
Geosci. Model Dev., 16, 47–74, 2023
https://doi.org/10.5194/gmd-16-47-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperICLASS 1.1, a variational Inverse modelling framework for the
Chemistry Land-surface Atmosphere Soil Slab model:
description, validation, and application
Peter J. M. Bosman1 and Maarten C. Krol1,2

1Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands
2Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, the Netherlands

Correspondence: Peter J. M. Bosman (peter.bosman.publicaddress@gmail.com)

Received: 3 March 2022 – Discussion started: 7 April 2022
Revised: 8 November 2022 – Accepted: 25 November 2022 – Published: 3 January 2023

Abstract. This paper provides a description of ICLASS 1.1,
a variational Inverse modelling framework for the Chemistry
Land-surface Atmosphere Soil Slab model. This framework
can be used to study the atmospheric boundary layer, surface
layer, or the exchange of gases, moisture, heat, and momen-
tum between the land surface and the lower atmosphere. The
general aim of the framework is to allow the assimilation of
various streams of observations (fluxes, mixing ratios at mul-
tiple heights, etc.) to estimate model parameters, thereby ob-
taining a physical model that is consistent with a diverse set
of observations. The framework allows the retrieval of pa-
rameters in an objective manner and enables the estimation
of information that is difficult to obtain directly by observa-
tions, for example, free tropospheric mixing ratios or stom-
atal conductances. Furthermore, it allows the estimation of
possible biases in observations. Modelling the carbon cycle
at the ecosystem level is one of the main intended fields of ap-
plication. The physical model around which the framework is
constructed is relatively simple yet contains the core physics
to simulate the essentials of a well-mixed boundary layer and
of the land–atmosphere exchange. The model includes an ex-
plicit description of the atmospheric surface layer, a region
where scalars show relatively large gradients with height. An
important challenge is the strong non-linearity of the model,
which complicates the estimation of the best parameter val-
ues. The constructed adjoint of the tangent linear model can
be used to mitigate this challenge. The adjoint allows for
an analytical gradient of the objective cost function, which
is used for minimisation of this function. An implemented
Monte Carlo way of running ICLASS can further help to han-

dle non-linearity and provides posterior statistics on the esti-
mated parameters. The paper provides a technical description
of the framework, includes a validation of the adjoint code,
in addition to tests for the full inverse modelling framework,
and a successful example application for a grassland in the
Netherlands.

1 Introduction

Exchanges of heat, mass, and momentum between the land
surface and the atmosphere play an essential role for weather,
climate, air quality, and biogeochemical cycles. Surface heat-
ing under sunny daytime conditions usually leads to the
growth of a relatively well-mixed layer close to the land sur-
face, i.e. the convective boundary layer (CBL). This layer is
directly impacted by exchange processes with the land sur-
face and is also a layer wherein often humans live. Modelling
the composition and thermodynamic state of the CBL in its
interaction with the land surface is the target of the Chem-
istry Land-surface Atmosphere Soil Slab model (CLASS;
Vilà-Guerau De Arellano et al., 2015). This model and simi-
lar models have been applied frequently, e.g. for understand-
ing the daily cycle of evapotranspiration (van Heerwaarden
et al., 2010), studying the effects of aerosols on boundary
layer dynamics (Barbaro et al., 2014), studying the effects
of elevated CO2 on boundary layer clouds (Vilà-Guerau De
Arellano et al., 2012), or for studying the ammonia budget
(Schulte et al., 2021). Next to a representation of the CBL,
the CLASS model includes a simple representation for the
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exchange of gases, heat, moisture, and momentum between
the land surface and the lower atmosphere. The model ex-
plicitly accounts for the surface layer, which is, under sunny
daytime conditions, a layer within the CBL that is close
to the surface, with relatively strong vertical gradients of
scalars (e.g. specific humidity and temperature) and momen-
tum (Stull, 1988). The best model performance is during the
convective daytime period. Since the CBL model physics
are relatively simple and only include the essential bound-
ary layer processes, the model performs best on what might
be called golden days. Those are days on which advection is
either absent or uniform in time and space, deep convection
and precipitation are absent, and sufficient incoming short-
wave radiation heats the surface, allowing for the forma-
tion of a prototypical convective boundary layer. When these
assumptions are met, the evolution of the budgets of heat,
moisture, and gases is, to a large extent, determined by local
land–atmosphere interactions. The aforementioned assump-
tions should ideally be valid for the whole modelled period.
They should ideally hold on a spatial scale large enough that
violations of the assumptions in the region do not influence
the model simulation location. In practice, days are often not
ideal, e.g. a time-varying advection can be present. This does
not necessarily mean that the model cannot be applied to that
day, but the performance is likely to be worse.

To further our understanding of the land–atmosphere ex-
change, tall tower observational sites have been established,
for instance at Cabauw, the Netherlands (Bosveld et al.,
2020; Vermeulen et al., 2011), Hyytiälä, Finland (Vesala
et al., 2005), and Harvard Forest, USA (Commane et al.,
2015). These observational sites provide time series of dif-
ferent types of measurements (observation streams). Even
so, many studies only use a (small) fraction of the different
streams of observations available for a specific day and lo-
cation (e.g. Vilà-Guerau De Arellano et al., 2012). A model
like CLASS, containing both a mixed layer and land surface
part, can be used to fit an extensive set of observation streams
simultaneously. When model results are consistent with a di-
verse set of measurements, this gives more confidence that
the internal physics are robust and that the model has been
adequately parameterised to reliably simulate reality. How-
ever, an important difficulty in the application of a model
like CLASS concerns parameter tuning to obtain a good fit
to observations. Some parameters can be obtained quite di-
rectly from observations (for instance, initial mixed layer hu-
midity), but, for example, estimating free tropospheric lapse
rates or certain land surface parameters is often more chal-
lenging. When many parameters need to be determined, the
feasible parameter space becomes vast. If this vast parameter
space is not properly explored, the obtained parameters can
be subjective and sub-optimal. The estimation of parameters
is further complicated by possible overfitting and the prob-
lem of parameter equifinality (Tang and Zhuang, 2008), the
latter occurs especially in case not enough types of observa-
tions are used. Next to that, some of the available ecosystem-

/CBL-level observations may suffer from biases. An exam-
ple is the closure of the surface energy balance, where the
available energy is often larger than the sum of the latent and
sensible turbulent heat fluxes (Foken, 2008). This energy bal-
ance closure problem is a known issue with eddy covariance
observations (Foken, 2008; Oncley et al., 2007; Renner et al.,
2019), and various explanations have been suggested (Foken,
2008).

The above text illustrates the need for an objective opti-
misation framework capable of correcting observations for
biases. We therefore present a description of ICLASS, an in-
verse modelling framework built around the CLASS model,
including a bias correction scheme for specific bias patterns.
This framework can estimate model parameters by minimis-
ing an objective cost function using a variational (Chevallier
et al., 2005) framework. ICLASS uses a Bayesian approach,
in the sense that it combines information, both from obser-
vations and from prior knowledge about the parameters, to
come to a solution with a reduced uncertainty in the opti-
mised parameters. A major strength of this framework is that
it allows the incorporation of several streams of observations,
for instance, chemical fluxes, mixing ratios, temperatures at
multiple heights, and radiosonde observations of the bound-
ary layer height. By optimising a number of predefined key
parameters of the model, we aim to obtain a diurnal simu-
lation that is consistent with a diverse set of measurements.
Additionally, error statistics that are estimated provide infor-
mation about the constraints the measurements place on the
model parameters. Modelling the carbon cycle at ecosystem
level is one of the main intended fields of application. As an
example, with some extensions to the framework, ICLASS
could be applied to ecosystem observations of the coupled
exchange of CO2 and carbonyl sulfide (a tracer for obtaining
stomatal conductance; Whelan et al., 2018).

Besides ICLASS, there have been extensive earlier ef-
forts in the literature to estimate the parameters in land–
atmosphere exchange models. For example, Bastrikov et al.
(2018) and Mäkelä et al. (2019) optimised parameters of the
land surface models ORCHIDEE and JSBACH, respectively.
These models simulate additional processes not included in
the CLASS model, which enables the calculation of addi-
tional land surface variables. For example, in contrast to OR-
CHIDEE, CLASS cannot simulate leaf phenology or the al-
location of carbon to different biomass pools. However, a dis-
tinct advantage of the CLASS model is the coupling of a land
surface model to a mixed layer model. This facilitates the in-
clusion of atmospheric observations such as mixing ratios in
the optimisation of land–atmosphere exchange parameters.
Next to that, simple models like CLASS have the advantage
of requiring less computation time, and the output might be
more easily understood. Kaminski et al. (2012) and Schür-
mann et al. (2016) also assimilate both land-surface-related
and atmosphere-related observations. In those studies, a land
surface model is coupled to an atmospheric transport model.
Meteorology is not simulated in those studies. In ICLASS,
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meteorology adds an additional set of observation streams
that can be used to optimise land-surface-related parameters
that are linked both to gas fluxes and meteorology.

An important challenge for the optimisation framework is
the strong non-linearity of the model. As an example, the
change in mixed-layer specific humidity (q) with time is a
function of q itself; a stronger evapotranspiration flux leads
to an increased specific humidity in the mixed layer, which
in turn reduces the evapotranspiration flux again (van Heer-
waarden et al., 2009). The non-linearity causes numerically
calculated cost function gradients to deviate from the true an-
alytical gradients, since the cost function can vary irregularly
with a changing model parameter value. This is hampering
the proper minimisation of the cost function when using nu-
merically calculated gradients. An adjoint has been used in
the past to optimise parameters, e.g. for land surface models
(Raoult et al., 2016; Ziehn et al., 2012). Constructing the ad-
joint of the tangent linear model is a way to obtain more ac-
curate gradient calculations, as the adjoint provides a locally
exact analytical gradient of the cost function at the locations
where the function is differentiable. This approach, further-
more, allows the efficient retrieval of the sensitivity of model
output to model parameters. Also, using an analytical gradi-
ent is generally computationally less expensive compared to
using a numerical gradient (Doicu et al., 2010, p. 17). Mar-
gulis and Entekhabi (2001a) constructed an adjoint model
framework of a coupled land surface–boundary layer model,
which they used to study differences in daytime sensitivity of
surface turbulent fluxes for the same model in coupled and
uncoupled modes (Margulis and Entekhabi, 2001b). How-
ever, their CBL model neither includes carbon dioxide nor
does it allow the modelling of scalars at specific heights in
the surface layer. We expect these to be important for our
framework that aims to make optimal use of several informa-
tion streams. To do gradient calculations within the ICLASS
framework, we constructed the adjoint of CLASS.

The paper is structured as follows. First, we give some in-
formation on the (slightly adapted) forward model CLASS
(Sect. 2). The inverse modelling framework built around
CLASS is described in Sect. 3. Information on how error
statistics are employed and produced follows in Sect. 4, after
which we provide a description of the model output (Sect. 5)
and technical details of the code (Sect. 6). Afterwards, we
present the adjoint and gradient tests that serve as validation
for the constructed adjoint model (Sect. 7). Further informa-
tion about the adjoint model is available in the Supplement.
In Sect. 8, we perform observation system simulation exper-
iments that validate the full inverse modelling framework. In
the last section before the concluding discussion, we present
an example application for a grassland site in the Nether-
lands (Cabauw), where a very comprehensive meteorological
dataset is complemented with detailed measurements of CO2
mixing ratios and surface fluxes.

