Articles | Volume 16, issue 2
https://doi.org/10.5194/gmd-16-449-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-449-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
URANOS v1.0 – the Ultra Rapid Adaptable Neutron-Only Simulation for Environmental Research
Markus Köhli
CORRESPONDING AUTHOR
Physikalisches Institut, Heidelberg University, Heidelberg, Germany
Physikalisches Institut, University of Bonn, Bonn, Germany
Martin Schrön
Department of Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
Steffen Zacharias
Department of Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
Ulrich Schmidt
Physikalisches Institut, Heidelberg University, Heidelberg, Germany
Related authors
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-106, https://doi.org/10.5194/gmd-2024-106, 2024
Preprint under review for GMD
Short summary
Short summary
Multiple methods for measuring soil moisture beyond the point scale exist. Their validation generally hindered by lack of knowing the truth. We propose a virtual framework, in which this truth is fully known and the sensor observations for Cosmic Ray Neutron Sensing, Remote Sensing, and Hydrogravimetry are simulated. This allows the rigourous testing of these virtual sensors to understand their effectiveness and limitations.
Daniel Rasche, Jannis Weimar, Martin Schrön, Markus Köhli, Markus Morgner, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 27, 3059–3082, https://doi.org/10.5194/hess-27-3059-2023, https://doi.org/10.5194/hess-27-3059-2023, 2023
Short summary
Short summary
We introduce passive downhole cosmic-ray neutron sensing (d-CRNS) as an approach for the non-invasive estimation of soil moisture in deeper layers of the unsaturated zone which exceed the observational window of above-ground CRNS applications. Neutron transport simulations are used to derive mathematical descriptions and transfer functions, while experimental measurements in an existing groundwater observation well illustrate the feasibility and applicability of the approach.
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023, https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) allows for the non-invasive estimation of root-zone soil water content (SWC). The signal observed by a single CRNS sensor is influenced by the SWC in a radius of around 150 m (the footprint). Here, we have put together a cluster of eight CRNS sensors with overlapping footprints at an agricultural research site in north-east Germany. That way, we hope to represent spatial SWC heterogeneity instead of retrieving just one average SWC estimate from a single sensor.
Martin Schrön, Markus Köhli, and Steffen Zacharias
Hydrol. Earth Syst. Sci., 27, 723–738, https://doi.org/10.5194/hess-27-723-2023, https://doi.org/10.5194/hess-27-723-2023, 2023
Short summary
Short summary
This paper presents a new analytical concept to answer long-lasting questions of the cosmic-ray neutron sensing community, such as
what is the influence of a distant area or patches of different land use on the measurement signal?or
is the detector sensitive enough to detect a change of soil moisture (e.g. due to irrigation) in a remote field at a certain distance?The concept may support signal interpretation and sensor calibration, particularly in heterogeneous terrain.
Cosimo Brogi, Heye Reemt Bogena, Markus Köhli, Johan Alexander Huisman, Harrie-Jan Hendricks Franssen, and Olga Dombrowski
Geosci. Instrum. Method. Data Syst., 11, 451–469, https://doi.org/10.5194/gi-11-451-2022, https://doi.org/10.5194/gi-11-451-2022, 2022
Short summary
Short summary
Accurate monitoring of water in soil can improve irrigation efficiency, which is important considering climate change and the growing world population. Cosmic-ray neutrons sensors (CRNSs) are a promising tool in irrigation monitoring due to a larger sensed area and to lower maintenance than other ground-based sensors. Here, we analyse the feasibility of irrigation monitoring with CRNSs and the impact of the irrigated field dimensions, of the variations of water in soil, and of instrument design.
Till Francke, Maik Heistermann, Markus Köhli, Christian Budach, Martin Schrön, and Sascha E. Oswald
Geosci. Instrum. Method. Data Syst., 11, 75–92, https://doi.org/10.5194/gi-11-75-2022, https://doi.org/10.5194/gi-11-75-2022, 2022
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive tool for measuring hydrogen pools like soil moisture, snow, or vegetation. This study presents a directional shielding approach, aiming to measure in specific directions only. The results show that non-directional neutron transport blurs the signal of the targeted direction. For typical instruments, this does not allow acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates is feasible.
Daniel Rasche, Markus Köhli, Martin Schrön, Theresa Blume, and Andreas Güntner
Hydrol. Earth Syst. Sci., 25, 6547–6566, https://doi.org/10.5194/hess-25-6547-2021, https://doi.org/10.5194/hess-25-6547-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensing provides areal average soil moisture measurements. We investigated how distinct differences in spatial soil moisture patterns influence the soil moisture estimates and present two approaches to improve the estimate of soil moisture close to the instrument by reducing the influence of soil moisture further afield. Additionally, we show that the heterogeneity of soil moisture can be assessed based on the relationship of different neutron energies.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Martin Schrön, Steffen Zacharias, Gary Womack, Markus Köhli, Darin Desilets, Sascha E. Oswald, Jan Bumberger, Hannes Mollenhauer, Simon Kögler, Paul Remmler, Mandy Kasner, Astrid Denk, and Peter Dietrich
Geosci. Instrum. Method. Data Syst., 7, 83–99, https://doi.org/10.5194/gi-7-83-2018, https://doi.org/10.5194/gi-7-83-2018, 2018
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a unique technology to monitor water storages in complex environments, non-invasively, continuously, autonomuously, and representatively in large areas. However, neutron detector signals are not comparable per se: there is statistical noise, technical differences, and locational effects. We found out what it takes to make CRNS consistent in time and space to ensure reliable data quality. We further propose a method to correct for sealed areas in the footrint.
Martin Schrön, Markus Köhli, Lena Scheiffele, Joost Iwema, Heye R. Bogena, Ling Lv, Edoardo Martini, Gabriele Baroni, Rafael Rosolem, Jannis Weimar, Juliane Mai, Matthias Cuntz, Corinna Rebmann, Sascha E. Oswald, Peter Dietrich, Ulrich Schmidt, and Steffen Zacharias
Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, https://doi.org/10.5194/hess-21-5009-2017, 2017
Short summary
Short summary
A field-scale average of near-surface water content can be sensed by cosmic-ray neutron detectors. To interpret, calibrate, and validate the integral signal, it is important to account for its sensitivity to heterogeneous patterns like dry or wet spots. We show how point samples contribute to the neutron signal based on their depth and distance from the detector. This approach robustly improves the sensor performance and data consistency, and even reveals otherwise hidden hydrological features.
