Articles | Volume 16, issue 15
https://doi.org/10.5194/gmd-16-4599-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-4599-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ENSO statistics, teleconnections, and atmosphere–ocean coupling in the Taiwan Earth System Model version 1
Yi-Chi Wang
Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
International Degree Program in Climate Change and Sustainable Development, National Taiwan University, Taipei, Taiwan
Yu-Luen Chen
Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
Shih-Yu Lee
CORRESPONDING AUTHOR
Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
Huang-Hsiung Hsu
Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
Hsin-Chien Liang
Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
Related authors
Chein-Jung Shiu, Yi-Chi Wang, Huang-Hsiung Hsu, Wei-Ting Chen, Hua-Lu Pan, Ruiyu Sun, Yi-Hsuan Chen, and Cheng-An Chen
Geosci. Model Dev., 14, 177–204, https://doi.org/10.5194/gmd-14-177-2021, https://doi.org/10.5194/gmd-14-177-2021, 2021
Short summary
Short summary
A cloud macrophysics scheme utilizing grid-mean hydrometeor information is developed and evaluated for climate models. The GFS–TaiESM–Sundqvist (GTS) scheme can simulate variations of cloud fraction associated with relative humidity (RH) in a more consistent way than the default scheme of CAM5.3. Through better cloud–RH distributions, the GTS scheme helps to better represent cloud fraction, cloud radiative forcing, and thermodynamic-related climatic fields in climate simulations.
Wei-Liang Lee, Yi-Chi Wang, Chein-Jung Shiu, I-chun Tsai, Chia-Ying Tu, Yung-Yao Lan, Jen-Ping Chen, Hua-Lu Pan, and Huang-Hsiung Hsu
Geosci. Model Dev., 13, 3887–3904, https://doi.org/10.5194/gmd-13-3887-2020, https://doi.org/10.5194/gmd-13-3887-2020, 2020
Short summary
Short summary
The Taiwan Earth System Model (TaiESM) is a new climate model developed in Taiwan. It includes several new features, and therefore it can better simulate the occurrence of convective rainfall, solar energy received by mountainous surfaces, and more detail chemical processes in aerosols. TaiESM can capture the trend of global warming after 1950 well, and its overall performance in most meteorological quantities is better than the average of global models used in IPCC AR5.
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408, https://doi.org/10.5194/egusphere-2025-3408, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes how the Coupled Model Intercomparison Project organized its 7th phase (CMIP7) to encourage the production of Earth system model outputs relevant for impacts and adaptation. Community engagement identified 13 opportunities for application across human and natural systems, 60 variable groups and 539 unique variables. We also show how simulations can more efficiently meet applications needs by targeting appropriate resolution, time slices, experiments and variable groups.
Baylor Fox-Kemper, Patricia DeRepentigny, Anne Marie Treguier, Christian Stepanek, Eleanor O’Rourke, Chloe Mackallah, Alberto Meucci, Yevgeny Aksenov, Paul J. Durack, Nicole Feldl, Vanessa Hernaman, Céline Heuzé, Doroteaciro Iovino, Gaurav Madan, André L. Marquez, François Massonnet, Jenny Mecking, Dhrubajyoti Samanta, Patrick C. Taylor, Wan-Ling Tseng, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-3083, https://doi.org/10.5194/egusphere-2025-3083, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The earth system model variables needed for studies of the ocean and sea ice are prioritized and requested.
Katherine Shu-Min Li, Nadun Sinhabahu, Ben-Jei Tsuang, Fang-Chi Wu, Wan-Ling Tseng, Pei-Hsuan Kuo, Sying-Jyan Wang, Pang-Yen Liu, Jen-Her Chen, Bin-Ming Wang, Yung-Yao Lan, and Sun-Yuan Kung
EGUsphere, https://doi.org/10.5194/egusphere-2025-142, https://doi.org/10.5194/egusphere-2025-142, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study underscores the transformative potential of machine learning algorithms in environmental forecasting. The superior performance of Bi-LSTM in reducing SST bias, coupled with its broader applicability in time-series analysis, makes it a valuable tool for improving the accuracy and reliability of numerical weather prediction models.
Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng
Geosci. Model Dev., 17, 3897–3918, https://doi.org/10.5194/gmd-17-3897-2024, https://doi.org/10.5194/gmd-17-3897-2024, 2024
Short summary
Short summary
This study uses the CAM5–SIT coupled model to investigate the effects of SST feedback frequency on the MJO simulations with intervals at 30 min, 1, 3, 6, 12, 18, 24, and 30 d. The simulations become increasingly unrealistic as the frequency of the SST feedback decreases. Our results suggest that more spontaneous air--sea interaction (e.g., ocean response within 3 d in this study) with high vertical resolution in the ocean model is key to the realistic simulation of the MJO.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Yi-Chi Wang, Chia-Hao Chiang, Chiung-Jui Su, Ko-Chih Wang, Wan-Ling Tseng, Cheng-Ta Chen, and Hsin-Chien Liang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1022, https://doi.org/10.5194/egusphere-2024-1022, 2024
Preprint archived
Short summary
Short summary
Our study introduces a deep learning model, the EDA, to refine rainfall data in Taiwan. This model significantly improves bias correction by integrating surface wind and topography data, crucial in areas like Taiwan where traditional methods fall short. The EDA excels in adjusting low-intensity and misplaced rainfall, enhancing water management, agriculture, and disaster prevention. This work showcases deep learning's potential to improve climate downscaling in complex terrains.
Yung-Yao Lan, Huang-Hsiung Hsu, Wan-Ling Tseng, and Li-Chiang Jiang
Geosci. Model Dev., 15, 5689–5712, https://doi.org/10.5194/gmd-15-5689-2022, https://doi.org/10.5194/gmd-15-5689-2022, 2022
Short summary
Short summary
This study has shown that coupling a high-resolution 1-D ocean model (SIT 1.06) with the Community Atmosphere Model 5.3 (CAM5.3) significantly improves the simulation of the Madden–Julian Oscillation (MJO) over the standalone CAM5.3. Systematic sensitivity experiments resulted in more realistic simulations of the tropical MJO because they had better upper-ocean resolution, adequate upper-ocean thickness, coupling regions including the eastern Pacific and southern tropics, and a diurnal cycle.
Wan-Ling Tseng, Huang-Hsiung Hsu, Yung-Yao Lan, Wei-Liang Lee, Chia-Ying Tu, Pei-Hsuan Kuo, Ben-Jei Tsuang, and Hsin-Chien Liang
Geosci. Model Dev., 15, 5529–5546, https://doi.org/10.5194/gmd-15-5529-2022, https://doi.org/10.5194/gmd-15-5529-2022, 2022
Short summary
Short summary
We show that coupling a high-resolution one-column ocean model to three atmospheric general circulation models dramatically improves Madden–Julian oscillation (MJO) simulations. It suggests two major improvements to the coupling process in the preconditioning phase and strongest convection phase over the Maritime Continent. Our results demonstrate a simple but effective way to significantly improve MJO simulations and potentially seasonal to subseasonal prediction.
Chein-Jung Shiu, Yi-Chi Wang, Huang-Hsiung Hsu, Wei-Ting Chen, Hua-Lu Pan, Ruiyu Sun, Yi-Hsuan Chen, and Cheng-An Chen
Geosci. Model Dev., 14, 177–204, https://doi.org/10.5194/gmd-14-177-2021, https://doi.org/10.5194/gmd-14-177-2021, 2021
Short summary
Short summary
A cloud macrophysics scheme utilizing grid-mean hydrometeor information is developed and evaluated for climate models. The GFS–TaiESM–Sundqvist (GTS) scheme can simulate variations of cloud fraction associated with relative humidity (RH) in a more consistent way than the default scheme of CAM5.3. Through better cloud–RH distributions, the GTS scheme helps to better represent cloud fraction, cloud radiative forcing, and thermodynamic-related climatic fields in climate simulations.
Wei-Liang Lee, Yi-Chi Wang, Chein-Jung Shiu, I-chun Tsai, Chia-Ying Tu, Yung-Yao Lan, Jen-Ping Chen, Hua-Lu Pan, and Huang-Hsiung Hsu
Geosci. Model Dev., 13, 3887–3904, https://doi.org/10.5194/gmd-13-3887-2020, https://doi.org/10.5194/gmd-13-3887-2020, 2020
Short summary
Short summary
The Taiwan Earth System Model (TaiESM) is a new climate model developed in Taiwan. It includes several new features, and therefore it can better simulate the occurrence of convective rainfall, solar energy received by mountainous surfaces, and more detail chemical processes in aerosols. TaiESM can capture the trend of global warming after 1950 well, and its overall performance in most meteorological quantities is better than the average of global models used in IPCC AR5.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak,
J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind,
J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation
Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J.