2 Forward model

The employed forward model in our inverse modelling
framework is the (slightly adapted) Chemistry Land-surface
Atmosphere Soil Slab model (CLASS; Vilà-Guerau De Arel-
lano et al., 2015). The model code is freely available on
GitHub (https://classmodel.github.io/, last access: 9 Decem-
ber 2022). We made use of the Python version of CLASS to
construct our inverse modelling framework. We will briefly
describe the essentials of the model which are relevant for
the inverse modelling framework.

The model consists of several parts, namely the mixed
layer, the surface layer, and the land surface, including the
soil (Fig. 1). It is a conceptual model that uses a relatively
small set of differential equations (Wouters et al., 2019).
The core of the model is a box model representation of an
atmospheric mixed layer. Therefore, an essential assump-
tion of the model is that, during the daytime, turbulence is
strong enough to maintain well-mixed conditions in this layer
(Ouwersloot et al., 2012). The mixed layer tendency equation
for any scalar (e.g. CO2, heat) is as follows:

tendency=
(surface flux+ entrainment flux)

mixed layer height

+ advection. (1)

The surface flux is the exchange flux with the land surface
(including vegetation and soil). The entrainment flux is the
exchange flux between the mixed layer and the overlying
free troposphere. For moisture and chemical species, a cloud
mass flux can also be included in the equation. The mixed
layer height is dynamic during the day and evolves under the
driving force of the surface heat fluxes and large-scale subsi-
dence. Cloud effects on the boundary layer height and growth
due to mechanical turbulence can also be accounted for.

Above the mixed layer, a discontinuity occurs in the scalar
quantities, representing an infinitely small inversion layer.
Above the inversion, the scalars are assumed to follow a lin-
ear profile with height in the free troposphere (Fig. 1). The
entrainment fluxes are calculated as follows. First, the buoy-
ancy entrainment flux is taken as a fixed fraction of the sur-
face flux of this quantity (Stull, 1988, p. 478), to which the
entrainment flux driven by shear can optionally be added.
From this virtual heat entrainment flux, an entrainment ve-
locity is calculated. The entrainment flux for a specific scalar
(e.g. CO2) is then obtained by multiplying the entrainment
velocity with the value of the (inversion layer) discontinuity
for the respective scalar.

The surface layer is defined in the model as the low-
est 10 % of the boundary layer. In this (optional) layer, the
Monin–Obukhov similarity theory (Monin and Obukhov,
1954; Stull, 1988) is employed. In the original CLASS sur-
face layer, scalars such as temperature are evaluated at 2 m
height. For some scalars, we have extended this to multiple
user-specified heights. This allows the comparison of obser-
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vations of chemical mixing ratios and temperatures at differ-
ent heights (e.g. along a tower) to the model output. Since
the steepness of vertical profiles depends on wind speed and
roughness of the surface, these gradients reflect information
about these quantities.

The (optional) land surface includes a simple soil repre-
sentation and an a-gs (Jacobs, 1994; Ronda et al., 2001) mod-
ule. This a-gs module (Jacobs, 1994; Ronda et al., 2001) is a
big-leaf method (Friend, 2001) for calculating the exchange
of CO2 between atmosphere and biosphere and the stom-
atal resistance. The latter is used for calculating the H2O ex-
change. As an alternative to a-gs, a Jarvis–Stewart approach
(Jarvis, 1976; Stewart, 1988) can also be used in the calcula-
tion of the H2O exchange. The latter approach is more sim-
ple; herein, the stomatal conductance consists of a maximum
conductance multiplied with a set of factors between 0 and
1 (Jacobs, 1994). In CLASS, there are four factors included
which represent limitations due to the amount of incoming
light, the temperature, vapour pressure deficit, and soil mois-
ture. The land surface part is responsible for calculating the
exchange fluxes of sensible heat, latent heat, and CO2 be-
tween the mixed layer and the land surface. The model has
a module for calculating long- and shortwave radiation dy-
namically. In this module, shortwave radiation is calculated
using the date and time, cloud cover, and albedo. For long-
wave radiation, surface temperature and the temperature at
the top of the surface layer are used. The resulting net radi-
ation is used implicitly in the calculation of the heat fluxes,
thereby obtaining a closed energy balance in the model (sim-
plified calculation). Soil temperature and moisture are also
simulated based on a force–restore model. The soil heat flux
to the atmosphere is calculated based on the gradient between
soil and surface temperature, and the latter is obtained from
a simplified energy balance calculation.

More details on the equations in the model can be
found in Vilà-Guerau De Arellano et al. (2015). Note that
some relatively small changes with respect to the original
CLASS model have been implemented, as documented in
the ICLASS manual, which is part of the material that can be
downloaded via the Zenodo link in the code and data avail-
ability section.

3 Inverse modelling framework

3.1 General

Inverse modelling is based on using observations and, ide-
ally, prior information to statistically optimise a set of vari-
ables driving a physical system (Brasseur and Jacob, 2017).
The n variables to be optimised are contained in a state vec-
tor x. In our framework, this vector can be subdivided in two
vectors. Those are xm, containing state variables belonging
to the input of CLASS (e.g. CO2 advection and albedo), and
xb, containing state variables belonging to our bias correc-

Figure 1. Sketch of the employed forward model (the slightly
adapted CLASS model). The blue dots in the surface layer represent
user-specified heights, where the model calculates scalars, e.g. the
CO2 mixing ratio. The mixed layer is represented by a single bulk
value in the model (blue dot in the mixed layer). At the top of the
mixed layer, a discontinuity (jump) occurs in the profiles. The free
troposphere is not explicitly modelled but is taken into account for
the exchange with the mixed layer (entrainment). The slope of the
free troposphere line is the free tropospheric lapse rate. A constant
advection can be taken into account as a source/sink.

tion scheme (see Sect. 3.2). The forward-model H (CLASS)
projects the vector xm to provide model output that can
be compared to observations, e.g. temperatures at different
heights (full list in the ICLASS manual). This output does
not only depend on xm but also on model parameters that are
not part of the state. Those are contained in a vector p. The
result is contained in vectorH (xm,p). Note that an overview
of all inverse-modelling variables defined in this section is
given in Table B1, including the dimensions and units. We
initially define a cost function J (–) as follows (Brasseur and
Jacob, 2017):

J (x)= (x− xA)
TS−1

A (x− xA)

+ (y−H (xm,p))
TS−1

O (y−H (xm,p)), (2)

where xA represents the a priori estimate of the state vec-
tor, y is the vector of observations used within the mod-
elled time window, and H (xm,p) is the vector of model
results at the times of the observations. The latter vector is
the model equivalent of the observation vector y. The su-
perscript T means transpose, SA represents the a priori er-
ror covariance matrix (defined in the Supplement), and SO
represents the matrix of the observational error covariances.
This cost function quantifies two aspects, namely the fit be-
tween model output and observations, in addition to how well
the posterior state matches with prior information about the
state. Regarding the observational error covariance matrix SO
(fully defined in Brasseur and Jacob, 2017), we assume, for
simplicity, the observational errors to be uncorrelated (as in,
e.g., McNorton et al., 2018; Chevallier et al., 2010; Ma et al.,
2021). This simplifies the matrix SO to a diagonal matrix,
with the observational error variances as diagonal elements.

Geosci. Model Dev., 16, 47–74, 2023 https://doi.org/10.5194/gmd-16-47-2023



P. J. M. Bosman and M. C. Krol: ICLASS 1.1 51

In this way, Eq. (2) simplifies to the following:

J (x)= (x−xA)
TS−1

A (x−xA)+

m∑
i=1

(H(xm,p)i − yi)
2

σ 2
O,i

. (3)

Here, σ 2
O,i is the ith diagonal element of SO, and m is the

number of observations. It is customary to refer to the first
term of this cost function as the background part and to the
second part of this function as the data part. Note that if the
a priori errors are also uncorrelated, then the first term in
the equation can be simplified in a similar way as the sec-
ond term. The observational error variance linked to the ith
observation (σ 2

O,i) can be further split up as follows:

σ 2
O,i = σ

2
I,i + σ

2
M,i + σ

2
R,i, (4)

where σ 2
I,i is the instrument (measurement) error variance,

σ 2
M,i is the model error variance, and σ 2

R,i is the represen-
tation error variance (see Brasseur and Jacob, 2017). These
errors are assumed to be independent of each other and nor-
mally distributed.

At this point, we introduce two extra features to the cost
function. First, we allow the user to specify a weight for
each individual observation, in case some observations are
deemed less important than others. In principle, the observa-
tional error variances could also be adapted for this purpose,
but, by using weights, we can keep realistic error estimations
(important for Sect. 4.2). Those weights can also be used to
manipulate the relative importance of the background term
and the data term. This is similar to the regularisation factor
explained in Brasseur and Jacob (2017). Second, we intro-
duce part of our bias correction scheme in the data part of the
cost function, namely scaling factors for observations. These
factors can also be optimised. With the additions mentioned
above, the cost function, as given in Eq. (3), modifies to the
following:

J (x)= (x− xA)
TS−1

A (x− xA)

+

m∑
i=1

wi
(H(xm,p)i − si yi)

2

σ 2
O,i

, (5)

where wi (–) is a weight for each individual observation in
the cost function. si (–) is a scaling factor for observation yi ,
which is identical for each time step but is allowed to differ
between each observation stream. The background term in
the cost function can be left out if the user desires so. The in-
troduction of the scaling factors means we need to adapt the
observational error variances as well. Thus, the ith observa-
tional error variance is now given by the following:

σ 2
O,i = var(s{t}i yi −H(x

{t}
m ,p)i), (6)

where x{t}m is the unknown vector of the “true” values of the
model parameters in the state vector, and s{t}i is the true value

of the scaling factor for the ith observation. The decomposi-
tion from Eq. (4) remains valid.

In the statistical optimisation, we attempt to find the values
of the state vector x, such that the function in Eq. (5) reaches
its absolute minimum. This is done by starting from an initial
guess (x = xA), after which the state vector is improved iter-
atively. The cost function and the gradient of the cost func-
tion (derivatives with respect to all parameters) are computed
for different combinations of parameters in the state vector
(Fig. 2). The framework uses, by default, a truncated New-
ton method, the tnc algorithm (The SciPy community, 2022;
Nash, 2000), for the optimisations. Truncated Newton meth-
ods are suitable for non-linear optimisation problems (Nash,
2000). The chosen algorithm allows the specification of hard
bounds for the state vector parameters, thus preventing un-
physical parameter values for individual parameters in the
state vector. Raoult et al. (2016) used similar constraints in
their inverse modelling system, and Bastrikov et al. (2018)
used bound constraints as well. The analytical cost function
gradient calculations are described in Sect. 3.4. A basic nu-
merical derivative option (Sect. 3.5) is available as well, al-
though we expect this, in general, to be outperformed by the
analytical derivative.