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-106, https://doi.org/10.5194/gmd-2024-106, 2024
Preprint under review for GMD
Short summary
Short summary
Multiple methods for measuring soil moisture beyond the point scale exist. Their validation generally hindered by lack of knowing the truth. We propose a virtual framework, in which this truth is fully known and the sensor observations for Cosmic Ray Neutron Sensing, Remote Sensing, and Hydrogravimetry are simulated. This allows the rigourous testing of these virtual sensors to understand their effectiveness and limitations.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 28, 989–1000, https://doi.org/10.5194/hess-28-989-2024, https://doi.org/10.5194/hess-28-989-2024, 2024
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive technique used to obtain estimates of soil water content (SWC) at a horizontal footprint of around 150 m and a vertical penetration depth of up to 30 cm. However, typical CRNS applications require the local calibration of a function which converts neutron counts to SWC. As an alternative, we propose a generalized function as a way to avoid the use of local reference measurements of SWC and hence a major source of uncertainty.
Daniel Rasche, Jannis Weimar, Martin Schrön, Markus Köhli, Markus Morgner, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 27, 3059–3082, https://doi.org/10.5194/hess-27-3059-2023, https://doi.org/10.5194/hess-27-3059-2023, 2023
Short summary
Short summary
We introduce passive downhole cosmic-ray neutron sensing (d-CRNS) as an approach for the non-invasive estimation of soil moisture in deeper layers of the unsaturated zone which exceed the observational window of above-ground CRNS applications. Neutron transport simulations are used to derive mathematical descriptions and transfer functions, while experimental measurements in an existing groundwater observation well illustrate the feasibility and applicability of the approach.
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023, https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) allows for the non-invasive estimation of root-zone soil water content (SWC). The signal observed by a single CRNS sensor is influenced by the SWC in a radius of around 150 m (the footprint). Here, we have put together a cluster of eight CRNS sensors with overlapping footprints at an agricultural research site in north-east Germany. That way, we hope to represent spatial SWC heterogeneity instead of retrieving just one average SWC estimate from a single sensor.
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
EGUsphere, https://doi.org/10.5194/egusphere-2023-1548, https://doi.org/10.5194/egusphere-2023-1548, 2023
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within mHM, using the Desilets equation with uniformly and with non-uniformly weighted average soil moisture, and the physically-based code COSMIC. The data not only improved soil moisture simulations, but also the parameterization of evapotranspiration in the model.
Martin Schrön, Markus Köhli, and Steffen Zacharias
Hydrol. Earth Syst. Sci., 27, 723–738, https://doi.org/10.5194/hess-27-723-2023, https://doi.org/10.5194/hess-27-723-2023, 2023
Short summary
Short summary
This paper presents a new analytical concept to answer long-lasting questions of the cosmic-ray neutron sensing community, such as
what is the influence of a distant area or patches of different land use on the measurement signal?or
is the detector sensitive enough to detect a change of soil moisture (e.g. due to irrigation) in a remote field at a certain distance?The concept may support signal interpretation and sensor calibration, particularly in heterogeneous terrain.
Cosimo Brogi, Heye Reemt Bogena, Markus Köhli, Johan Alexander Huisman, Harrie-Jan Hendricks Franssen, and Olga Dombrowski
Geosci. Instrum. Method. Data Syst., 11, 451–469, https://doi.org/10.5194/gi-11-451-2022, https://doi.org/10.5194/gi-11-451-2022, 2022
Short summary
Short summary
Accurate monitoring of water in soil can improve irrigation efficiency, which is important considering climate change and the growing world population. Cosmic-ray neutrons sensors (CRNSs) are a promising tool in irrigation monitoring due to a larger sensed area and to lower maintenance than other ground-based sensors. Here, we analyse the feasibility of irrigation monitoring with CRNSs and the impact of the irrigated field dimensions, of the variations of water in soil, and of instrument design.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Maik Heistermann, Heye Bogena, Till Francke, Andreas Güntner, Jannis Jakobi, Daniel Rasche, Martin Schrön, Veronika Döpper, Benjamin Fersch, Jannis Groh, Amol Patil, Thomas Pütz, Marvin Reich, Steffen Zacharias, Carmen Zengerle, and Sascha Oswald
Earth Syst. Sci. Data, 14, 2501–2519, https://doi.org/10.5194/essd-14-2501-2022, https://doi.org/10.5194/essd-14-2501-2022, 2022
Short summary
Short summary
This paper presents a dense network of cosmic-ray neutron sensing (CRNS) to measure spatio-temporal soil moisture patterns during a 2-month campaign in the Wüstebach headwater catchment in Germany. Stationary, mobile, and airborne CRNS technology monitored the root-zone water dynamics as well as spatial heterogeneity in the 0.4 km2 area. The 15 CRNS stations were supported by a hydrogravimeter, biomass sampling, and a wireless soil sensor network to facilitate holistic hydrological analysis.
Andreas Wieser, Andreas Güntner, Peter Dietrich, Jan Handwerker, Dina Khordakova, Uta Ködel, Martin Kohler, Hannes Mollenhauer, Bernhard Mühr, Erik Nixdorf, Marvin Reich, Christian Rolf, Martin Schrön, Claudia Schütze, and Ute Weber
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-131, https://doi.org/10.5194/hess-2022-131, 2022
Preprint withdrawn
Short summary
Short summary
We present an event-triggered observation concept which covers the entire process chain from heavy precipitation to flooding at the catchment scale. It combines flexible and mobile observing systems out of the fields of meteorology, hydrology and geophysics with stationary networks to capture atmospheric transport processes, heterogeneous precipitation patterns, land surface and subsurface storage processes, and runoff dynamics.
Mandy Kasner, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-123, https://doi.org/10.5194/hess-2022-123, 2022
Publication in HESS not foreseen
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive technique that is used to quantify field-scale root-zone soil moisture. We hypothesize that unaccounted spatiotemporal changes of soil density may have impact on the quality of CRNS soil moisture products. Our results indicate a significant dependency of neutrons on soil density, which also depends on the soil moisture state. A correction approach is provided that can be recommended for practical use.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Till Francke, Maik Heistermann, Markus Köhli, Christian Budach, Martin Schrön, and Sascha E. Oswald
Geosci. Instrum. Method. Data Syst., 11, 75–92, https://doi.org/10.5194/gi-11-75-2022, https://doi.org/10.5194/gi-11-75-2022, 2022
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive tool for measuring hydrogen pools like soil moisture, snow, or vegetation. This study presents a directional shielding approach, aiming to measure in specific directions only. The results show that non-directional neutron transport blurs the signal of the targeted direction. For typical instruments, this does not allow acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates is feasible.
Daniel Rasche, Markus Köhli, Martin Schrön, Theresa Blume, and Andreas Güntner
Hydrol. Earth Syst. Sci., 25, 6547–6566, https://doi.org/10.5194/hess-25-6547-2021, https://doi.org/10.5194/hess-25-6547-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensing provides areal average soil moisture measurements. We investigated how distinct differences in spatial soil moisture patterns influence the soil moisture estimates and present two approaches to improve the estimate of soil moisture close to the instrument by reducing the influence of soil moisture further afield. Additionally, we show that the heterogeneity of soil moisture can be assessed based on the relationship of different neutron energies.