Hydrometeorol., 4, 1147–1167,
https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.
Bayr, T., Latif, M., Dommenget, D., Wengel, C., Harlaß, J., and Park,
W.: Mean-state dependence of ENSO atmospheric feedbacks in climate models,
Clim. Dynam., 50, 3171–3194, https://doi.org/10.1007/s00382-017-3799-2, 2018.
Bayr, T., Wengel, C., Latif, M., Dommenget, D., Lübbecke, J., and Park,
W.: Error compensation of ENSO atmospheric feedbacks in climate models and
its influence on simulated ENSO dynamics, Clim. Dynam., 53, 155–172,
https://doi.org/10.1007/s00382-018-4575-7, 2019.
Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., and Vialard, J.:
ENSO representation in climate models: from CMIP3 to CMIP5, Clim. Dynam., 42,
1999–2018, https://doi.org/10.1007/s00382-013-1783-z, 2014.
Beobide-Arsuaga, G., Bayr, T., Reintges, A., and Latif, M.: Uncertainty of
ENSO-amplitude projections in CMIP5 and CMIP6 models, Clim. Dynam., 56,
3875–3888, https://doi.org/10.1007/s00382-021-05673-4, 2021.
Bjerknes, J.: Atmospheric Teleconnections from the Equatorial Pacific, Mon.
Weather Rev., 97, 163–172,
https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2, 1969.
Cane, M. A.: The evolution of El Niño, past and future, Earth Planet. Sc.
Lett., 230, 227–240, https://doi.org/10.1016/j.epsl.2004.12.003, 2005.
Capotondi, A., Deser, C., Phillips, A. S., Okumura, Y., and Larson, S. M.:
ENSO and Pacific Decadal Variability in the Community Earth System Model
Version 2, J. Adv. Model. Earth Sy., 12, e2019MS002022, https://doi.org/10.1029/2019MS002022,
2020a.
Capotondi, A., Wittenberg, A. T., Kug, J., Takahashi, K., and McPhaden, M.
J.: ENSO Diversity, in: El Niño Southern Oscillation in a Changing
Climate, 65–86, https://doi.org/10.1002/9781119548164.ch4, 2020b.
Carton, J. A., Chepurin, G. A., and Chen, L.: SODA3: A New Ocean Climate
Reanalysis, J. Climate, 31, 6967–6983,
https://doi.org/10.1175/JCLI-D-18-0149.1, 2018.
Chen, C., Cane, M. A., Wittenberg, A. T., and Chen, D.: ENSO in the CMIP5
Simulations: Life Cycles, Diversity, and Responses to Climate Change, J. Climate, 30, 775–801, https://doi.org/10.1175/JCLI-D-15-0901.1, 2017.
Chen, C.-A., Hsu, H.-H., and Liang, H.-C.: Evaluation and comparison of
CMIP6 and CMIP5 model performance in simulating the seasonal extreme
precipitation in the Western North Pacific and East Asia, Weather Clim.
Extrem., 31, 100303, https://doi.org/10.1016/j.wace.2021.100303, 2021.
Chen, H.-C. and Jin, F.-F.: Simulations of ENSO Phase-locking in CMIP5 and
CMIP6, J. Climate, 34, 5135–5149, https://doi.org/10.1175/JCLI-D-20-0874.1, 2021.
Chen, J.-P., Tsai, I.-C., and Lin, Y.-C.: A statistical–numerical aerosol parameterization scheme, Atmos. Chem. Phys., 13, 10483–10504, https://doi.org/10.5194/acp-13-10483-2013, 2013.
Chen, Y.-L.: ENSO statistics, teleconnections, and atmosphere-ocean coupling in the Taiwan Earth System Model version 1 (Version 1), Zenodo [code], https://doi.org/10.5281/zenodo.7740033, 2023.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman,
P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri,
M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L.,
Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis
Project, Q. J. Roy. Meteor. Soc., 137, 1–28,
https://doi.org/10.1002/qj.776, 2011.