3.2 State vector parameters

As mentioned before, the state vector can be decomposed
into vector xm and vector xb. Vector xm contains state vari-
ables related to the input of CLASS, such as the initial condi-
tions (e.g. initial mixed layer potential temperature), bound-
ary conditions (e.g. CO2 advection), and uncertain model
constants (e.g. roughness length for heat). The full list of
model parameters that can be optimised is given in the
ICLASS manual.

Vector xb contains parameters belonging to our bias cor-
rection scheme in the data part of the cost function. There are
two ways of bias correcting. The first one is by using obser-
vation scaling factors for observation streams. These scaling
factors (si) have been introduced in Eq. (5). As an example,
in the state vector to be optimised, one can include a single
scaling factor for all CO2 surface flux observations. The sec-
ond possible method of bias correcting (Sect. 3.3) is imple-
mented specifically for the energy balance closure problem
(Foken, 2008; Oncley et al., 2007; Renner et al., 2019), and
it involves a parameter FracH (–) to be optimised.

3.3 Bias correction for energy balance closure

We first define an observational energy balance closure resid-
ual as follows (Foken, 2008):

εeb =Rn− (H orig+LEorig+G), (7)

where Rn is the time series of net radiation measurements,
H orig and LEorig are the measured sensible and latent heat
fluxes, and G is the measured soil heat flux. The difference
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Figure 2. Slightly simplified sketch of the workflow of the inverse modelling framework when using the adjoint model for the derivatives
with respect to model parameters. Note that, for the purposes of clarity, direct arrows between the parameters and the cost function and its
gradients are not drawn. These arrows arise via the background part of the cost function (see the equations in the text). Everything within
the shaded rectangle is part of the iterative cycle of optimisation. Model parameters that are not optimised are in the vector p. This vector is
used together with xm in every model simulation. In case ICLASS is run in Monte Carlo mode (Sects. 3.6 and 4.2), this figure applies to the
individual ensemble members.

between the measured net radiation and the sum of the mea-
sured heat fluxes is calculated for every time step, and this
represents the energy balance closure residual. If desired,
the user can easily specify an expression of their own for
εeb. Subsequently, the observations for the sensible and la-
tent heat flux are adapted as follows:

yH =H orig+FracH εeb (8)
yLE = LEorig+ (1−FracH )εeb. (9)

This implies that the energy balance closure residual is added
partly to the sensible heat flux and partly to the latent heat
flux, thereby closing the energy balance in the observations.
This partitioning is determined by parameter FracH , which
is taken to be constant during the modelled period. This ap-
proach of closing the energy balance is similar to Renner
et al. (2019), but we optimise a parameter, instead of using
the evaporative fraction, for partitioning εeb. The limitations
of this approach are that we assume the radiation and soil
heat flux measurements to be bias-free and the FracH param-
eter constant.

3.4 Analytical derivative

For the optimisations, we do not only compute a cost func-
tion, but we also use the gradient of the cost function with
respect to the state vector elements. This informs us on the
direction in which the cost function lowers. How the gradient
with respect to an individual element is calculated depends
on which state vector element is considered. In case the ith
state vector element is a model input parameter, the gradient

with respect to this element is computed as follows (similar
to Brasseur and Jacob, 2017, their Eq. 11.105):

∂J

∂xi
= 2(S−1

A (x− xA))i + 2((∇xmH (xm,p))
TF )i−l, (10)

where ∇xmH (xm,p) is the local Jacobian matrix of H . l
is the number of non-model-input parameters in the state x
occurring before xi . F is the forcing vector, with elements
Fk defined as follows:

Fk = wk
(H(xm,p)k − sk yk)

σ 2
O,k

. (11)

There is one forcing element in the vector for every obser-
vation that is used, and Fk is the forcing related to the ob-
servation yk . For calculating the model input part of the an-
alytical derivative, we constructed the adjoint of the model,
(∇xmH (xm,p))

T, which is used to obtain a locally exact an-
alytical gradient (in specific cases the gradient is not exact;
see the section of “if statements” in the Supplement). More
information on the adjoint is given in the Supplement.

In case the ith state vector element is an observation scal-
ing factor (Eq. 5) for observation stream j , the gradient of
the cost function with respect to the ith state vector element
is computed as follows:

∂J

∂xi
= 2(S−1

A (x− xA))i +

mj∑
k=1
−2Fk yj,k, (12)

where mj is the number of observations of the type (stream)
to which the observation scaling factor is applied, e.g. if the
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observation scale is a scaling factor for surface CO2 flux ob-
servations, then mj is the number of surface CO2 flux obser-
vations. yj,k is the kth observation of this observation stream.
Fk is the forcing related to the observation yj,k .

Finally, if the ith state vector element is FracH , then the
gradient is calculated as follows:

∂J

∂xi
= 2(S−1

A (x− xA))i

− 2
(
FH ·

dyH
dFracH

+FLE ·
dyLE

dFracH

)
, (13)

where FH and FLE are the forcing vectors for the sensi-
ble and latent heat fluxes, respectively, yH and yLE are the
observation vectors for the sensible and latent heat fluxes,
respectively, and · is the Euclidian inner product. Note that,
when the FracH parameter is included in the state, the ob-
servation scaling factors for sensible and latent heat flux ob-
servations will be set equal to 1 and are not allowed to be
included in the state. The terms dyH

dFracH
and dyLE

dFracH
represent,

respectively, the derivatives of the sensible and latent heat
flux observations to the FracH parameter, which follow from
Eqs. (8) and (9) as follows:

dyH
dFracH

= εeb (14)

dyLE
dFracH

=−εeb. (15)

Note that Eqs. (10), (12), and (13) all have the same first term
that originates from the background part of the cost function.

3.5 Numerical derivative

A simple numerical derivative is available as alternative to
the analytical gradient. The derivative of the cost function to
the ith state element is numerically calculated as follows:

∂J

∂xi
=
J (xi +α)− J (xi −α)

2α
, (16)

where α is a very small perturbation to state parameter xi ,
with a default value of 10−6, and has the units of xi .

3.6 Handling convergence challenges

The highly non-linear nature of the optimisation problem
can cause the optimisation to become stuck in a local min-
imum of the cost function (Santaren et al., 2014; Bastrikov
et al., 2018; Ziehn et al., 2012). This means that the resulting
posterior state vector can depend on the prior starting point
(Raoult et al., 2016), and the resulting posterior state can re-
main far from optimal. In the worst case, the non-linearity
of the model can even lead to a crash of the forward model.
This happens with certain combinations of input parameters
that lead to unphysical situations or undesired numerical be-
haviour. After starting from a user-specified prior state vec-
tor, the tnc algorithm autonomously decides which parame-
ter values are tested during the rest of the optimisation. It is

possible to place hard bounds on individual parameters when
using the tnc algorithm, but this does not always prevent all
possible problematic combinations of parameters from being
evaluated.

To obtain information about the uncertainty in the poste-
rior solution, and to deal with the challenges described above,
the framework also allows a Monte Carlo approach (Taran-
tola, 2005). This entails the framework not starting at a single
state vector with prior estimates but instead using an ensem-
ble of prior state vectors xA, thus leading to an ensemble
of posterior parameter estimates. The ensemble of optimi-
sations can be executed in parallel on multiple processors,
thereby reducing the time it takes to perform the total opti-
misation. More details on the Monte Carlo mode of ICLASS
are given in the Sect. 4.2.

As an additional way to improve the posterior solution,
we have implemented a restart algorithm. If the optimisa-
tion results in a cost function that is higher than a user-
specified number, then the framework will restart the optimi-
sation from the best state reached so far. This fresh start of the
tnc algorithm, whereby the algorithm’s memory is cleared,
often leads to a further lowering of the cost function. The
maximum number of restarts (>=0) is specified by the user.
If an ensemble is used, then every individual member with
too high a posterior cost function will be restarted.

4 Error statistics

4.1 Prior and observations

From a Bayesian point of view, ICLASS can combine in-
formation, both from observations and from prior knowl-
edge about the state vector, to come to a solution with a re-
duced uncertainty in the state parameters. In the derivation
of Eq. (2), it is assumed that both prior and observational
errors follow a (multivariate) normal distribution (Tarantola,
2005). However, some prior input parameters are bounded
(Sect. 3.6), e.g. the albedo cannot be negative. Dealing with
bounds is a known challenge in inverse modelling, and sev-
eral approaches can be followed (Miller et al., 2014). As an
example, Bergamaschi et al. (2009) had to deal with methane
emissions in the state vector becoming negative. Their solu-
tion was to make the emissions a function of an emission
parameter that is being optimised instead of optimising the
emissions themselves. Through their choice of function, the
emissions cannot become negative, even though the emission
parameter is unbounded. In our case, such an approach is
more difficult, as we have a diverse set of bounded parame-
ters.

Our approach is to enforce hard bounds for state values
via the tnc algorithm. It, however, means that the normality
assumption will be violated to some extent, as the normal dis-
tribution (for which the user specifies the variance) for prior
parameter values then becomes a truncated normal distribu-
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tion. For a parameter following a truncated normal prior dis-
tribution, the prior variance used in the cost function is not
(fully) equal to the variance of the actual prior distribution.
The extent to which this is the case depends on the degree of
truncation.

Our system also allows for specifying covariances be-
tween state elements in SA. We assume observational errors
to be uncorrelated (see Sect. 3.1). Equation (4) states that the
observational error variance consists of an instrument error, a
model error, and a representation error variance. The instru-
ment and representation error standard deviation are taken
from user input, while the model error standard deviation can
either be specified by the user or estimated from a sensitiv-
ity analysis. In the latter case, an ensemble of forward-model
runs is performed. For each of these runs, a set of parameters,
not belonging to the state vector, is perturbed (so the param-
eters are part of the vector p and not from xm; see Sect. 3.1).
These perturbed parameters are used together with the un-
perturbed prior vector xm as model input. The user should
specify which parameters should be perturbed, and the distri-
bution from which random numbers will be sampled to add
to the default (prior) model parameters. For the latter, there
is the choice between a normal, bounded normal, uniform, or
triangular distribution. The model error standard deviation
for each observation stream at each observation time is then
obtained from the spread in the ensemble of model output for
the observation stream at that time.

4.2 Ensemble mode to estimate posterior uncertainty

When ICLASS is run in Monte Carlo (ensemble) mode, it
allows the estimation of the uncertainty in the posterior state.
The principle for obtaining posterior error statistics bears a
strong similarity to what has been done in Chevallier et al.
(2007), and our method will be shortly explained here. We
start with the prior state specified by the user. Then, for each
ensemble member and for every state parameter, a random
number is drawn from a normal distribution with the variance
of the respective parameter specified by the user and a mean
of 0. When covariances are also specified for the prior param-
eters, a multivariate normal distribution can be used to sam-
ple from. The sampled numbers are then added to the state
vector. In case any non-zero covariances are used to perturb,
and then, if the new state vector falls out of bounds (if spec-
ified), it is discarded, and the procedure is repeated for that
ensemble member. In case no covariance structure is used,
then only the parameter which falls out of its bounds has to
be replaced. It has to be noted that this effectively leads to
sampling from a truncated (multivariate) normal distribution.