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 25, 4807–4824, https://doi.org/10.5194/hess-25-4807-2021, https://doi.org/10.5194/hess-25-4807-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a powerful technique for retrieving representative estimates of soil moisture in footprints extending over hectometres in the horizontal and decimetres in the vertical. This study, however, demonstrates the potential of CRNS to obtain spatio-temporal patterns of soil moisture beyond isolated footprints. To that end, we analyse data from a unique observational campaign that featured a dense network of more than 20 neutron detectors in an area of just 1 km2.
Edoardo Martini, Matteo Bauckholt, Simon Kögler, Manuel Kreck, Kurt Roth, Ulrike Werban, Ute Wollschläger, and Steffen Zacharias
Earth Syst. Sci. Data, 13, 2529–2539, https://doi.org/10.5194/essd-13-2529-2021, https://doi.org/10.5194/essd-13-2529-2021, 2021
Short summary
Short summary
We present the in situ data available from the soil monitoring network
STH-net, recently implemented at the Schäfertal Hillslope site (Germany). The STH-net provides data (soil water content, soil temperature, water level, and meteorological variables – measured at a 10 min interval since 1 January 2019) for developing and testing modelling approaches in the context of vadose zone hydrology at spatial scales ranging from the pedon to the hillslope.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Mehdi Rahmati, Lutz Weihermüller, Jan Vanderborght, Yakov A. Pachepsky, Lili Mao, Seyed Hamidreza Sadeghi, Niloofar Moosavi, Hossein Kheirfam, Carsten Montzka, Kris Van Looy, Brigitta Toth, Zeinab Hazbavi, Wafa Al Yamani, Ammar A. Albalasmeh, Ma'in Z. Alghzawi, Rafael Angulo-Jaramillo, Antônio Celso Dantas Antonino, George Arampatzis, Robson André Armindo, Hossein Asadi, Yazidhi Bamutaze, Jordi Batlle-Aguilar, Béatrice Béchet, Fabian Becker, Günter Blöschl, Klaus Bohne, Isabelle Braud, Clara Castellano, Artemi Cerdà, Maha Chalhoub, Rogerio Cichota, Milena Císlerová, Brent Clothier, Yves Coquet, Wim Cornelis, Corrado Corradini, Artur Paiva Coutinho, Muriel Bastista de Oliveira, José Ronaldo de Macedo, Matheus Fonseca Durães, Hojat Emami, Iraj Eskandari, Asghar Farajnia, Alessia Flammini, Nándor Fodor, Mamoun Gharaibeh, Mohamad Hossein Ghavimipanah, Teamrat A. Ghezzehei, Simone Giertz, Evangelos G. Hatzigiannakis, Rainer Horn, Juan José Jiménez, Diederik Jacques, Saskia Deborah Keesstra, Hamid Kelishadi, Mahboobeh Kiani-Harchegani, Mehdi Kouselou, Madan Kumar Jha, Laurent Lassabatere, Xiaoyan Li, Mark A. Liebig, Lubomír Lichner, María Victoria López, Deepesh Machiwal, Dirk Mallants, Micael Stolben Mallmann, Jean Dalmo de Oliveira Marques, Miles R. Marshall, Jan Mertens, Félicien Meunier, Mohammad Hossein Mohammadi, Binayak P. Mohanty, Mansonia Pulido-Moncada, Suzana Montenegro, Renato Morbidelli, David Moret-Fernández, Ali Akbar Moosavi, Mohammad Reza Mosaddeghi, Seyed Bahman Mousavi, Hasan Mozaffari, Kamal Nabiollahi, Mohammad Reza Neyshabouri, Marta Vasconcelos Ottoni, Theophilo Benedicto Ottoni Filho, Mohammad Reza Pahlavan-Rad, Andreas Panagopoulos, Stephan Peth, Pierre-Emmanuel Peyneau, Tommaso Picciafuoco, Jean Poesen, Manuel Pulido, Dalvan José Reinert, Sabine Reinsch, Meisam Rezaei, Francis Parry Roberts, David Robinson, Jesús Rodrigo-Comino, Otto Corrêa Rotunno Filho, Tadaomi Saito, Hideki Suganuma, Carla Saltalippi, Renáta Sándor, Brigitta Schütt, Manuel Seeger, Nasrollah Sepehrnia, Ehsan Sharifi Moghaddam, Manoj Shukla, Shiraki Shutaro, Ricardo Sorando, Ajayi Asishana Stanley, Peter Strauss, Zhongbo Su, Ruhollah Taghizadeh-Mehrjardi, Encarnación Taguas, Wenceslau Geraldes Teixeira, Ali Reza Vaezi, Mehdi Vafakhah, Tomas Vogel, Iris Vogeler, Jana Votrubova, Steffen Werner, Thierry Winarski, Deniz Yilmaz, Michael H. Young, Steffen Zacharias, Yijian Zeng, Ying Zhao, Hong Zhao, and Harry Vereecken
Earth Syst. Sci. Data, 10, 1237–1263, https://doi.org/10.5194/essd-10-1237-2018, https://doi.org/10.5194/essd-10-1237-2018, 2018
Short summary
Short summary
This paper presents and analyzes a global database of soil infiltration data, the SWIG database, for the first time. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists or they were digitized from published articles. We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models.
Roland Baatz, Pamela L. Sullivan, Li Li, Samantha R. Weintraub, Henry W. Loescher, Michael Mirtl, Peter M. Groffman, Diana H. Wall, Michael Young, Tim White, Hang Wen, Steffen Zacharias, Ingolf Kühn, Jianwu Tang, Jérôme Gaillardet, Isabelle Braud, Alejandro N. Flores, Praveen Kumar, Henry Lin, Teamrat Ghezzehei, Julia Jones, Henry L. Gholz, Harry Vereecken, and Kris Van Looy
Earth Syst. Dynam., 9, 593–609, https://doi.org/10.5194/esd-9-593-2018, https://doi.org/10.5194/esd-9-593-2018, 2018
Short summary
Short summary
Focusing on the usage of integrated models and in situ Earth observatory networks, three challenges are identified to advance understanding of ESD, in particular to strengthen links between biotic and abiotic, and above- and below-ground processes. We propose developing a model platform for interdisciplinary usage, to formalize current network infrastructure based on complementarities and operational synergies, and to extend the reanalysis concept to the ecosystem and critical zone.
Martin Schrön, Steffen Zacharias, Gary Womack, Markus Köhli, Darin Desilets, Sascha E. Oswald, Jan Bumberger, Hannes Mollenhauer, Simon Kögler, Paul Remmler, Mandy Kasner, Astrid Denk, and Peter Dietrich
Geosci. Instrum. Method. Data Syst., 7, 83–99, https://doi.org/10.5194/gi-7-83-2018, https://doi.org/10.5194/gi-7-83-2018, 2018
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a unique technology to monitor water storages in complex environments, non-invasively, continuously, autonomuously, and representatively in large areas. However, neutron detector signals are not comparable per se: there is statistical noise, technical differences, and locational effects. We found out what it takes to make CRNS consistent in time and space to ensure reliable data quality. We further propose a method to correct for sealed areas in the footrint.