CREATE-IP Project: Data Description, ESGF [data set], https://esgf-node.llnl.gov/projects/create-ip/data_description (last access: December 2019), 2018.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Diaz, H. F., Hoerling, M. P., and Eischeid, J. K.: ENSO variability, teleconnections and climate change, Int. J. Climatol., 21, 1845–1862, https://doi.org/10.1002/joc.631, 2001.
Fedorov, A. V., Hu, S., Wittenberg, A. T., Levine, A. F. Z., and Deser, C.:
ENSO Low-Frequency Modulation and Mean State Interactions, in: El Niño Southern Oscillation in a Changing Climate, 173–198,
https://doi.org/10.1002/9781119548164.ch8, 2020.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Glantz, M. H.: Currents of change: impacts of El Niño and La Niña on
climate and society, Cambridge University Press, ISBN 9780521786720, 2001.
Global Precipitation Climatology Project (GPCP): Global Precipitation Climatology Project (GPCP) Monthly Analysis Product, NOAA [data set], https://psl.noaa.gov/data/gridded/data.gpcp.html (last access: June 2020), 2009.
Guilyardi, E., Wittenberg, A., Fedorov, A., Collins, M., Wang, C.,
Capotondi, A., van Oldenborgh, G. J., and Stockdale, T.: Understanding El
Niño in Ocean–Atmosphere General Circulation Models: Progress and
Challenges, B. Am. Meteorol. Soc., 90, 325–340,
https://doi.org/10.1175/2008BAMS2387.1, 2009.
Guilyardi, E., Capotondi, A., Lengaigne, M., Thual, S., and Wittenberg, A.
T.: ENSO Modeling: history, progress, and challenges, in: El Niño
Southern Oscillation in a Changing Climate, edited by: McPhaden, M. J.,
Santoso, A., and Cai, W., American Geophsical Union, 199–226,
https://doi.org/10.1002/9781119548164.ch9, 2020.
Ham, Y.-G. and Kug, J.-S.: How well do current climate models simulate two
types of El Nino?, Clim. Dynam., 39, 383–398,
https://doi.org/10.1007/s00382-011-1157-3, 2012.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2023a.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.6860a573, 2023b.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades,
Validations, and Intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5, NOAA [data set], https://doi.org/10.7289/V5T72FNM, 2018.
Huffman, G. J., Adler, R. F., Bolvin, D. T., and Gu, G.: Improving the
global precipitation record: GPCP Version 2.1, Geophys. Res. Lett., 36, L17808,
https://doi.org/10.1029/2009GL040000, 2009.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94, 1339–1360,
https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.
Jha, B., Hu, Z.-Z., and Kumar, A.: SST and ENSO variability and change
simulated in historical experiments of CMIP5 models, Clim. Dynam., 42,
2113–2124, https://doi.org/10.1007/s00382-013-1803-z, 2014.
Jin, F.-F.: An Equatorial Ocean Recharge Paradigm for ENSO. Part I:
Conceptual Model, J. Atmos. Sci., 54, 811–829,
https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2, 1997.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics,
J. Meteorol. Soc. Jpn. Ser. II, 93, 5–48,
https://doi.org/10.2151/jmsj.2015-001, 2015.
Kug, J.-S., Jin, F.-F., and An, S.-I.: Two Types of El Niño Events: Cold
Tongue El Niño and Warm Pool El Niño, J. Climate, 22, 1499–1515,
https://doi.org/10.1175/2008JCLI2624.1, 2009.
Kumar, A. and Hu, Z.-Z.: Uncertainty in the ocean–atmosphere feedbacks
associated with ENSO in the reanalysis products, Clim. Dynam., 39, 575–588,
https://doi.org/10.1007/s00382-011-1104-3, 2012.
Latif, M., Anderson, D., Barnett, T., Cane, M., Kleeman, R., Leetmaa, A.,
O'Brien, J., Rosati, A., and Schneider, E.: A review of the predictability
and prediction of ENSO, J. Geophys. Res.-Oceans, 103, 14375–14393,
https://doi.org/10.1029/97JC03413, 1998.
Lee, W.-L. and Liang, H.-C.: AS-RCEC TaiESM1.0 model output prepared for CMIP6 CMIP historical, Version 20200623[1], Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.9755, 2020.
Lee, W.-L., Liou, K. N., and Wang, C.: Impact of 3-D topography on surface
radiation budget over the Tibetan Plateau, Theor. Appl. Climatol., 113,
95–103, https://doi.org/10.1007/s00704-012-0767-y, 2013.