Similarly, for every ensemble member, a random number
drawn from a normal distribution (without bounds) is added
to the (scaled) observations. This modifies the cost function
of an individual ensemble member (Eq. 5) as follows:

J (x)=
(
x− x

{p}
A

)T
S−1

A

(
x− x

{p}
A

)
+

m∑
i=1

wi
(H(xm,p)i − si yi + εi)

2

σ 2
O,i

. (17)

x
{p}
A is the perturbed prior state vector. The random numbers
εi in the data part of the cost function are sampled from nor-
mal distributions with mean 0 and standard deviation σO,i .
This can be seen as either a perturbation of the scaled obser-
vations or a perturbation of the model–data mismatch. As a
consequence of the change in the cost function equation, the
equation for the forcing vector (Eq. 11) is updated as well:

Fk = wk
(H(xm,p)k − sk yk + εk)

σ 2
O,k

. (18)

Furthermore, in Eqs. (10), (12), and (13), for perturbed en-
semble members, x{p}A is used instead of xA. The vector εeb
(Eq. 7) is not perturbed and kept identical for all members.
For every ensemble member, an optimisation is performed.
Each optimisation is classified as being either successful or
not successful. Here, “successful” is defined as having a final
reduced chi-square (see Sect. 5; Eq. 19) smaller or equal than
a user-specified number. The posterior state parameters for
the successful members are considered a sample of the pos-
terior state space and are saved in a matrix. Those parameters
can be used to estimate the true posterior probability density
functions (pdf’s). A covariance and a correlation matrix are
then constructed using the matrix of the posterior state pa-
rameters. These covariance and correlation matrices are used
as an estimate of the true posterior state covariance and cor-
relation matrices, respectively. If the user prefers to do so,
the numeric parameters not belonging to the state can also be
perturbed in the ensemble, in a similar way to that outlined
in Sect. 4.1.

Note that, next to the ensemble, there will also be a run
with an unperturbed prior, just as is the case when no ensem-
ble is used. We refer to this run as member 0. This member is,
however, not included in the calculation of ensemble-based
error statistics (e.g. correlation matrix), as the choice of prior
values is not random for this member.

5 Output

ICLASS can write several output files. The output in-
cludes the obtained parameters, the posterior reduced chi-
square statistic, and the posterior and prior cost function.
The reduced chi-square goodness-of-fit statistic is defined in
ICLASS as follows:

χ2
r =

J∑m
i=1(wi)+ n

. (19)
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In this equation, m is the number of observations, and n is
the number of state parameters (see Sect. 3 for the other sym-
bols). Note that if all the weights are set to 1, then the denom-
inator simplifies to m+n. The n will only be included in the
denominator when the user chooses to include a background
part in the cost function (default). In a simple case where the
prior errors are uncorrelated, this χ2

r statistic for the posterior
solution should be around 1 when the optimisation converges
well and priors and errors are properly specified (e.g. Micha-
lak et al., 2005). In a case where all weights are 1, this can
be understood as follows. The average value of the ith poste-
rior observation residual squared, (H(xm,post,p)i − si yi)

2,
should be close to σ 2

O,i , and the average value of the ith
posterior data residual squared, (xpost,i − xA,i)

2, should be
close to the ith diagonal element of the a priori error co-
variance matrix when the optimisation converges well and
errors and prior parameters are properly specified. We have
m observation residuals and n data residuals (if background
part included). In this example with a diagonal SA matrix, the
residuals are assumed to be independent of each other. Each
squared residual contributes on average a value of approx-
imately 1 to the cost function, summing to approximately
m+ n and, thus, χ2

r ≈ 1. Note, however, that the χ2
r statis-

tic can be misleading, in particular when observational errors
are correlated (Chevallier, 2007). Furthermore, as mentioned
in Sect. 4.1, prior parameters can follow a truncated normal
distribution, violating the normality assumption. The impact
of this depends on the degree of truncation and also on the
number of observations and so on. It can lead to an ideal χ2

r
value diverting from 1.

ICLASS also calculates a prior and posterior partial cost
function and a posterior χ2

r statistic for individual observa-
tion streams and for the correspondence to prior informa-
tion (background). The partial cost function for observation
stream j is calculated as follows:

Jj =

mj∑
i=1

wi
(H(xm,p)i − sj yj,i + εi)

2

σ 2
O,i

, (20)

where mj is the number of observations of stream j , yj,i is
the ith observation of stream j , and H(xm,p)i is the model
output corresponding with yj,i . In case scaled observations
are perturbed in the ensemble (Sect. 4.2), εi is a random num-
ber; otherwise, it is 0. The χ2

r statistic for observation stream
j is defined here as follows:

χ2
r,j =

Jj∑mj
i=1(wi)

. (21)

This equation resembles Eq. (13) in Meirink et al. (2008), but
note that the variable χ2

ns
in their paper is similar to χ2

r,j in our
paper. The χ2

r statistic for the background part is calculated
as follows (similar to Eq. 26 of Michalak et al., 2005):

χ2
r,b =

Jb

n
, (22)

where Jb is the background part of the cost function, i.e. the
first term from Eq. (5). The mean bias error, root mean
squared error, and the ratio of model and observation vari-
ance for every observation stream is also calculated, both for
the prior and posterior state. The mean bias error for the j th
observation stream is defined here as follows:

εbias,j =
1
mj

mj∑
i=1
(H(xm,p)j,i − sj yj,i). (23)

In this equation, mj is the number of observations of type
(stream) j , H(xm,p)j,i is the model output for observation
stream j at time index i, yj,i is an observation of stream j at
time index i, and sj is an observation scaling factor for obser-
vations of stream j . Note that, even when the scaled obser-
vations are perturbed, we do not include those perturbations
here (compare Eq. 20). In case the FracH parameter is used,
the energy-balance-corrected observations (Eqs. 8 and 9) will
be used in the equation above. For the root mean squared er-
ror and the ratio of model and observation variance, the ob-
servation scales and energy-balance-corrected observations
are used as well. ICLASS also calculates the normalised de-
viation of the posterior from the prior for every state param-
eter xi as follows:

δnor,i =
xpost,i − xA,i

σA,i
, (24)

where σA,i is the square root of the prior variance of param-
eter i, i.e. the square root of diagonal element i from matrix
SA. Note that, also in case of an ensemble, we use the unper-
turbed prior, i.e. the prior of member 0.

If run in ensemble mode, we additionally store estimates of
the posterior error covariance matrix (Sect. 4), the posterior
error correlation matrix, the ratio of the posterior and prior
variance for each of the state parameters, the mean posterior
state, and the optimised and prior states for every single en-
semble member. When non-state parameters are perturbed in
the ensemble, these parameters are part of the output. More-
over, the correlation of the posterior state parameters with
these non-state parameters can also be written as output.
When the model error standard deviations are estimated by
ICLASS (Sect. 4.1), there is a separate file containing statis-
tics on the estimated error standard deviations. Finally, there
are additional output files with information about the opti-
misation process. For every model simulation (and for every
ensemble member) in the iterative optimisation process, one
can find the parameter values used in this simulation and the
value of the cost function split up into a data and a back-
ground part. For the gradient calculations, one can find the
parameter values used and the derivatives of the cost function
with respect to every state parameter. The derivatives of the
background part are also provided separately. More details
on the output of ICLASS can be found in a separate section
of the manual. An overview of the output variables defined
in this section is given in Table B2.
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6 Technical details of the code

We have written the entire code in Python 3 (https://www.
python.org, last access: 9 December 2022). Using the frame-
work requires a Python 3 installation, including the NumPy
(van der Walt et al., 2011; https://numpy.org), SciPy (https:
//scipy.org, last access: 9 December 2022), and Matplotlib
(Hunter, 2007; https://matplotlib.org, last access: 9 Decem-
ber 2022) libraries. The code is operating system indepen-
dent and consists of the following three main files:

– forwardmodel.py, which contains the adapted CLASS
model.

– inverse_modelling.py, which contains most of the in-
verse modelling framework, such as the function to be
minimised in the optimisation and the model adjoint.

– optimisation.py, which is the file to be run by the user
for performing an actual optimisation. In this file, the
observations are loaded, the state vector defined, and so
on. The input paragraphs in this file should be adapted
by the user to the optimisation performed.

There are three additional files. The first is optimisa-
tion_OSSE.py and is similar to optimisation.py but is meant
specifically for observation system simulation experiments
(also, in this file, the user should adapt the input paragraphs
to the optimisation to be performed). The second file is test-
ing.py, which contains tests for the code, as described in
Sect. 7. The file postprocessing.py is a script that can be run,
after the optimisations are finished, for post-processing the
output data, e.g. to plot a coloured matrix of correlations.
Using the Pickle module, the optimisation can store variables
on the disk near the end of the optimisation, and these vari-
ables can be read in again in the postprocessing.py script.
This has the advantage that, for example, the formatting of
plots can easily be adapted without redoing the optimisation.
This script should be adapted by the user to the optimisation
performed and the output desired.

7 Adjoint model validation

When using the adjoint modelling technique, an extensive
testing system is required to make sure that the analytical
gradient of the cost function computed by the adjoint model
is correct. There are two tests that are essential, which are
described below.

The gradient test (for the tangent linear model) is a test to
determine whether the derivatives with respect to the model
input parameters in the tangent linear model are constructed
correctly. The construction of the adjoint is based on the tan-
gent linear model, so errors in the tangent linear propagate to
the adjoint model. In the gradient test, model input state vari-
ables are perturbed, leading to a change in model output. The
change in model output when employing the tangent linear

Table 1. A simple gradient test example involving the derivative of
the 2 m temperature with respect to the roughness length for heat
(z0h). The right column gives, for different values of perturbation α
(m), the result of the calculation 1− RHS divided by LHS, whereby
RHS is the right-hand side of Eq. (25), and LHS is the left-hand
side of the same equation. Note that only the RHS of the equation is
influenced by α. In this example, we have only perturbed parameter
z0h, but multiple parameters can be perturbed within one test.

