Articles | Volume 16, issue 1
https://doi.org/10.5194/gmd-16-47-2023
https://doi.org/10.5194/gmd-16-47-2023
Model description paper
 | 
03 Jan 2023
Model description paper |  | 03 Jan 2023

ICLASS 1.1, a variational Inverse modelling framework for the Chemistry Land-surface Atmosphere Soil Slab model: description, validation, and application

Peter J. M. Bosman and Maarten C. Krol

Related authors

The Loobos ecosystem first tower dataset: meteorology, turbulent fluxes and net ecosystem exchange (1996 to 2021)
Hong Zhao, Han Dolman, Jan Elbers, Wilma Jans, Bart Kruijt, Eddy Moors, Henk Snellen, Jordi Vila-Guerau de Arellano, Wouter Peters, Maarten Krol, Ronald Hutjes, and Michiel van der Molen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-372,https://doi.org/10.5194/essd-2025-372, 2025
Preprint under review for ESSD
Short summary
Balloon-borne Stratospheric Vertical Profiling of Carbonyl Sulfide and Evaluation of Ozone Scrubbers
Alessandro Zanchetta, Steven van Heuven, Joram Hooghiem, Rigel Kivi, Thomas Laemmel, Michel Ramonet, Markus Leuenberger, Peter Nyfeler, Sophia Louise Baartman, Maarten Krol, and Huilin Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3079,https://doi.org/10.5194/egusphere-2025-3079, 2025
Short summary
Triple oxygen isotope composition of CO2 in the upper troposphere and stratosphere
Getachew Agmuas Adnew, Gerbrand Koren, Neha Mehendale, Sergey Gromov, Maarten Krol, and Thomas Röckmann
Atmos. Meas. Tech., 18, 2701–2719, https://doi.org/10.5194/amt-18-2701-2025,https://doi.org/10.5194/amt-18-2701-2025, 2025
Short summary
Top-down CO emission estimates using TROPOMI CO data in the TM5-4DVAR (r1258) inverse modeling suit
Johann Rasmus Nüß, Nikos Daskalakis, Fabian Günther Piwowarczyk, Angelos Gkouvousis, Oliver Schneising, Michael Buchwitz, Maria Kanakidou, Maarten C. Krol, and Mihalis Vrekoussis
Geosci. Model Dev., 18, 2861–2890, https://doi.org/10.5194/gmd-18-2861-2025,https://doi.org/10.5194/gmd-18-2861-2025, 2025
Short summary
Isotope discrimination of carbonyl sulfide (34S) and carbon dioxide (13C, 18O) during plant uptake in flow-through chamber experiments
Sophie L. Baartman, Steven M. Driever, Maarten Wassenaar, Linda M. J. Kooijmans, Nerea Ubierna Lopez, Leon Mossink, Maria E. Popa, Ara Cho, Lisa Wingate, Thomas Röckmann, Steven M. A. C. van Heuven, and Maarten C. Krol
EGUsphere, https://doi.org/10.5194/egusphere-2025-215,https://doi.org/10.5194/egusphere-2025-215, 2025
Short summary

Cited articles

Barbaro, E., Vilà-Guerau de Arellano, J., Ouwersloot, H. G., Schröter, J. S., Donovan, D. P., and Krol, M. C.: Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system, J. Geophys. Res.-Atmos., 119, 5845–5863, https://doi.org/10.1002/2013JD021237, 2014. a
Bastrikov, V., MacBean, N., Bacour, C., Santaren, D., Kuppel, S., and Peylin, P.: Land surface model parameter optimisation using in situ flux data: comparison of gradient-based versus random search algorithms (a case study using ORCHIDEE v1.9.5.2), Geosci. Model Dev., 11, 4739–4754, https://doi.org/10.5194/gmd-11-4739-2018, 2018. a, b, c
Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G., Houweling, S., Dentener, F., Dlugokencky, E. J., Miller, J. B., Gatti, L. V., Engel, A., and Levin, I.: Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals, J. Geophys. Res.-Atmos., 114, 1–28, https://doi.org/10.1029/2009JD012287, 2009. a
Bosman, P. and Krol, M.: PBosmanatm/ICLASS: ICLASS v1.1, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7239147, 2022. a
Bosveld, F., Van Meijgaard, E., Moors, E., and Werner, C.: Interpretation of flux observations along the Cabauw 200 m meteorological tower, in: 16th Symposium on Boundary Layers and Turbulence 6.18, 1–4, Portland, USA, https://ams.confex.com/ams/BLTAIRSE/webprogram/Paper78632.html (last access: 9 December 2022), 2004. a
Download
Short summary
We describe an inverse modelling framework constructed around a simple model for the atmospheric boundary layer. This framework can be fed with various observation types to study the boundary layer and land–atmosphere exchange. With this framework, it is possible to estimate model parameters and the associated uncertainties. Some of these parameters are difficult to obtain directly by observations. An example application for a grassland in the Netherlands is included.
Share