil-
ity of global climate models to simulate sub-daily extremes
is limited and depends on the variable of interest and the
spatiotemporal conditions of the extreme and the respective
model setup (Wehner et al., 2021; Kumar et al., 2015; Wang
and Clow, 2020). However, in this validation, we evaluate
how the Teddy tool is able to preserve the statistics of sub-
daily extreme values. Therefore, we select precipitation as
variable of interest. Figure 12 shows the reproduction of sub-
daily precipitation extremes for 1980–2019 for sample loca-
tion 29 in southern Germany, where Teddy is run with a DOY
window size of 11 d. The 40 annual maxima are extracted
from the original and the disaggregated data. Additionally,
the generalized extreme value (GEV) distribution is fitted to
these empirical data. GEV parameters are estimated via max-
imum likelihood estimation (MLE; Coles, 2001), where the
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Figure 11. Exceedance probability of precipitation intensities for sub-daily durations for sample location 29 in Germany.

goodness of fit is assessed with the Anderson–Darling test
at 95 % significance level (Stephens, 1986). Thereby, 95 %
confidence intervals are generated when applying a bootstrap
procedure with 1000 iterations to account for extreme value
statistical uncertainties. We find that the Teddy tool leads to
an overestimation of annual maximum precipitation. For the
hourly duration, the differences are large, with the confidence
intervals of the GEV hardly overlapping. For longer dura-
tions, Teddy values approach the original data, with notice-
able differences only for the rare events with return periods
longer than 5 years.

5 Discussion and outlook

The Teddy tool allows for temporal disaggregation of daily
climate model data. The disaggregation is based on the loca-
tion and time-specific empirical relationships between vari-
ables. The approach is well suited to all tested variables and
results in very high correlations (> 0.9), except for precipita-
tion (> 0.5) and wind speed (> 0.75). We attribute the worse
performance for precipitation and wind speed to the high in-
traday variability for these variables (Watters et al., 2021).

Other variables are governed by a stronger diurnal cycle (Dai
and Trenberth, 2004), which is easier to disaggregate, based
on empirical diurnal profiles.

Compared to other approaches, the advantage of the Teddy
tool is that no input data other than the daily climate model
data are required. The Teddy tool is relatively simple to ap-
ply, considers specific local and seasonal features of the di-
urnal course of different climate variables, and preserves the
physical consistency of intervariable relationships. Mass and
energy are conserved, and mean daily values of the climate
model are reproduced any time.

The spatial and temporal resolution of the results is deter-
mined by the provided temporal and spatial resolution of the
chosen reference data (WFDE5 is used here). Longer avail-
able reanalysis time periods extend the statistical population
for identifying the most similar weather conditions in the past
and thus could improve the results. Generally, other reference
data could also be used that provide a higher temporal or spa-
tial resolution for a specific region.

The DOY window to find the most similar historical
weather situations can be chosen in different sizes. For most
of the variables, we found small effects of time window ad-
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Figure 12. Extreme value statistical evaluation of sub-daily precipitation for sample location 29 in Germany. The annual maxima of the
WFDE5 and Teddy are shown as dots. Additionally, GEV fits (lines) with 95 % confidence intervals (transparent areas and dashed lines)
account for uncertainties. The Teddy tool is run with a DOY window size of 11 d.

justments, except for precipitation and wind speed. The eval-
uation of different DOY window sizes reveals that a DOY
window size of 11 can generally be recommended across all
variables. Larger DOY windows should be avoided mainly in
arid regions, while shorter DOY windows generally lead to
poorer representations of autocorrelation and extreme events.

One limitation of the Teddy tool is the representation
of extreme events, mainly for precipitation, which is gen-
erally the most difficult variable for temporal disaggrega-
tion. We found that hourly precipitation extremes are over-
estimated. For heavy daily precipitation events, Teddy dis-
tributes the 24 h sums either correctly, too evenly, or across
too few hours. When distributing across too few hours, ex-
treme hourly intensities evolve, which may have never oc-
curred or may even be physically implausible. For tempo-
ral disaggregation of extreme precipitation, we recommend
dynamical downscaling via high-resolution climate models
(Poschlod, 2021; Poschlod et al., 2021; Zabel et al., 2012;
Zabel and Mauser, 2013).