α(m) 1 − ratio RHS and LHS (–)

0.5 4.7× 10−1

0.2 3.2× 10−1

0.1 2.2× 10−1

1× 10−2 3.4× 10−2

1× 10−3 3.6× 10−3

1× 10−4 3.7× 10−4

1× 10−5 3.7× 10−5

1× 10−6 4.2× 10−6

1× 10−7 2.6× 10−6

1× 10−8
−8.2× 10−6

1× 10−9 5.9× 10−4

1× 10−12
−8.2× 10−2

model is compared to the change in model output when a nu-
merical finite difference approximation is employed. Math-
ematically, the test for the ith model output element can be
written as follows (similar to Honnorat et al., 2007; Elizondo
et al., 2000):

dH(xm,p)i

dxm
·1xm ≈

H(xm+α1xm,p)i −H(xm,p)i

α
, (25)

where 1xm is a vector of ones, with the same length as
vector xm. α is a small positive number, H represents the
forward-model operator, H(xm,p)i is the ith model output
element, xm is the vector of the model input variables to be
tested (model parameters part of state), · is the Euclidian in-
ner product, and vector p is the set of non-state parameters
used by the model. Several increasingly smaller values are
tested for α. When the tangent linear model is correct, then
the right-hand side of the equation will converge to the left-
hand side when α becomes progressively smaller, although
for too small α values, numerical errors start to arise (Eli-
zondo et al., 2000). Instead of using the full tangent linear
model, individual model statements can also be checked. In
this case, xm and H(xm,p)i can contain intermediate (not
part of model input or output) model variables. The gradient
test is considered successful if the ratio of the left- and right-
hand sides of the equation lies in the interval [0.999–1.001].
The results of a simple example of a gradient test, involv-
ing the derivative of the 2 m temperature with respect to the
roughness length for heat (z0h), is shown in Table 1.

The dot product (adjoint) test checks whether the adjoint
model code is correct for the given tangent linear code. It
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tests whether the identity

〈HLxm,y〉 = 〈xm,HT
Ly〉 (26)

holds (Krol et al., 2008; Meirink et al., 2008; Honnorat et al.,
2007; Claerbout, 12004). The equation can also be written as
follows:

〈HLxm,y〉− 〈xm,HT
Ly〉

〈HLxm,y〉
= 0. (27)

In this equation, HL =∇xmH (xm,p) represents the tangent
linear model operator, i.e. a matrix (the local Jacobian of H )
with the element on the ith row and j th column given by
dH (xm,p)i

dxm,j
. xm is, in this equation, a vector with perturbations

to the model state, HT
L represents the adjoint model operator,

and 〈〉 is the Euclidian inner product. A very small deviation
from 0 is acceptable due to machine rounding errors (Claer-
bout, 12004). Our criterion for passing the test, when using
64 bit floating point calculations, is that the absolute value of
the left-hand side of Eq. (27) should be <= 5× 10−13. This
test can also be applied to individual statements or a block of
statements in the adjoint model code. In this case, the defini-
tions of the variables in Eq. (27) change slightly, e.g. HT

L then
represents a part of the adjoint model. The adjoint test will be
illustrated by a (slightly simplified) example from the model
code, namely the well-known Stefan–Boltzmann law for out-
going longwave radiation. The forward-model code reads as
follows:

Lwout = bolz * Ts ** 4.

The tangent linear model code for this statement reads as
follows:

dLwout = bolz * 4 * Ts ** 3. * dTs.

And the corresponding adjoint code is as follows:

adTs += bolz * 4 * Ts ** 3. * adLwout
adLwout = 0.

In this case, xm corresponds to dTs, and the HLxm vari-
able is dLwout. The vector y is adLwout, and HT

Ly is
adTs. In the test, xm and y are assigned random numbers.
When we evaluated Eq. (27) on this part of the code, the re-
sult was less than 1× 10−15 (which corresponds to approx-
imately 5 × the machine precision), meaning that the test
passes.

We have constructed a separate script that performs a vast
number of gradient tests and adjoint tests and informs the
user whenever a test fails. This file (testing.py) is included
with the code files. The number of time steps we specified
for testing is small, as the computational burden increases
with the number of time steps. The model passes the vast
majority of the tests that are executed in this file. Closer in-
spection of the tests that fail reveals that numerical noise is
a likely explanation for the small fraction of tests that are la-
belled as failing. Further validation of the inverse modelling
framework follows in the next section.

8 Inverse modelling validation: observation system
simulation experiments

To test the ability of the system to properly estimate model
parameters, we show, in this chapter, the results of obser-
vation system simulation experiments (OSSEs) with artifi-
cial data. These types of experiments are classically used to
test the ability of the system to properly estimate model pa-
rameters. For example, similar tests have been performed by
Henze et al. (2007), for their adjoint of a chemical transport
model. In our experiments, we simulate a growing convective
boundary layer for a location at mid-latitudes from 10–14 h,
including surface layer calculations. In the chosen set-up, the
land surface is coupled to the boundary layer. The land sur-
face provides heat and moisture and exchanges CO2 with the
CBL.

8.1 Parameter estimation

We perform, in this section, a total of five main experiments
of varying complexity. The things that differ among experi-
ments are the choice of observations and state vectors. The
procedure for the first four experiments is as follows. We first
run the model with chosen values of a set of parameters we
want to optimise. A set of model output data from this sim-
ulation then serves as the observations, while the parameters
used to create these observations are referred to as the true
parameters. Then we perform an optimisation using these ob-
servations, starting from a perturbed prior state vector. In the
cost function, we do not include the background part to make
sure that it is possible to retrieve the true parameters. This is
because the background part of the cost function implies a
penalty for deviating from the prior state. This penalty im-
plies that, when the model is run with the true parameters,
the cost function would still not be 0. Next to that, the mini-
mum of the cost function is (generally) shifted. When leaving
out the background part, the framework should, if converging
properly, be able to find back the parameter values that were
used for creating the observations, starting from any other
prior state vector.

Since real-life observations usually contain noise, the last
experiment follows the same procedure, except that the ob-
servations are also perturbed. This is done by adding white
Gaussian noise to the observations. For each observation yi , a
random number drawn from a normal distribution with mean
0 and standard deviation equal to a specified σI,i (Table 3)
is added. The model and representation errors are set to 0 in
all experiments. All weights for the cost function were set
to 1. Table 2 lists, for every experiment, the prior, the true,
and the optimised state variables. The complexity of the ex-
perimental set-up increases from the top to the bottom of the
table.

For the first experiment, we perturbed the initial bound-
ary layer height and albedo. The rest of the parameters are
left unchanged compared to the true parameters. The obser-
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Table 2. Parameter values for the main observation system simulation experiments of Sect. 8.1. The observation streams used in the two
obs (observation) streams experiments are q and h, for the six obs streams experiment, H , LE, T2, and FCO2 are added, and for the seven
obs streams experiments, CO220 is additionally added. The value of, for example, parameter z0m (only a state element in the 10-parameter-
state experiments) is in the 2-parameter-state and 5-parameter-state experiments equal to the true value of z0m in the 10-parameter-state
experiments. See Table A1 for a description of the parameters and Table A2 for a description of the observation streams. Note: ppm is parts
per million.

Parameter True Prior Optimised

2-parameter state Two obs streams

h (m) 350.0 650.0 350.0
αrad (–) 0.200 0.450 0.200

5-parameter state Two obs streams Six obs streams

h (m) 350.0 650.0 350.0 350.0
αrad (–) 0.200 0.450 0.200 0.200
αsto (–) 1.00 0.50 0.96 1.00
wg (–) 0.270 0.140 0.306 0.270
γθ (Km−1) 0.0030 0.0050 0.0030 0.0030

10-parameter state Seven obs streams

No noise Noise
h (m) 350.0 650.0 350.0 344.4
αrad (–) 0.200 0.450 0.200 0.207
αsto (–) 1.00 0.50 1.00 1.01
wg (–) 0.270 0.140 0.270 0.238
γθ (Km−1) 3.0× 10−3 5.0× 10−3 3.0× 10−3 3.1× 10−3

γq (kgkg−1m−1) −1.0× 10−6
−3.0× 10−6

−1.0× 10−6
−1.1× 10−6

CO2 (ppm) 422.0 380.0 422.0 423.2
advCO2 (ppms−1) 0.0 6.0× 10−3 9.8× 10−8

−1.4× 10−4

z0m (m) 0.020 0.100 0.020 0.048
z0h (m) 0.020 0.010 0.020 0.013

Table 3. The root mean squared error (RMSE) and the specified measurement error standard deviation (σI) for the observation streams in
the 10-parameter-state OSSE with perturbed observations. In all our OSSEs, the measurement error standard deviations are chosen to be
constant with time. Note that the measurement error equals the observational error here, since the model and representation errors were set
to 0 for simplicity. The σI are identical for all OSSEs in Table 2, but not all observation streams are used in each OSSE.

Observation stream RMSE prior RMSE optimised σI

q (kgkg−1) 4.5× 10−4 3.6× 10−4 4.0× 10−4

h (m) 365.2 91.9 100.0
H (Wm−2) 91.7 22.8 25.0
LE (Wm−2) 128.6 22.7 25.0
T2 (K) 1.50 0.62 0.65
FCO2 (mgCO2 m−2 s−1) 42× 10−2 3.6× 10−2 4.0× 10−2

CO220 (ppm) 30.5 1.7 2.0

vation streams we used are specific humidity and boundary
layer height. The specific humidity is expected to be influ-
enced by the albedo, as the amount of available net radiation
is relevant for the amount of evapotranspiration, which in-
fluences the specific humidity. The boundary layer height is
relevant for specific humidity as well, as it determines the
size of the mixing volume in which evaporated water is dis-

tributed. The state parameters are thus expected to have a
profound influence on the cost function.

The optimised model shows a very good fit to the obser-
vations (Fig. 3), and the original parameter values are found
with a precision of at least five decimal places (Table 2; fewer
than five decimal places are shown). This result indicates the
optimisations work in such simple situations.
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To test the system for a more complex problem, we change
from two parameters in the state to five (Table 2; second
block), while keeping the same observations. Again, based
on physical reasoning, the added parameters are expected
to influence the cost function. However, one might expect
that the observations might not be able to uniquely constrain
the state, i.e. parameter interdependency issues might arise
for this set-up (equifinality). As an example, a reduction in
soil moisture might influence the observations in a similar
way as a reduction in stomatal conductance does. Mathemat-
ically, this means that multiple nearly equivalent local min-
ima might be present in the cost function.

Also for this more complex case, we manage to obtain a
very good fit (Fig. 3c and d). However, inspecting the ob-
tained parameter values (Table 2; second block; column la-
belled “Two obs streams”), we see that the optimisation does
not fully converge to the true state. This is likely caused
by parameter interdependency, as described earlier. To solve
this, extra observation streams need to be added that allow
the disentangling of the effects of the different parameters
in the state. We have tested this in the third experiment by
adding the sensible and latent heat flux, the temperature at
2 m height, and the surface CO2 flux to the observations.
With this more complete set of observations, the true param-
eter values are found with a precision of at least four decimal
places (column labelled “Six obs streams” in Table 2). As
a side experiment, not included in Table 2, we have run the
same experiment as before but using the numerical deriva-
tive described in Sect. 3.5. In this case, convergence is no-
tably slower, e.g. more than 6 times as many iterations were
needed to reduce the cost function to less than 0.1 % of its
prior value. This indicates that, at least for this more com-
plex non-linear optimisation case, an analytical gradient out-
performs our simple numerical gradient calculation.

In the fourth main experiment, we increase the number
of state parameters to 10 (Table 2). To further constrain the
parameters, we expand our set of observation streams with
the CO2 mixing ratio measured at 20 m height. Also, for
this complex set-up, the framework managed to find the true
values, with a precision of one decimal place for the initial
boundary layer height and more for the other parameters.