Martin Schrön, Markus Köhli, Lena Scheiffele, Joost Iwema, Heye R. Bogena, Ling Lv, Edoardo Martini, Gabriele Baroni, Rafael Rosolem, Jannis Weimar, Juliane Mai, Matthias Cuntz, Corinna Rebmann, Sascha E. Oswald, Peter Dietrich, Ulrich Schmidt, and Steffen Zacharias
Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, https://doi.org/10.5194/hess-21-5009-2017, 2017
Short summary
Short summary
A field-scale average of near-surface water content can be sensed by cosmic-ray neutron detectors. To interpret, calibrate, and validate the integral signal, it is important to account for its sensitivity to heterogeneous patterns like dry or wet spots. We show how point samples contribute to the neutron signal based on their depth and distance from the detector. This approach robustly improves the sensor performance and data consistency, and even reveals otherwise hidden hydrological features.
Edoardo Martini, Ulrike Werban, Steffen Zacharias, Marco Pohle, Peter Dietrich, and Ute Wollschläger
Hydrol. Earth Syst. Sci., 21, 495–513, https://doi.org/10.5194/hess-21-495-2017, https://doi.org/10.5194/hess-21-495-2017, 2017
Short summary
Short summary
With a process-based interpretation of electromagnetic induction measurements, we discussed the potential and limitations of such a method for soil moisture mapping. Results will help clarify the complex and time-varying effect of stable soil properties and dynamic state variables on the physical parameters measured, with implications for future studies. We highlighted the importance of time-series data and the need for a multidisciplinary approach for proper interpretation.
Related subject area
Climate and Earth system modeling
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
An urban module coupled with the Variable Infiltration Capacity model to improve hydrothermal simulations in urban systems
Bayesian hierarchical model for bias-correcting climate models
Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
TorchClim v1.0: a deep-learning plugin for climate model physics
Linking global terrestrial and ocean biogeochemistry with process-based, coupled freshwater algae–nutrient–solid dynamics in LM3-FANSY v1.0
Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption
Architectural Insights and Training Methodology Optimization of Pangu-Weather
Implementing detailed nucleation predictions in the Earth system model EC-Earth3.3.4: sulfuric acid–ammonia nucleation
Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)
Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Robust handling of extremes in quantile mapping – "Murder your darlings"
Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0
A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
Short-term effects of hurricanes on nitrate-nitrogen runoff loading: a case study of Hurricane Ida using E3SM land model (v2.1)
CARIB12: A Regional Community Earth System Model / Modular Ocean Model 6 Configuration of the Caribbean Sea
Parallel SnowModel (v1.0): a parallel implementation of a distributed snow-evolution modeling system (SnowModel)
LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Quantifying the impact of SST feedback frequency on Madden–Julian oscillation simulations
Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3
A revised model of global silicate weathering considering the influence of vegetation cover on erosion rate
Evaluation of global fire simulations in CMIP6 Earth system models
A radiative–convective model computing precipitation with the maximum entropy production hypothesis
Design, evaluation and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
Introducing the MESMER-M-TPv0.1.0 module: Spatially Explicit Earth System Model Emulation for Monthly Precipitation and Temperature
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024, https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary
Short summary
Irrigated agriculture in the North China Plain (NCP) has a significant impact on the local climate. To better understand this impact, we developed a specialized model specifically for the NCP region. This model allows us to simulate the double-cropping vegetation and the dynamic irrigation practices that are commonly employed in the NCP. This model shows improved performance in capturing the general crop growth, such as crop stages, biomass, crop yield, and vegetation greenness.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024, https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
Short summary
We present the latest version of the CICE model. It solves equations that describe the dynamics and the growth and melt of sea ice. To do so, the domain is divided into grid cells and variables are positioned at specific locations in the cells. A new implementation (C-grid) is presented, with the velocity located on cell edges. Compared to the previous B-grid, the C-grid allows for a natural coupling with some oceanic and atmospheric models. It also allows for ice transport in narrow channels.
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024, https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024, https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Short summary
The CICERO-SCM has existed as a Fortran model since 1999 that calculates the radiative forcing and concentrations from emissions and is an upwelling diffusion energy balance model of the ocean that calculates temperature change. In this paper, we describe an updated version ported to Python and publicly available at https://github.com/ciceroOslo/ciceroscm (https://doi.org/10.5281/zenodo.10548720). This version contains functionality for parallel runs and automatic calibration.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024, https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
Short summary
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024, https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary
Short summary
Vertical atmospheric motions play a vital role in convective-scale precipitation forecasts by connecting atmospheric dynamics with cloud development. A three-dimensional variational vertical velocity assimilation scheme is developed within the high-resolution CMA-MESO model, utilizing the adiabatic Richardson equation as the observation operator. A 10 d continuous run and an individual case study demonstrate improved forecasts, confirming the scheme's effectiveness.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Yibing Wang, Xianhong Xie, Bowen Zhu, Arken Tursun, Fuxiao Jiang, Yao Liu, Dawei Peng, and Buyun Zheng
Geosci. Model Dev., 17, 5803–5819, https://doi.org/10.5194/gmd-17-5803-2024, https://doi.org/10.5194/gmd-17-5803-2024, 2024
Short summary
Short summary
Urban expansion intensifies challenges like urban heat and urban dry islands. To address this, we developed an urban module, VIC-urban, in the Variable Infiltration Capacity (VIC) model. Tested in Beijing, VIC-urban accurately simulated turbulent heat fluxes, runoff, and land surface temperature. We provide a reliable tool for large-scale simulations considering urban environment and a systematic urban modelling framework within VIC, offering crucial insights for urban planners and designers.
Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson
Geosci. Model Dev., 17, 5733–5757, https://doi.org/10.5194/gmd-17-5733-2024, https://doi.org/10.5194/gmd-17-5733-2024, 2024
Short summary
Short summary
Climate models are essential tools in the study of climate change and its wide-ranging impacts on life on Earth. However, the output is often afflicted with some bias. In this paper, a novel model is developed to predict and correct bias in the output of climate models. The model captures uncertainty in the correction and explicitly models underlying spatial correlation between points. These features are of key importance for climate change impact assessments and resulting decision-making.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
David Fuchs, Steven C. Sherwood, Abhnil Prasad, Kirill Trapeznikov, and Jim Gimlett
Geosci. Model Dev., 17, 5459–5475, https://doi.org/10.5194/gmd-17-5459-2024, https://doi.org/10.5194/gmd-17-5459-2024, 2024
Short summary
Short summary
Machine learning (ML) of unresolved processes offers many new possibilities for improving weather and climate models, but integrating ML into the models has been an engineering challenge, and there are performance issues. We present a new software plugin for this integration, TorchClim, that is scalable and flexible and thereby allows a new level of experimentation with the ML approach. We also provide guidance on ML training and demonstrate a skillful hybrid ML atmosphere model.