Lee, W.-L., Wang, Y.-C., Shiu, C.-J., Tsai, I., Tu, C.-Y., Lan, Y.-Y., Chen, J.-P., Pan, H.-L., and Hsu, H.-H.: Taiwan Earth System Model Version 1: description and evaluation of mean state, Geosci. Model Dev., 13, 3887–3904, https://doi.org/10.5194/gmd-13-3887-2020, 2020.
Lloyd, J., Guilyardi, E., Weller, H., and Slingo, J.: The role of atmosphere
feedbacks during ENSO in the CMIP3 models, Atmos. Sci. Lett., 10,
170–176, https://doi.org/10.1002/asl.227, 2009.
Lloyd, J., Guilyardi, E., and Weller, H.: The role of atmosphere feedbacks
during ENSO in the CMIP3 models. Part II: using AMIP runs to understand the
heat flux feedback mechanisms, Clim. Dynam., 37, 1271–1292,
https://doi.org/10.1007/s00382-010-0895-y, 2011.
McPhaden, M. J., Busalacchi, A. J., Cheney, R., Donguy, J.-R., Gage, K. S.,
Halpern, D., Ji, M., Julian, P., Meyers, G., Mitchum, G. T., Niiler, P. P.,
Picaut, J., Reynolds, R. W., Smith, N., and Takeuchi, K.: The Tropical
Ocean-Global Atmosphere observing system: A decade of progress, J. Geophys. Res.-Oceans, 103, 14169–14240, https://doi.org/10.1029/97JC02906, 1998.
McPhaden, M. J., Zebiak, S. E., and Glantz, M. H.: ENSO as an Integrating
Concept in Earth Science, Science, 314, 1740–1745,
https://doi.org/10.1126/science.1132588, 2006.
McPhaden, M. J., Lee, T., and McClurg, D.: El Niño and its relationship
to changing background conditions in the tropical Pacific Ocean, Geophys. Res. Lett., 38, L15709, https://doi.org/10.1029/2011GL048275, 2011.
Neelin, J. D., Battisti, D. S., Hirst, A. C., Jin, F.-F., Wakata, Y.,
Yamagata, T., and Zebiak, S. E.: ENSO theory, J. Geophys. Res.-Oceans, 103,
14261–14290, https://doi.org/10.1029/97JC03424, 1998.
NOAA Climate Prediction Center: Historical El Nino/La Nina episodes (1950–present), NOAA [data set], https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears_1971-2000_climo.shtml (last access: December 2020), 2000.
Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika,
H., Matsumoto, T., Yamazaki, N., Kamahori, H., Takahashi, K., Kadokura, S.,
Wada, K., Kato, K., Oyama, R., Ose, T., Mannoji, N., and Taira, R.: The
JRA-25 Reanalysis, J. Meteorol. Soc. Jpn. Ser. II,
85, 369–432, https://doi.org/10.2151/jmsj.85.369, 2007.
Park, J., Kim, H., Simon Wang, S.-Y., Jeong, J.-H., Lim, K.-S., LaPlante,
M., and Yoon, J.-H.: Intensification of the East Asian summer monsoon
lifecycle based on observation and CMIP6, Environ. Res. Lett.,
15, 0940b9, https://doi.org/10.1088/1748-9326/ab9b3f, 2020.
Philander, S.: El Nino, La Nina, and the Southern Oscillation, edited by:
Philander, S. G., Academic Press, 1–293, ISBN 9780080570983, 1989.
Planton, Y. Y., Guilyardi, E., Wittenberg, A. T., Lee, J., Gleckler, P. J.,
Bayr, T., McGregor, S., McPhaden, M. J., Power, S., Roehrig, R., Vialard,
J., and Voldoire, A.: Evaluating Climate Models with the CLIVAR 2020 ENSO
Metrics Package, B. Am. Meteorol. Soc., 102, E193–E217,
https://doi.org/10.1175/BAMS-D-19-0337.1, 2021.