These tests show that (at least for the range of tests per-
formed) the framework is able to find the minimum of the
cost function well. Additionally, we performed another ob-
servation system simulation experiment to test the frame-
work’s usefulness in a more realistic situation with noise on
the observations. The result can be seen in Fig. 3e–h. The
framework finds a good fit to the observations, even though
it has now become impossible to fit every single (perturbed)
observation. The posterior root mean squared error is about
the same size (slightly smaller) as the observational error
standard deviation for all observation streams (Table 3). This
confirms the visual good fit from Fig. 3e–h, given that these
observational error standard deviations were used to create
the random perturbations for the observations. The χ2

r statis-

tic of the optimisation has become close to 1 (0.83), indicat-
ing no strong over- or under-fitting of the observations.

8.2 Posterior uncertainties and bias correction

In this section, we describe two additional experiments that
focus on the validation of the two bias correction methods
(Sect. 3) and the posterior uncertainty in the optimised pa-
rameters. As a starting point, we take the 10-parameter-state
experiment with unperturbed observations from the previous
section. We add two additional state parameters related to
bias correction (Table 4). We have tested that, for this set-
up, ICLASS is able to retrieve the true parameters well (Ta-
ble 4; column labelled “Optimised unp.”), including the pa-
rameters related to bias correction (FracH and sCO2 ). We now
perturb the true observations by adding, to each observation
yi , a random number from a normal distribution with mean 0
and standard deviation 1.5 σO,i . The factor 1.5 means that we
misspecify the observational errors in the framework, as can
happen in real situations too. In this OSSE, we will not sim-
ply attempt to fit the observations as well as possible, but we
want to employ both observations and prior information. We
therefore include the background part of the cost function.
The prior error standard deviations are given in Table 4; the
a priori error covariance matrix was chosen to be diagonal.
As we want an estimate of the posterior parameter uncer-
tainty, we ran ICLASS using an ensemble of 100 perturbed
members. For simplicity, we take the total observational error
equal to the measurement error, as for the previous OSSEs.

From the 101 members in the ensemble, the unperturbed
optimisation has the lowest posterior cost function. Figure 4
indicates that the optimised solution shows a strongly im-
proved fit with the (adapted) observations compared to the
prior fit. As expected, due to the perturbations on the obser-
vations and the background part of the cost function, the true
parameters are not found anymore. For slightly more than
half of the state parameters, the optimised parameter value
is located less than 1 posterior standard deviation away from
the true value (Table 4; rightmost column). The largest rela-
tive deviation from the truth is forwg, and the posterior value
is approximately 2 standard deviations away from the true
value. The parameter uncertainty, as expressed by the stan-
dard deviations of the state parameters in Table 4, is reduced
for every parameter after the optimisation. In addition, the
posterior root mean squared error (RMSE) is reduced for ev-
ery observation stream after optimisation (Table 5). We see
that the posterior RMSE now approaches 1.5× σO, which
can be explained by the intentional misspecification of er-
rors. For the same reason, the values of the partial reduced
chi-square statistics (χ2

r,j ) should be near 2.25 (1.5 × 1.5)
for all observation streams, except CO220 . The latter is more
complex due to the presence of the bias correction scaling
factor (sCO2 ). Indeed, we find χ2

r,j values ranging between
2.09 and 2.17 for all streams, except CO220 (Table 5). Note
that, for the analysis of the posterior uncertainty, we have
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Figure 3. Model output from three observation system simulation experiments from Sect. 8.1, namely the two-parameter-state experiment
with albedo and the initial boundary layer height (top row), the five-parameter-state experiment with two observation streams (second row),
and the experiment with perturbed observations (third and fourth rows). The term “post” means posterior, i.e. the optimised simulation. Even
though the posterior lines look very similar for the first and second rows, the model parameters are not identical. The specific humidity is
from the mixed layer. The error bars show the observational error standard deviations σO, which are here equal to σI.
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only used members with a posterior χ2
r equal to or lower

than 4.5. Therefore, only 38 of the 100 perturbed members
were used. We conclude here that ICLASS performs well in
all our tests with artificial data, and we present an application
with real observations in the next section (more extensive).

9 Application example: CO2 and boundary layer
meteorology at a Dutch grassland

9.1 Set-up

For this example of how the framework can be used, we used
data obtained at Cabauw, the Netherlands, from 25 Septem-
ber 2003. A 213 m high measurement tower is present at this
location (Bosveld et al., 2020). This day is chosen here since
it has been used in several studies before (Vilà-Guerau De
Arellano et al., 2012; Casso-Torralba et al., 2008), and we
consider it to be a golden day (Sect. 1), for which the CLASS
model is expected to perform at its best.

The set of observation streams we used is given in Ta-
ble 6, and a description of these streams is given in Table A2.
Some of the observations we used are not directly part of the
Cabauw dataset; we have derived them from other observa-
tions in the same dataset. The parameters we optimise (the
state) are given in Table 7, and a description of these param-
eters can be found in Table A1. The model settings, prior
state, and non-state parameters are to a large extent based on
Vilà-Guerau De Arellano et al. (2012). The modelled period
is from 09:00–15:00 UTC, and we activated the surface layer
option in the model. We ran ICLASS in the ensemble mode
with 175 members, and an ensemble member was consid-
ered successful when having a final χ2

r <= 2.0 (Eq. 19). The
prior error standard deviations are given in Table 7. The a pri-
ori error covariance matrix was assumed to be diagonal. The
representation errors were set to 0. The chosen weights and
model and measurement error standard deviations are given
in the supplementary material, and further detailed settings
of the optimisation can be found via the Zenodo link in the
code and data availability section.

9.2 Computational costs

To give an idea of the computational costs involved, we
added a timer to an optimisation. An optimisation, like the
one described in this section but without the use of an en-
semble, took, in our specific case, about 1000 times the time
of an individual model simulation using the original CLASS
model. However, in our test, an individual simulation with
this model took less than 1 s using a single CPU, so the
computational cost is still relatively small. The total time it
takes to perform an optimisation is dependent on how well
the optimisation converges and on the configuration. Using
an ensemble increases the computational costs, but multiple
ensemble members can be run in parallel on multiprocessor
computing systems. An optimisation with an ensemble, like

the one described in this section, took, in our specific case,
approximately 2 h, using 32 cores of a high-performance
computing cluster. The total summed CPU time was about
45 h.

9.3 Model fit

Figure 5 shows that the optimised run shows a much better fit
than the prior run to the subset of observations present in this
figure. For temperature, a total of seven observation heights
are included, but we only show three for brevity. The cost
function is reduced from 4702 to 126. The χ2

r goodness-of-fit
statistic has a value of 0.80 for the optimised run, indicating a
slight overfitting (or non-optimal error specifications). For all
observation streams, the root mean squared error (Sect. 5; Ta-
ble 6) and the absolute value of the mean bias error (Eq. 23;
not shown) are reduced after optimisation. The ratio of model
and observation variance becomes closer to 1 for the vast ma-
jority of observation streams, except for three of the specific
humidity streams and the sensible heat flux.

9.4 Bias correction

Let us now turn to the energy balance (Fig. 6). As described
in Sect. 3.3, we forced the energy balance in the observations
to close by partitioning the energy balance gap partly to H
and partly to LE. From Fig. 6, it is clear that, in the original
observations, the sum of H and LE is generally lower than
in both the prior and posterior model runs. Both the model
and the corrected observations take the energy balance into
account. When the difference in Rn−G between model and
observations is small (Eq. 7), we might normally expect the
model to more easily fit the corrected observations than the
original ones. Also in this example, the posterior fit is im-
proved compared to the prior, especially for the sensible heat
flux (Table 6). We notice that most of the additional energy
is partitioned to LE (Table 7 and Fig. 6). The energy bal-
ance closure residual (LHS of Eq. 7) is important to account
for in this case, as the mean value of the residuals is only
11 % smaller as the mean of the measured (without apply-
ing Eq. 8) sensible heat flux. Note that, for some of the data
points around noon, the energy balance correction tends to
decrease the heat fluxes (Fig. 6). Inspection of a satellite im-
age of that day revealed that this is likely caused by the pres-
ence of high clouds, causing a fast drop in net radiation. The
measured heat fluxes tend to react slower, however, leading
to a negative value for some elements of vector εeb in Eq. (7).

As is the case for the surface energy balance closure prob-
lem, there can also be biases in the CO2 flux eddy covariance
observations (Liu et al., 2006). Here we have neglected this
for simplicity.

9.5 Optimised parameters

The optimised state is shown in Table 7. Advection
of heat remains relatively close to 0 after optimisation
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Table 4. Parameter values for the bias correction OSSEs. The used observation streams are q, h, H , LE, T2, FCO2 , and CO220 . σA and
σpost are, respectively, the prior and posterior standard deviation of the state parameters. The rightmost column lists the optimised parameter
value minus the true value, normalised with the posterior standard deviation of the respective parameter. The column Optimised unp. lists
the optimised parameter values of the experiment without any perturbed observations. The four columns at the right-hand side only apply to
the OSSE with perturbed observations. See Table A1 for a description of the parameters and Table A2 for a description of the observation
streams.

Parameter True Prior Optimised unp. Optimised σA σpost
opt.−true
σpost

h (m) 350.0 650.0 350.0 379.1 200.0 53.3 0.545
αrad (–) 0.200 0.450 0.200 0.188 0.150 0.010 −1.209
αsto (–) 1.00 0.50 1.00 1.12 1.50 0.12 0.928
wg (–) 0.270 0.140 0.270 0.101 0.150 0.084 −2.006
γθ (Km−1) 3.0× 10−3 5.0× 10−3 3.0× 10−3 3.1× 10−3 3.0× 10−3 0.3× 10−3 0.198
γq (kgkg−1 m−1) −1.0× 10−6

−3.0× 10−6
−1.0× 10−6

−0.8× 10−6 3.0× 10−6 0.5× 10−6 0.362
CO2 (ppm) 422.0 380.0 421.9 357.8 50.0 38.3 −1.675
advCO2 (ppms−1) 0.0 6.0× 10−3 4.3× 10−7 0.4× 10−3 5.6× 10−3 0.2× 10−3 1.768
z0m (m) 0.020 0.100 0.020 0.081 0.100 0.074 0.821
z0h (m) 0.020 0.010 0.020 0.013 0.010 0.008 −0.947
FracH (–) 0.350 0.600 0.350 0.392 0.200 0.087 0.479
sCO2 (–) 1.400 1.000 1.400 1.179 0.300 0.132 −1.670

Table 5. The prior and posterior root mean squared error (RMSE), the specified measurement error standard deviation (σI), and the partial
reduced chi-square statistic (χ2

r,j ) for the observation streams in the bias correction OSSE with perturbed observations. The RMSE and χ2
r,j

values are for the member with the lowest posterior cost function, i.e. the member with unperturbed prior. Note that the measurement error
equals the observational error here, since the model and representation errors were set to 0 for simplicity. All weights for the cost function
were set to 1. We used a total of 280 individual (artificial) observations in the cost function. See Table A2 for a description of the observation
streams.