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024, https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input, and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
Hunter York Brown, Benjamin Wagman, Diana Bull, Kara Peterson, Benjamin Hillman, Xiaohong Liu, Ziming Ke, and Lin Lin
Geosci. Model Dev., 17, 5087–5121, https://doi.org/10.5194/gmd-17-5087-2024, https://doi.org/10.5194/gmd-17-5087-2024, 2024
Short summary
Short summary
Explosive volcanic eruptions lead to long-lived, microscopic particles in the upper atmosphere which act to cool the Earth's surface by reflecting the Sun's light back to space. We include and test this process in a global climate model, E3SM. E3SM is tested against satellite and balloon observations of the 1991 eruption of Mt. Pinatubo, showing that with these particles in the model we reasonably recreate Pinatubo and its global effects. We also explore how particle size leads to these effects.
Deifilia Aurora To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
EGUsphere, https://doi.org/10.5194/egusphere-2024-1714, https://doi.org/10.5194/egusphere-2024-1714, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers three-dimensional atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20–30%. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases accessibility of training and working with the model.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-98, https://doi.org/10.5194/gmd-2024-98, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger range of data is likely encountered outside the calibration period. The end result is highly dependent on the method used, and we show that one needs to exclude data in the calibration range to activate the extrapolation functionality also in that time period, else there will be discontinuities in the timeseries.
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
Maria Rosa Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-73, https://doi.org/10.5194/gmd-2024-73, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Observational data and modelling capabilities are expanding in recent years, but there are still barriers preventing these two data sources to be used in synergy. Proper comparison requires generating, storing and handling a large amount of data. This manuscript describes the first step in the development of a new set of software tools, the ‘VISION toolkit’, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024, https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary
Short summary
This study focuses on the important issue of the drizzle bias effect in regional climate models, described by an over-prediction of the number of rainy days while underestimating associated precipitation amounts. For this purpose, two distinct methodologies are applied and rigorously evaluated. These results are encouraging for using the multivariate machine learning method random forest to increase the accuracy of climate models concerning the projection of the number of wet days.
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024, https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
Short summary
We develop the interactive Model for Air Pollution and Land Ecosystems (iMAPLE). The model considers the full coupling between carbon and water cycles, dynamic fire emissions, wetland methane emissions, biogenic volatile organic compound emissions, and trait-based ozone vegetation damage. Evaluations show that iMAPLE is a useful tool for the study of the interactions among climate, chemistry, and ecosystems.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-1456, https://doi.org/10.5194/egusphere-2024-1456, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant covariances during convective and frontal precipitation events. Common statistical downscaling techniques preserve expected covariances during convective precipitation. However, they dampen future intensification of frontal precipitation captured in global climate models and dynamical downscaling. This suggests statistical downscaling may not fully resolve non-stationary hydrologic processes as compared to dynamical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-97, https://doi.org/10.5194/gmd-2024-97, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Research software is crucial for scientific progress but is often developed by scientists with limited training, time, and funding, leading to software that is hard to understand, (re)use, modify, and maintain. Our study across 10 research sectors highlights strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. Recommendations include workshops, code quality metrics, funding, and adherence to FAIR standards.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-70, https://doi.org/10.5194/gmd-2024-70, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Hurricanes may worsen the water quality in the lower Mississippi River Basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate-nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in LMRB during Hurricane Ida in 2021, but less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Giovanni G. Seijo-Ellis, Donata Giglio, Gustavo M. Marques, and Frank O. Bryan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1378, https://doi.org/10.5194/egusphere-2024-1378, 2024
Short summary
Short summary
A CESM/MOM6 regional configuration of the Caribbean Sea was developed as a response to the rising need of high-resolution models for climate impact studies. The configuration is validated for the period of 2000–2020 and improves significant errors in a low resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon river are well captured and the mean flows across the multiple passages in the Caribbean Sea agree with observations.
Ross Mower, Ethan D. Gutmann, Glen E. Liston, Jessica Lundquist, and Soren Rasmussen
Geosci. Model Dev., 17, 4135–4154, https://doi.org/10.5194/gmd-17-4135-2024, https://doi.org/10.5194/gmd-17-4135-2024, 2024
Short summary
Short summary
Higher-resolution model simulations are better at capturing winter snowpack changes across space and time. However, increasing resolution also increases the computational requirements. This work provides an overview of changes made to a distributed snow-evolution modeling system (SnowModel) to allow it to leverage high-performance computing resources. Continental simulations that were previously estimated to take 120 d can now be performed in 5 h.
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024, https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
Short summary
To enhance the efficiency of experiments using SCAM, we train a learning-based surrogate model to facilitate large-scale sensitivity analysis and tuning of combinations of multiple parameters. Employing a hybrid method, we investigate the joint sensitivity of multi-parameter combinations across typical cases, identifying the most sensitive three-parameter combination out of 11. Subsequently, we conduct a tuning process aimed at reducing output errors in these cases.
Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng
Geosci. Model Dev., 17, 3897–3918, https://doi.org/10.5194/gmd-17-3897-2024, https://doi.org/10.5194/gmd-17-3897-2024, 2024
Short summary
Short summary
This study uses the CAM5–SIT coupled model to investigate the effects of SST feedback frequency on the MJO simulations with intervals at 30 min, 1, 3, 6, 12, 18, 24, and 30 d. The simulations become increasingly unrealistic as the frequency of the SST feedback decreases. Our results suggest that more spontaneous air--sea interaction (e.g., ocean response within 3 d in this study) with high vertical resolution in the ocean model is key to the realistic simulation of the MJO.
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024, https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary
Short summary
We introduce an open-source software, the PCMDI Metrics Package (PMP), developed for a comprehensive comparison of Earth system models (ESMs) with real-world observations. Using diverse metrics evaluating climatology, variability, and extremes simulated in thousands of simulations from the Coupled Model Intercomparison Project (CMIP), PMP aids in benchmarking model improvements across generations. PMP also enables efficient tracking of performance evolutions during ESM developments.