Potter, G. L., Carriere, L., Hertz, J., Bosilovich, M., Duffy, D., Lee, T.,
and Williams, D. N.: Enabling Reanalysis Research Using the Collaborative
Reanalysis Technical Environment (CREATE), B. Am. Meteorol. Soc., 99,
677–687, https://doi.org/10.1175/BAMS-D-17-0174.1, 2018.
rceclccr: rceclccr/TaiESM v1.0.0 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.3626654, 2020.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom,
S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J.,
Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P.,
Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz,
M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for
Research and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y.-T., Chuang, H., Juang, H.-M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J.,
Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou,
C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge,
G., and Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Shiu, C.-J., Wang, Y.-C., Hsu, H.-H., Chen, W.-T., Pan, H.-L., Sun, R., Chen, Y.-H., and Chen, C.-A.: GTS v1.0: a macrophysics scheme for climate models based on a probability density function, Geosci. Model Dev., 14, 177–204, https://doi.org/10.5194/gmd-14-177-2021, 2021.
Simple Ocean Data Assimilation (SODA) project: SODA3.3.2 download page, SODA [data set], https://www2.atmos.umd.edu/~ocean/index_files/soda3.3.2_mn_download_b.htm (last access: March 2023), 2018.
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Fox-Kemper, B., Eden, C., Gent, P., Hecht,
M., Jayne, S., Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S., Vertenstein, M., and Yeager, S.: The Parallel Ocean Program (POP) Reference Manual: : Ocean component of the community climate system model, Los Alamos National Laboratory Tech. Rep. LAUR-10-01853, 2010.
Wang, C.: A review of ENSO theories, Natl. Sci. Rev., 5, 813–825,
https://doi.org/10.1093/nsr/nwy104, 2018.
Wang, C. and Picaut, J.: Understanding Enso Physics-A Review, in: Earth's
Climate: The Ocean-Atmosphere Interaction, edited by: Wang, C., Xie, S.-P.,
and Carton, J. A., American Geophysical Union, 21–48,
https://doi.org/10.1029/147GM02, 2013.
Wang, C.-C., Lee, W.-L., Chen, Y.-L., and Hsu, H.-H.: Processes Leading to
Double Intertropical Convergence Zone Bias in CESM1/CAM5, J. Climate, 28,
2900–2915, https://doi.org/10.1175/JCLI-D-14-00622.1, 2015.
Wang, Y., Hsu, H., Chen, C., Tseng, W., Hsu, P., Lin, C., Chen, Y., Jiang,
L., Lee, Y., Liang, H., Chang, W., Lee, W., and Shiu, C.: Performance of the
Taiwan Earth System Model in Simulating Climate Variability Compared With
Observations and CMIP6 Model Simulations, J. Adv. Model. Earth Sy., 13, e2020MS002353,
https://doi.org/10.1029/2020MS002353, 2021.
Wang, Y.-C., Pan, H. L., and Hsu, H. H.: Impacts of the triggering function
of cumulus parameterization on warm-season diurnal rainfall cycles at the
Atmospheric Radiation Measurement Southern Great Plains Site, J. Geophys. Res.,
120, 10681–10702, https://doi.org/10.1002/2015JD023337, 2015.
Wei, H., Subramanian, A. C., Karnauskas, K. B., DeMott, C. A., Mazloff, M.
R., and Balmaseda, M. A.: Tropical Pacific Air-Sea Interaction Processes and
Biases in CESM2 and Their Relation to El Niño Development, J. Geophys. Res.-Oceans, 126, 185–206, https://doi.org/10.1029/2020JC016967, 2021.
Yeh, S.-W., Cai, W., Min, S.-K., McPhaden, M. J., Dommenget, D., Dewitte, B., Collins, M., Ashok, K., An, S.-I., Yim, B.-Y., and Kug, J.-S.: ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing, Rev. Geophys., 56, 185–206, https://doi.org/10.1002/2017RG000568, 2018.
Zhao, B. and Fedorov, A.: The Effects of Background Zonal and Meridional
Winds on ENSO in a Coupled GCM, J. Climate, 33, 2075–2091,
https://doi.org/10.1175/JCLI-D-18-0822.1, 2020.
Short summary
This study focuses on evaluating the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the El Niño–Southern Oscillation (ENSO), a significant tropical climate pattern with global impacts. Our findings reveal that TaiESM1 effectively captures several characteristics of ENSO, such as its seasonal variation and remote teleconnections. Its pronounced ENSO strength bias is also thoroughly investigated, aiming to gain insights to improve climate model performance.
This study focuses on evaluating the performance of the Taiwan Earth System Model version 1...