Observation stream RMSE prior RMSE optimised σI χ2
r,j

q (kgkg−1) 6.1× 10−4 5.8× 10−4 4.0× 10−4 2.11
h (m) 415.6 147.2 100.0 2.17
H (Wm−2) 140.4 36.5 25.0 2.13
LE (Wm−2) 101.9 36.4 25.0 2.12
T2 (K) 1.82 0.94 0.65 2.09
FCO2 (mgCO2 m−2 s−1) 40.7× 10−2 5.8× 10−2 4.0× 10−2 2.12
CO220 (ppm) 127.9 3.5 2.0 3.10

(−0.13± 0.06 Kh−1, where 0.06 is σpost). This is slightly
outside the range of 0.1–0.3 Kh−1 found by Casso-Torralba
et al. (2008), who analysed the same day (using a longer
time period). The result can be considered to be in agree-
ment with Bosveld et al. (2004), who concluded large-scale
heat advection to be negligible for this day. For CO2, how-
ever, we find an advection of 5.8± 1.9 ppmh−1 (where ppm
is parts per million), which is higher than what was found
by Casso-Torralba et al. (2008, their Fig. 9). We shortly re-
turn to this in Sect. 9.6. The two parameters that deviate the
most from their prior values (normalised with the prior stan-
dard deviation; Table 7) are γCO2 and R10. Both parameters
are linked to the CO2 budget, γCO2 influences the amount of
entrained CO2 from the free troposphere, while R10 influ-
ences the amount of CO2 entering the mixed layer via res-
piration. From Fig. 5c, it is clear that the prior run has way

too strong a net surface CO2 flux compared to the observa-
tions, which explains why R10 is strongly increased in the
optimised state. Two main pathways through which the CO2
flux can decrease (in magnitude) are either by increasing R10
or by decreasing the conductance (via αsto). However, the
latter also impacts the model fit of the latent heat flux. Un-
fortunately, separate measurements of gross primary produc-
tion (GPP) and respiration (e.g. derived from carbonyl sul-
fide observations; Whelan et al., 2018) are not available in
our dataset. These could help to further constrain the CO2-
related parameters. In a more detailed study, the parameter
estimates might still be improved by, for example, better es-
timating the vector p and the observational errors.
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Figure 4. Model output and observations for the bias correction OSSE with perturbed observations. The full red line shows the optimised
model (“post” means posterior), and the dashed yellow line is the prior model. The (uncorrected) observations are shown by a black star. The
error bars show the measurement error standard deviation σI (here equal to σO) on the observations. In panel (b), the red-filled circles are the
scaled observations, i.e. sCO2 × y. In panels (c) and (d), the black stars are the original (although perturbed) observations, and the red dots
are the observations after applying Eqs. (8) and (9).

9.6 Posterior uncertainty and correlations

The discussion above illustrates that not all of the param-
eters in the state may be assumed to be fully independent.
To analyse the posterior correlations, we have constructed
a correlation matrix (Sect. 4.2), as shown in Fig. 7. From
the 174 perturbed ensemble members, 150 were successful
and were used for the calculation of statistics. As expected,
the correlation between αsto and R10 is very strongly posi-
tive (0.94), and this can likely be explained by their opposite
effects on the CO2 flux, as explained in the previous para-
graph. Some of the correlations between parameters can be
relatively complex, e.g. a correlation between two posterior
parameters might involve a third parameter that correlates
with both.

Coming back to the discrepancy in CO2 advection be-
tween our analysis and what was found by Casso-Torralba
et al. (2008), it can be noted that the advCO2 parameter is
relatively strongly correlated with both the 1CO2 and γCO2

parameters (Fig. 7; correlation of −0.65 and −0.80, respec-
tively). This can indicate that entrainment from the free tro-

posphere is hard to disentangle from advection in shaping the
CO2 budget, with the current set of observations we incorpo-
rate. Differences in how entrainment is handled by Casso-
Torralba et al. (2008) might explain part of the difference in
estimated CO2 advection.

To check to what extent the obtained correlations are ro-
bust and independent of the selected number of ensemble
members, we reconstructed the correlation matrix using only
half of the successful perturbed members (75 of the 150).
The average absolute value of difference between the non-
diagonal matrix entries when using the subsample and the
non-diagonal matrix entries when using the full successful
perturbed ensemble amounts to 0.05, with a maximum of
0.23 for one entry. This suggests that using 150 members in
the correlation analysis leads to a reasonably robust estimate
of the posterior correlations.

Another option we explore is to analyse the posterior pdf’s
for the successful perturbed members in the ensemble. As an
example, we show the pdf’s for two parameters, advθ and γq
(Fig. 8). For advθ , the posterior uncertainty is clearly reduced
compared to the prior, as the posterior pdf is markedly nar-
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Table 6. Observation fit statistics for the Cabauw optimisation. The left columns show the root mean squared error (RMSE) for the prior
and posterior state. The two right columns show the ratio between the model and observation variance for the prior and posterior state. Only
model data points for times at which we have an observation available are taken into account. We used a total of 670 individual observations
in the cost function. The chosen cost function weights and model and measurement error standard deviations are given in the Supplement.
The sensible and latent heat flux observations used are corrected for the energy balance gap (see Eqs. 8 and 9). The observation streams are
described in Table A2.

Observation stream RMSE prior RMSE post Var. ratio prior Var. ratio post

T200 (K) 0.828 0.286 1.456 0.763
T140 (K) 0.868 0.296 1.449 0.759
T80 (K) 0.751 0.259 1.422 0.753
T40 (K) 0.741 0.242 1.426 0.773
T20 (K) 0.827 0.294 1.440 0.786
T10 (K) 0.781 0.282 1.434 0.789
T2
∗ (K) 0.815 0.307 1.505 0.842

q200 (kgkg−1) 9.22× 10−4 1.24× 10−4 0.353 0.753
q140 (kgkg−1) 9.59× 10−4 1.24× 10−4 0.332 0.708
q80 (kgkg−1) 9.49× 10−4 1.33× 10−4 0.328 0.623
q40 (kgkg−1) 8.70× 10−4 1.71× 10−4 0.351 0.488
q20 (kgkg−1) 8.87× 10−4 1.74× 10−4 0.434 0.406
q10 (kgkg−1) 9.16× 10−4 1.67× 10−4 0.523 0.383
q2
∗ (kgkg−1) 8.90× 10−4 2.55× 10−4 0.514 0.219

CO2207 (ppm) 19.693 0.712 5.728 0.866
CO2127 (ppm) 21.528 2.778 3.754 0.568
CO267 (ppm) 20.774 2.088 3.840 0.578
CO227 (ppm) 19.506 1.342 4.548 0.660
h (m) 270.5 131.5 0.524 1.107
LE (Wm−2) 22.28 18.47 0.691 0.986
H (Wm−2) 33.41 13.05 0.997 1.316
FCO2 (mgCO2 m−2 s−1) 0.494 0.102 0.342 0.514
Sout (Wm−2) 18.83 10.21 2.507 2.095

∗ The 2 m temperature and 2 m dew point observations (the latter used for deriving q2) were actually taken at 1.5 m. We do
our calculations as if the observations were taken at 2 m. This rounding might have introduced some bias to the T2 and q2
observations. We tested the impact of this by performing a corrected optimisation (without an ensemble). The state
parameters resulting from this optimisation were all within the 2 standard deviation posterior uncertainty range of the
uncorrected optimisation (x± 2σpost), and 9 out of 14 parameters were within the 1 standard deviation uncertainty range
(x± σpost).

Table 7. State parameters for the Cabauw optimisation. δnor is the normalised deviation, i.e. the posterior minus the prior, normalised with
the square root of the prior variance (Eq. 24). σA and σpost are, respectively, the prior and posterior standard deviation of the state parameters.

Parameter Prior Posterior δnor σA σpost

advθ (Ks−1) 0.000 −3.684× 10−5
−6.632× 10−2 5.556× 10−4 1.731× 10−5

advq (kgkg−1 s−1) 0.000 1.086× 10−8 1.955× 10−2 5.556× 10−7 4.415× 10−8

advCO2 (ppms−1) 0.000 1.602× 10−3 0.3845 4.167× 10−3 5.204× 10−4

1θ (K) 4.200 3.121 −0.7191 1.500 0.486
γθ (Km−1) 3.600× 10−3 2.849× 10−3

−0.2502 3.00× 10−3 6.10× 10−4

1q (kgkg−1) −8.000× 10−4
−2.138× 10−3

−0.6692 2.00× 10−3 5.59× 10−4

γq (kgkg−1 m−1) −1.200× 10−6
−1.207× 10−7 0.5397 2.0000× 10−6 1.8409× 10−6

1CO2 (ppm) −44.00 −22.42 0.8632 25.00 7.00
γCO2 (ppmm−1) 0.000 −6.389× 10−2

−2.130 3.000× 10−2 2.040× 10−2

αsto (–) 1.000 0.8990 −0.4038 0.2500 0.0640
αrad (–) 0.2500 0.2285 −0.2146 0.1000 0.0014
FracH (–) 0.6000 0.3474 −0.8420 0.3000 0.0391
wg (–) 0.4800 0.5153 0.2355 0.1500 0.0667
R10 (mgCO2 m−2 s−1) 0.2300 0.6393 1.364 0.3000 0.0346
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Figure 5. Optimisation for the Cabauw data. The full red line shows the optimised model (“post” means posterior), and the dotted yellow
line is the prior model. The observations are shown by a black star. The error bars show the measurement error standard deviation σI and
total error standard deviation σO on the observations.

rower. For γq (the free-tropospheric specific humidity lapse
rate), however, there is no clear reduction in uncertainty. The
wide posterior pdf implies that similar results can be obtained
over a relatively wide range of γq , possibly by perturbing
other parameters with a similar effect. To further constrain
this parameter, more specific observation streams would need
to be added, possibly from radiosondes. The use of ICLASS
in, for example, the planning of observational campaigns can
therefore help to determine beforehand what type of observa-
tions are needed to better constrain the processes represented
in the model. This is done through the use of observation sys-

tem simulation experiments, similar to, for example, Ye et al.
(2022).

10 Concluding discussion

We have presented here a description of ICLASS, a varia-
tional Inverse modelling framework for the Chemistry Land-
surface Atmosphere Soil Slab model. This framework serves
as a tool to study the atmospheric boundary layer and/or
land–atmosphere exchange. It avoids the need for manual
trial-and-error in choosing parameter values for the model
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Figure 6. Energy balance data, with (a) sensible heat flux and (b) latent heat flux, for the Cabauw case. The black stars are the original
observations, and the red dots the observations after forced closure of the energy balance. The error bars indicate the measurement error
standard deviation σI and the total observational error standard deviation σO. The full red line shows the optimised model (“post” means
posterior), and the dashed yellow line is the prior model.