Haoyue Zuo, Yonggang Liu, Gaojun Li, Zhifang Xu, Liang Zhao, Zhengtang Guo, and Yongyun Hu
Geosci. Model Dev., 17, 3949–3974, https://doi.org/10.5194/gmd-17-3949-2024, https://doi.org/10.5194/gmd-17-3949-2024, 2024
Short summary
Short summary
Compared to the silicate weathering fluxes measured at large river basins, the current models tend to systematically overestimate the fluxes over the tropical region, which leads to an overestimation of the global total weathering flux. The most possible cause of such bias is found to be the overestimation of tropical surface erosion, which indicates that the tropical vegetation likely slows down physical erosion significantly. We propose a way of taking this effect into account in models.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-85, https://doi.org/10.5194/gmd-2024-85, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 CMIP6 ESMs. Most models reproduce global total, spatial pattern, seasonality, and regional historical changes well, but fail to simulate the recent decline in global burned area and underestimate the fire sensitivity to wet-dry conditions. They addressed three critical issues in CMIP5. We present targeted guidance for fire scheme development and methodologies to generate reliable fire projections.
Quentin Pikeroen, Didier Paillard, and Karine Watrin
Geosci. Model Dev., 17, 3801–3814, https://doi.org/10.5194/gmd-17-3801-2024, https://doi.org/10.5194/gmd-17-3801-2024, 2024
Short summary
Short summary
All accurate climate models use equations with poorly defined parameters, where knobs for the parameters are turned to fit the observations. This process is called tuning. In this article, we use another paradigm. We use a thermodynamic hypothesis, the maximum entropy production, to compute temperatures, energy fluxes, and precipitation, where tuning is impossible. For now, the 1D vertical model is used for a tropical atmosphere. The correct order of magnitude of precipitation is computed.
Giovanni Di Virgilio, Jason Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew Riley, and Jyothi Lingala
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-87, https://doi.org/10.5194/gmd-2024-87, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models, and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleußner
EGUsphere, https://doi.org/10.5194/egusphere-2024-278, https://doi.org/10.5194/egusphere-2024-278, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Their joint distribution largely determines the division into climate regimes. Yet, projecting precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows to generate monthly means of local precipitation and temperature at low computational costs.
Cited articles
Agostinelli, S., Allison, J., Amako, K., et al.: GEANT4 – a simulation toolkit, Nucl. Instrum.
Meth. A, 506, 250–303,
https://doi.org/10.1016/S0168-9002(03)01368-8, 2003. a
Andreasen, M., Jensen, H. K., Zreda, M., Desilets, D., Bogena, H., and Looms,
C.: Modeling cosmic ray neutron field measurements, Water Resour. Res.,
52, 6451–6471, https://doi.org/10.1002/2015wr018236, 2016. a
Badiee, A., Wallbank, J., Pulido Fentanes, J., Trill, E., Scarlet, P., Zhu,
Y., Cielniak, G., Cooper, H., Blake, J., Evans, J., Zreda, M., Köhli, M.,
and Pearson, S.: Using Additional Moderator to Control the Footprint of a
COSMOS Rover for Soil Moisture Measurement, Water Resour. Res., 57, e2020WR028478,
https://doi.org/10.1029/2020wr028478, 2021. a, b
Baroni, G., Scheiffele, L., Schrön, M., Ingwersen, J., and Oswald, S.:
Uncertainty, sensitivity and improvements in soil moisture estimation with
cosmic-ray neutron sensing, J. Hydrol., 564, 873–887,
https://doi.org/10.1016/j.jhydrol.2018.07.053, 2018. a
Battistoni, G., Boehlen, T., Cerutti, F., Chin, P., Esposito, L., Fasso, A.,
Ferrari, A., Lechner, A., Empl, A., Mairani, A., Mereghetti, A., Ortega, P.,
Ranft, J., Roesler, S., Sala, P., Vlachoudis, V., and Smirnov, G.: Overview
of the FLUKA code, Ann. Nucl. Energ., 82, 10–18,
https://doi.org/10.1016/j.anucene.2014.11.007, 2015. a
Boudard, A., Cugnon, J., David, J.-C., Leray, S., and Mancusi, D.: New
potentialities of the Liège intranuclear cascade model for reactions
induced by nucleons and light charged particles, Phys. Rev. C, 87,
014606, https://doi.org/10.1103/PhysRevC.87.014606, 2013. a
Bramblett, R. and Bonner, T.: Neutron evaporation spectra from (p, n)
reactions, Nucl. Phys., 20, 395–407, https://doi.org/10.1016/0029-5582(60)90182-6,
1960. a
Bramblett, R., Ewing, R., and Bonner, T.: A new type of neutron spectrometer,
Nucl. Instrum. Methods, 9, 1–12,
https://doi.org/10.1016/0029-554X(60)90043-4, 1960. a
Briesmeister, J.: MCNP-A general Monte Carlo N-particle
transport code, Version 4C, LA-13709-M,
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-13709-M,
2000. a
Brown, D., Chadwick, M., Capote, R., Kahler, A., Trkov, A., Herman, M.,
Sonzogni, A., Danon, Y., Carlson, A., Dunn, M., Smith, D., Hale, G., Arbanas,
G., Arcilla, R., Bates, C., Beck, B., Becker, B., Brown, F., Casperson, R.,
Conlin, J., Cullen, D., Descalle, M.-A., Firestone, R., Gaines, T., Guber,
K., Hawari, A., Holmes, J., Johnson, T., Kawano, T., Kiedrowski, B., Koning,
A., Kopecky, S., Leal, L., Lestone, J., Lubitz, C., Damiá¡n, J. M.,
Mattoon, C., McCutchan, E., Mughabghab, S., Navratil, P., Neudecker, D.,
Nobre, G., Noguere, G., Paris, M., Pigni, M., Plompen, A., Pritychenko, B.,
Pronyaev, V., Roubtsov, D., Rochman, D., Romano, P., Schillebeeckx, P.,
Simakov, S., Sin, M., Sirakov, I., Sleaford, B., Sobes, V., Soukhovitskii,
E., Stetcu, I., Talou, P., Thompson, I., van der Marck, S.,
Welser-Sherrill, L., Wiarda, D., White, M., Wormald, J., Wright, R., Zerkle,
M., Žerovnik, G., and Zhu, Y.: ENDF/B-VIII.0: The 8th Major
Release of the Nuclear Reaction Data Library with CIELO-project Cross
Sections, New Standards and Thermal Scattering Data, Nucl. Data Sheets,
148, 1–142, https://doi.org/10.1016/j.nds.2018.02.001, 2018. a
Brun, R. and Rademakers, F.: ROOT – An Object Oriented Data Analysis