Another limitation of the approach is the reproduction of
the interday connectivity within the disaggregated time se-
ries. When two diurnal profiles are chosen for the disaggre-
gation of adjacent days which show dissimilar courses in
the time steps at the change in the day, abrupt value jumps
might occur in the disaggregation. This can be seen in Fig. 3
for rlds from 4 to 5 July. To illustrate this issue, a disag-
gregation time series from another location is provided in
Fig. S2. This limitation also applies for the method of frag-
ments applied on precipitation (Li et al., 2018). Similar to Li

et al. (2018), we also consider the precipitation state of the
previous and following day to improve interday connectivity.
Without this additional consideration, overnight precipitation
events would often be “cut off” in the disaggregation. For the
remaining abrupt jumps in the disaggregated time series, we
refrain from post-processing with subsequent smoothing, as
we want to preserve both mass and energy and the empirical
diurnal profiles.

For the disaggregation of future climate projections us-
ing the Teddy tool, we have the following remarks. As the
Teddy tool derives the relationships between sub-daily and
daily values empirically based on reanalysis data, future diur-
nal profiles, which are outside the historical range of diurnal
profiles, might possibly be not fully reproduced. However,
this limitation is common for statistical approaches which
are calibrated on historical data (Papalexiou et al., 2018).
Nevertheless, due to energy and mass conservation, climate
trends in the daily climate signal are fully preserved. Hence,
applying Teddy for temporal disaggregation under climate
change holds under the assumption that we select the most
similar meteorological day of the historical data and that
this diurnal profile is representative of future climatic con-
ditions. However, this assumption might apply to a different
degree for different variables. We expect non-stationarity for
the diurnal profiles due to changing weather patterns, shifts
in rainfall-generating processes, and shifts in the seasonal-
ity, mainly for precipitation and wind. The daily course of
other variables, such as solar radiation and temperature might
generally be less affected by a warmer climate. Furthermore,
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global climate models at coarse resolutions generally do not
represent all processes to fully reproduce intraday variabil-
ity. Teddy applies the diurnal profiles and intraday variabil-
ity from the WFDE5 data, which are bias-adjusted ERA5 re-
analysis data that implicitly consider finer-scale effects com-
pared to coarse-resolution global climate models (Cucchi et
al., 2020). Thus, the disaggregation process in Teddy is con-
sistent with the bias adjustment in ISIMIP3.

Another limitation of the methodology could occur in the
case of strong climate change signals. In case of high warm-
ing in end-of-century projections, the number of sampled
historical days might decrease if the same historical day is
sampled repeatedly. This could lead to reductions in diver-
sity of the diurnal profile. Hence, Teddy allows the moni-
toring of the number of unique analogue days per year. An
additional analysis for SSP370 using the GFDL-ESM4 cli-
mate model shows that the number of unique analogue cli-
mate days is declining, as expected, but still the diversity of
chosen days is above 300 unique days at the end of the cen-
tury for a chosen moving window size of ±11 d (Fig. S6).
A smaller size of the moving window prevents a situation in
which the same analogue day is chosen over a longer time
period. This will increase the diversity of the diurnal profiles
at the expense of similarity. Even if diurnal profiles are de-
rived from the same analogue day repeatedly, the disaggre-
gated diurnal courses, e.g., for temperature, will show vari-
ations (different offset and different amplitude) due to the
conservation of daily mean energy and mass. From a broader
perspective, it is also not clear whether the uncertainties re-
sulting from this limitation are larger than the uncertainties
within the climate model projections until the end of the cen-
tury. Furthermore, in the long term, the basic population for
finding analogue climates will continuously increase, since
WFDE5 data, which are based on ERA5, are continuously
updated. We note that Teddy could be also employed to dis-
aggregate future daily climate projections based on hourly
future climate projections as reference.

Further possible developments could include improve-
ments in the reproduction of the interday connectivity. De-
spite the consideration of precipitation classes, abrupt value
jumps over day changes are still possible. A future introduc-
tion of temperature classes and surface pressure classes in
addition to the precipitation classes could help to reduce this
effect. Depending on the location of interest, also including
climate modes or weather patterns for the choice of the most
similar meteorological day could positively affect the perfor-
mance. Furthermore, depending on the application, it could
be reasonable not to screen for the most similar meteorolog-
ical day but for the most similar succession of multiple days.
This would consequently improve the interday connectivity
as fewer different profiles are selected.

Other optional future developments could include the sep-
aration of direct and diffuse radiation, which is also a re-
quired information for some impact models and which is cur-
rently not provided by ISIMIP. However, we would make fur-

ther development, with more options being dependent on the
community’s adoption of the current executable tool.

Code and data availability. The source code of the Teddy tool
(v1.1) and a parallelized version of the Teddy tool (v1.1p), includ-
ing a precompiled executable file for Windows, preprocessed data,
results of the cross-validation, and exemplary results for SSP585
(2015–2100) and the UKESM1-0-L climate model for 30 samples
are provided via Zenodo (https://doi.org/10.5281/zenodo.8124111,
Zabel and Poschlod, 2023).
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