Figure 7. Correlation matrix for the optimised state parameters for the Cabauw case. The shown correlations are marginal correlations and
not partial correlations.

when fitting observations, thereby providing more objectiv-
ity. Some extent of subjectivity, however, remains, as the
proper specification of errors is not always simple (e.g. Rö-
denbeck et al., 2003). The use of more advanced error esti-
mation methods can mitigate this. The very non-linear model
around which the framework is built makes the optimisation
challenging. In ICLASS, two main ways in which this chal-
lenge is tackled are as follows:

– The use of an analytical gradient of the cost function in-
volving the model adjoint, thus allowing for more pre-
cise gradient calculations.

– The possibility of running ICLASS in a Monte Carlo
way. This involves perturbing the prior state vector and
the (scaled) observations. When a single optimisation
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Figure 8. Probability density functions for the advθ (a) and γq (b) parameters. The red full line is for the posterior and the yellow dashed
line for the prior distribution. The vertical lines represent the mean of the distributions. For each probability density function, 15 bins were
used. Note that the prior distribution is determined from the sample of priors, which has a component of randomness.

does not converge, then the use of an ensemble can pro-
vide a solution.

The latter way of running ICLASS also has the advantage
that posterior error statistics can be obtained, which is of
paramount importance in inverse modelling.

The model is relatively simple yet contains the physics to
model the essentials of the convective boundary layer and of
land surface–atmosphere exchange. Its simplicity, however,
means that the model does not perform well in every situa-
tion. The best performance can be expected for days when the
boundary layer resembles a prototypical convective bound-
ary layer. We have shown the usefulness of ICLASS by ap-
plying it to a golden day at a Dutch grassland site where ex-
tensive data are available. The fit to several streams of obser-
vations simultaneously was greatly improved in the posterior
compared to the prior. We have to keep in mind, however,
that we cannot expect a relatively simple model to capture all
small-scale processes playing a role in the convective bound-
ary layer and in land surface–atmosphere exchange (e.g. het-
erogeneous surface heating, heterogeneous evaporation and
influence of individual thermals).

Key strengths of this framework are that observations from
several information streams can be used simultaneously, and
surface layer profiles can be taken into account. The frame-
work allows the integration of knowledge from ecosystem-
level studies (fluxes) and global studies (mixing ratios). It
can be seen as a tool that maximises the use of available ob-
servational data at CBL/ecosystem level (e.g. along tall tow-
ers like the Cabauw tower). Observation system simulation
experiments using ICLASS can also help in the planning of
observational campaigns so as to determine in advance which
observation streams are needed to better constrain model pro-
cesses. Another feature of the framework is the capacity of
correcting observations for biases. A specific bias correc-
tion system for the energy balance closure problem is imple-
mented. The energy balance residual was shown to be sub-

stantial at the Dutch grassland site in our application exam-
ple. Correcting for biases is critical in inverse modelling to
prevent bias errors from propagating in parameter estimates.
The correction of biases is, however, a very complex topic.
There are limitations to the level of complexity that our bias
correction methods can handle, and ICLASS cannot be ex-
pected to deal completely with all bias issues.

ICLASS is computationally relatively cheap to run and can
be extended in the future by, for example, incorporating a
more detailed representation of the vegetation. This exten-
sion can further improve the capabilities to fit sets of obser-
vations at locations with a more complex vegetation struc-
ture.
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Appendix A: Description of used parameters and
observation streams

Table A1. Used parameters in this paper.

Name Name in code Description Units

advCO2 advCO2 Advection of CO2 ppms−1

advq advq Advection of moisture kgkg−1 s−1

advθ advtheta Advection of heat Ks−1

αsto sca_sto Scaling factor for stomatal conductance –
αrad alpha Surface albedo –
1CO2 deltaCO2 Initial CO2 jump at h ppm
1q deltaq Initial specific humidity jump at h kgkg−1

1θ deltatheta Initial temperature jump at h K
FracH FracH Fraction of energy balance gap partitioned to H obs –
γCO2 gammaCO2 Free-atmosphere CO2 lapse rate ppmm−1

γq gammaq Free-atmosphere specific-humidity lapse rate kgkg−1 m−1

γθ gammatheta Free-atmosphere potential-temperature lapse rate Km−1

h h Initial atmospheric boundary layer height m
R10 R10 Respiration at 10 ◦C mgCO2 m−2 s−1

wg wg Volumetric water content top soil layer –
CO2 CO2 Mixed-layer CO2 ppm
z0m z0m Roughness length for momentum m
z0h z0h Roughness length for scalars m
sCO2 obs_sca_cf_CO2mh Scaling factor for CO220 observations (Sect. 8) –

Table A2. Used observation streams in this paper. Note that variables such as T200 and T140 are called Tmh and Tmh2, respectively, in the
model code for Sect. 9, which represents temperatures at the user-specified temperature measuring heights 1 and 2, respectively. For the CO2
mixing ratio, we do not make a distinction in this paper between the moist-air and dry-air mixing ratio.

Name Name in code Description Units

T200 Tmh (Sect. 9) Temperature measured at 200 m height K
T140 Tmh2 (Sect. 9) Temperature measured at 140 m height K

...

T2 Tmh7 (Sect. 9), Temperature measured at 2 m height K
Tmh (Sect. 8)

q200 qmh (Sect. 9) Specific humidity measured at 200 m height kgkg−1

q140 qmh2 (Sect. 9) Specific humidity measured at 140 m height kgkg−1

...

q2 qmh7 (Sect. 9) Specific humidity measured at 2 m height kgkg−1

q q Mixed-layer specific humidity kgkg−1

CO2207 CO2mh (Sect. 9) CO2 mixing ratio measured at 207 m height ppm
...

CO227 CO2mh4 (Sect. 9) CO2 mixing ratio measured at 27 m height ppm
CO220 CO2mh (Sect. 8) CO2 mixing ratio measured at 20 m height ppm
h h Boundary layer height m
H H Surface sensible heat flux Wm−2

LE LE Surface latent heat flux Wm−2

FCO2 wCO2 Surface CO2 flux mgCO2 m−2 s−1

Sout Swout Outgoing shortwave radiation Wm−2
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Appendix B: Inverse-modelling variables

Table B1. Description, dimensions, and units (of content) of inverse-modelling variables used in Sect. 3.1 and 3.4 of this paper.

Variable Description Dimensions Units (of content)

J Cost function Scalar –
n Number of state variables Scalar –
x State vector (ith element indi-

cated by xi )
Vector; length = n Units of the respective state vari-

ables
xb Bias parameters part of state

vector
Vector; length = number of state
variables belonging to bias correc-
tion

Units of the respective state vari-
ables: dimensionless

xm Model parameters part of state
vector

Vector; length = number of state
variables that are model parameters

Units of the respective state vari-
ables

x
{t}
m Model parameters part of state

vector with true parameter val-
ues

Vector; length = number of state
variables that are model parameters

Units of the respective state vari-
ables

xA A priori estimate of the state
vector

Vector; length = n Units of the respective state vari-
ables

m Number of observations in-
cluded in cost function

Scalar –

mj Number of observations from
observation stream j included
in cost function

Scalar –

y Vector of observations included
in cost function (J )

Vector; length =m Units of the respective observations

yH Vector of sensible heat flux ob-
servations included in J

Vector; length = number of sensi-
ble heat flux observations in y

Units of each element: Wm−2

yLE Vector of latent heat flux obser-
vations included in J

Vector; length = number of latent
heat flux observations in y

Units of each element: Wm−2

p Vector of model parameters that
are not optimised

Vector; length = number of model
parameters not included in state

Units of the respective parameters

H (xm,p) Vector of model output to be
compared with observations

Same as vector y Same units as vector y

(∇xmH (xm,p))
T Adjoint of model Matrix; size = length of vector

xm× length of vector y
Units of element on row i and col-
umn j : units of j th element of y di-
vided by units of ith element of xm

SA A priori error covariance matrix Matrix with size n× n Units of element on row i and col-
umn j : units of ith state variable
multiplied with units of j th state
variable

SO Observational error covariance
matrix

Matrix with size m×m (diagonal
matrix)

Units of ith diagonal element: units
of ith observation squared, other el-
ements are 0

σO,i Observational error standard
deviation belonging to ith ob-
servation

Scalar Unit of respective observation

σI,i Instrument (measurement) er-
ror standard deviation belong-
ing to ith observation

Scalar Unit of respective observation

σM,i Model error standard deviation
for model output corresponding
to ith observation

Scalar Unit of respective observation
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Table B1. Continued.

σR,i Representation error standard
deviation for model output cor-
responding to ith observation

Scalar Unit of respective observation

si Scaling factor for ith observa-
tion (constant within each ob-
servation stream)

Scalar Dimensionless

s
{t}
i

True scaling factor for ith ob-
servation (constant within each
observation stream)

Scalar Dimensionless

wi Weight for ith observation Scalar Dimensionless
F Forcing vector Vector; length = length of vector y Units of ith element: (units of ith

observation)−1

FH Forcing vector for the sensible
heat flux observations

Vector; length = length of vector yH Units of each element: m2 W−1

FLE Forcing vector for the latent
heat flux observations

Vector; length = length of vector yLE Units of each element: m2 W−1

εeb Energy balance closure residual Vector; length = length of yH or yLE ,
depending on equation

Units of each element: Wm−2

FracH Fraction of energy balance
closure residual added to
the sensible heat flux

Scalar –

Table B2. Output variables defined in Sect. 5.

Variable Description Unit

χ2
r Reduced chi-square statistic –
χ2

r,j Reduced chi-square statistic for observation stream j –
χ2

r,b Reduced chi-square statistic for background part cost function –
Jj Partial cost function observation stream j –
εbias,j Mean bias error j th observation stream Units of respective observation stream
δnor,i Normalised deviation of the posterior from the prior for ith state parameter –
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Code and data availability. The code is hosted at GitHub. The
current version of ICLASS is available from https://github.com/
PBosmanatm/ICLASS (last access: 9 December 2022) under
a GNU General Public License, v3.0 or later. The adapted
forward model and the ICLASS manual are also included
in the GitHub repository. This repository is linked to Zen-
odo, which provides DOIs for released software. The release
on which this reference paper is based can be found at
https://doi.org/10.5281/zenodo.7239147 (Bosman and Krol, 2022)
(GNU General Public License, v3.0 or later). The code and the
data used for creating the plots with optimisation results in this
paper, and for the content of the tables, are part of the download-
able material. The data used in this paper can differ somewhat from
the most recent version of these data. Boundary layer height data
were provided by Henk Klein Baltink (KNMI). These data (and
all other used data) can be found via the Zenodo link. The newest
version of the Cabauw data (except for boundary layer heights)
can be found at the following locations: the CO2 mixing ratios
can be found at the ICOS (https://www.icos-cp.eu/data-products/
ERE9-9D85, https://doi.org/10.18160/ERE9-9D85, Drought 2018
Team and ICOS Atmosphere Thematic Centre, 2020) and ObsPack
(https://gml.noaa.gov/ccgg/obspack/, The Global Monitoring Lab-
oratory of the National Oceanic and Atmospheric Administration,
2022) websites. Temperature, heat fluxes, and so on can be found
at https://dataplatform.knmi.nl/dataset/?tags=Insitu&tags=CESAR
(KNMI, 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-47-2023-supplement.
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