Framework, in: Proceedings of AIHENP’96 Workshop, Lausanne, vol. 389,
81–86, https://doi.org/10.1016/S0168-9002(97)00048-X, 1997. a, b
Caswell, R., Gabbard, R., Padgett, D., and Doering, W.: Attenuation of
14.1-Mev Neutrons in Water, Nucl. Sci. Eng., 2, 143–159,
https://doi.org/10.13182/NSE57-A25383, 1957. a, b, c, d
Chadwick, M., Herman, M., Obložinský, P., Dunn, M., Danon, Y.,
Kahler, A., Smith, D., Pritychenko, B., Arbanas, G., Arcilla, R., Brewer, R.,
Brown, D., Capote, R., Carlson, A., Cho, Y., Derrien, H., Guber, K., Hale,
G., Hoblit, S., Holloway, S., Johnson, T., Kawano, T., Kiedrowski, B., Kim,
H., Kunieda, S., Larson, N., Leal, L., Lestone, J., Little, R., McCutchan,
E., MacFarlane, R., MacInnes, M., Mattoon, C., McKnight, R., Mughabghab,
S., Nobre, G., Palmiotti, G., Palumbo, A., Pigni, M., Pronyaev, V., Sayer,
R., Sonzogni, A., Summers, N., Talou, P., Thompson, I., Trkov, A., Vogt, R.,
van der Marck, S., Wallner, A., White, M., Wiarda, D., and Young, P.:
ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections,
Covariances, Fission Product Yields and Decay Data, Nucl. Data Sheets, 112,
2887–2996, https://doi.org/10.1016/j.nds.2011.11.002, 2011. a
Cnudde, V. and Boone, M.: High-resolution X-ray computed tomography in
geosciences: A review of the current technology and applications,
Earth-Sci. Rev., 123, 1–17, https://doi.org/10.1016/j.earscirev.2013.04.003,
2013. a
Cugnon, J., Volant, C., and Vuillier, S.: Nucleon and deuteron induced
spallation reactions, Nucl. Phys. A, 625, 729–757,
https://doi.org/10.1016/S0375-9474(97)00602-7, 1997. a
Decker, A., McHale, S., Shannon, M., Clinton, J., and McClory, J.: Novel
Bonner Sphere Spectrometer Response Functions Using MCNP6, IEEE
T. Nucl. Sci., 62, 1689–1694,
https://doi.org/10.1109/TNS.2015.2416652, 2015. a
Desilets, D. and Zreda, M.: Footprint diameter for a cosmic-ray soil moisture
probe: Theory and Monte Carlo simulations, Water Resour. Res., 49,
3566–3575, https://doi.org/10.1002/wrcr.20187, 2013. a
Desilets, D., Zreda, M., and Prabu, T.: Extended scaling factors for in situ
cosmogenic nuclides: new measurements at low latitude, Earth Planet.
Sc. Lett., 246, 265–276, https://doi.org/10.1016/j.epsl.2006.03.051, 2006. a
Emmett, M.: The MORSE Monte Carlo Transport Code System, ORNL-4972/R2,
https://inis.iaea.org/collection/NCLCollectionStore/_Public/16/029/16029296.pdf,
1975. a
Federico, C., Gonçalez, O., Fonseca, E., Martin, I., and Caldas, L.:
Neutron spectra measurements in the south Atlantic anomaly region,
Radiat. Meas., 45, 1526–1528, https://doi.org/10.1016/j.radmeas.2010.06.038,
2010. a
Francke, T., Heistermann, M., Köhli, M., Budach, C., Schrön, M., and Oswald, S. E.: Assessing the feasibility of a directional cosmic-ray neutron sensing sensor for estimating soil moisture, Geosci. Instrum. Method. Data Syst., 11, 75–92, https://doi.org/10.5194/gi-11-75-2022, 2022. a, b
Franz, T. E., Zreda, M., Rosolem, R., and Ferre, T. P. A.: A universal calibration function for determination of soil moisture with cosmic-ray neutrons, Hydrol. Earth Syst. Sci., 17, 453–460, https://doi.org/10.5194/hess-17-453-2013, 2013. a
Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth,
M., Rossi, F., and Ulerich, R.: GNU Scientific Library: reference manual for GSL
version 2.7, Free Software Foundation,
https://www.gnu.org/software/gsl/manual/gsl-ref.pdf (last access: 18 January 2023), 2016. a
Garny, S., Mares, V., and Rühm, W.: Response functions of a Bonner
Sphere Spectrometer calculated with GEANT4, Nucl. Instrum.
Meth. A, 604, 612–617, https://doi.org/10.1016/j.nima.2009.02.044,
2009. a
Gelbard, E.: Epithermal scattering in VIM, Tech. Rep. FRA-TM-123, Argonne
National Laboratory, IL, USA, technical Memorandum, 1979. a
Goldhagen, P., Reginatto, M., Kniss, T., Wilson, J., Singleterry, R., Jones,
I., and Van Steveninck, W.: Measurement of the energy spectrum of
cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane, Nucl. Instrum.
Meth. A, 476, 42–51,
https://doi.org/10.1016/S0168-9002(01)01386-9, 2002. a
Goldman, L.: Principles of CT and CT Technology, J. Nucl.
Med. Tech., 35, 115–128, https://doi.org/10.2967/jnmt.107.042978, 2007. a
Goorley, T., James, M., Booth, T., Brown, F., Bull, J., Cox, L., Durkee, J.,
Elson, J., Fensin, M., Forster, R., Hendricks, J., Hughes, H., Johns, R.,
Kiedrowski, B., Martz, R., Mashnik, S., McKinney, G., Pelowitz, D., Prael,
R., Sweezy, J., Waters, L., Wilcox, T., and Zukaitis, T.: Initial MCNP6
Release Overview, Nucl. Tech., 180, 298–315, https://doi.org/10.13182/NT11-135,
2012. a, b
Gudima, K., Mashnik, S., and Toneev, V.: Cascade-exciton model of nuclear
reactions, Nucl. Phys. A, 401, 329–361,
https://doi.org/10.1016/0375-9474(83)90532-8, 1983. a
Gudima, K., Mashnik, S., and Sierk, A.: User Manual for the Code LAQGSM,
LA-UR-01-6804,
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-01-6804,
2001. a
Hébert, A.: Multigroup Neutron Transport and Diffusion Computations,
Springer US, Boston, 751–911, https://doi.org/10.1007/978-0-387-98149-9_8, 2010. a
Heidbüchel, I., Güntner, A., and Blume, T.: Use of cosmic-ray neutron sensors for soil moisture monitoring in forests, Hydrol. Earth Syst. Sci., 20, 1269–1288, https://doi.org/10.5194/hess-20-1269-2016, 2016. a
Hertel, N. and Davidson, J.: The response of Bonner Spheres to neutrons
from thermal energies to 17.3 MeV, Nucl. Instrum. Meth. A, 238, 509–516, https://doi.org/10.1016/0168-9002(85)90494-2,
1985. a
ISO group 85/SC 2 Radiological protection: Reference neutron radiations –
Part 1, Standard, International Organization for Standardization, Geneva, CH,
https://www.iso.org/standard/25666.html (last access: 18 January 2023), 2001. a
Iwamoto, O., Iwamoto, N., Kunieda, S., Minato, F., and Shibata, K.: The CCONE
Code System and its Application to Nuclear Data Evaluation for Fission and
Other Reactions, Nucl. Data Sheets, 131, 259–288,
https://doi.org/10.1016/j.nds.2015.12.004,
2016. a
Iwase, H., Niita, K., and Nakamura, T.: Development of General-Purpose Particle
and Heavy Ion Transport Monte Carlo Code, J. Nucl. Sci.
Technol., 39, 1142–1151, https://doi.org/10.1080/18811248.2002.9715305, 2002. a, b
Iwema, J., Schrön, M., Da Silva, J. K., Schweiser De Paiva Lopes, R.,
and Rosolem, R.: Accuracy and precision of the cosmic-ray neutron sensor for
soil moisture estimation at humid environments, Hydrol. Process., 35, e14419,
https://doi.org/10.1002/hyp.14419, 2021. a
Iyer, M. and Ganguly, A.: Neutron Evaporation and Energy Distribution in
Individual Fission Fragments, Phys. Rev. C, 5, 1410–1421,
https://doi.org/10.1103/PhysRevC.5.1410, 1972. a
Jakobi, J., Huisman, J., Köhli, M., Rasche, D., Vereecken, H., and Bogena,
H.: The Footprint Characteristics of Cosmic Ray Thermal Neutrons, Geophys.
Res. Lett., 48, e2021GL094281, https://doi.org/10.1029/2021gl094281, 2021. a, b
Kawano, T., Talou, P., Stetcu, I., and Chadwick, M.: Statistical and
evaporation models for the neutron emission energy spectrum in the
center-of-mass system from fission fragments, Nucl. Phys. A, 913, 51–70,
https://doi.org/10.1016/j.nuclphysa.2013.05.020, 2013. a
Kittelmann, T. and Boin, M.: Polycrystalline neutron scattering for Geant4:
NXSG4, Comput. Phys. Commun., 189, 114–118,
https://doi.org/10.1016/j.cpc.2014.11.009, 2015. a
Knuth, D.: The Art of Computer Programming, Volume 2, 3rd Edn.,
Seminumerical Algorithms, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, ISBN 9780321635778, 1997. a
Köhli, M.: URANOS v1.0, Harvard Dataverse V1 [code], https://doi.org/10.7910/DVN/THPNZW, 2022a. a, b
Köhli, M.: mkoehli/uranos: URANOS v1.0 (URANOS), Zenodo [data set], https://doi.org/10.5281/zenodo.6578668, 2022b. a
Köhli, M. and Schmoldt, J.-P.: Feasibility of UXO detection via pulsed
neutron-neutron logging, Appl. Radiat. Isotopes, 188, 110403,
https://doi.org/10.1016/j.apradiso.2022.110403, 2022. a, b
Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and
Zacharias, S.: Footprint characteristics revised for field-scale soil
moisture monitoring with cosmic-ray neutrons, Water Resour. Res., 51,
5772–5790, https://doi.org/10.1002/2015WR017169, 2015. a, b, c
Köhli, M., Allmendinger, F., Häußler, W., Schröder, T., Klein,
M., Meven, M., and Schmidt, U.: Efficiency and spatial resolution of the
CASCADE thermal neutron detector, Nucl. Instrum. Meth. A, 828, 242–249, https://doi.org/10.1016/j.nima.2016.05.014, 2016. a, b
Köhli, M., Desch, K., Gruber, M., Kaminski, J., Schmidt, F., and Wagner,
T.: Novel neutron detectors based on the time projection method, Physica B, 551, 517–522, https://doi.org/10.1016/j.physb.2018.03.026, 2018a. a, b
Köhli, M., Schrön, M., and Schmidt, U.: Response functions for
detectors in cosmic ray neutron sensing, Nucl. Instrum. Meth. A, 902, 184–189, https://doi.org/10.1016/j.nima.2018.06.052,
2018b. a, b, c
Köhli, M., Weimar, J., Schrön, M., Baatz, R., and Schmidt, U.: Soil
Moisture and Air Humidity Dependence of the Above-Ground Cosmic-Ray Neutron
Intensity, Front. Water, 2, 15, https://doi.org/10.3389/frwa.2020.544847, 2021. a, b, c
Koning, A., Bauge, E., Dean, C., Dupont, E., Nordborg, C., Rugama, Y., Fischer,
U., Forrest, R., Kellett, M., Jacqmin, R., Leeb, H., Mills, R., Pescarini,
M., and Rullhusen, P.: Status of the JEFF Nuclear Data Library, J.
Korean Phys. Soc., 59, 1057–1062, https://doi.org/10.3938/jkps.59.1057,
2011. a
Lefmann, K. and Nielsen, K.: McStas, a general software package for neutron
ray-tracing simulations, Neutron News, 10, 20–23,
https://doi.org/10.1080/10448639908233684, 1999. a
Li, D., Schrön, M., Köhli, M., Bogena, H., Weimar, J., Jiménez
Bello, M., Han, X., Martínez Gimeno, M., Zacharias, S., Vereecken,
H., and Hendricks Franssen, H.: Can Drip Irrigation be Scheduled with
Cosmic-Ray Neutron Sensing?, Vadose Zone J., 18, 190053,
https://doi.org/10.2136/vzj2019.05.0053, 2019. a, b
Liu, H., Hou, Y., Li, H., Song, Y., Hu, L., and Liang, M.: Cosmic-ray neutron
fluxes and spectra at different altitudes based on Monte Carlo
simulations, Appl. Radiat. Isotopes, 175, 109800,
https://doi.org/10.1016/j.apradiso.2021.109800, 2021. a
Maire, E. and Withers, P.: Quantitative X-ray tomography, Int.
Mater. Rev., 59, 1–43, https://doi.org/10.1179/1743280413Y.0000000023, 2013. a
Mares, V. and Schraube, H.: Evaluation of the response matrix of a Bonner
Sphere Spectrometer with LiI detector from thermal energy to 100 MeV,
Nucl. Instrum. Meth. A, 337, 461–473,
https://doi.org/10.1016/0168-9002(94)91116-9, 1994. a
Mares, V., Schraube, G., and Schraube, H.: Calculated neutron response of a
Bonner Sphere Spectrometer with 3He counter, Nucl. Instrum. Meth. A, 307, 398–412,
https://doi.org/10.1016/0168-9002(91)90210-H, 1991. a, b
Matsumoto, M. and Nishimura, T.: Mersenne Twister: A 623-dimensionally
Equidistributed Uniform Pseudo-random Number Generator, ACM T.
Model. Comput. Sim., 8, 3–30, https://doi.org/10.1145/272991.272995,
1998. a
McConn Jr., R., Gesh, C., Pagh, R., Rucker, R., and Williams III, R.:
Compendium of Material Composition Data for Radiation Transport Modeling,
Tech. Rep. PNNL-15870 Rev. 1, Pacific Northwest National Laboratory,
Richland, Washington 99352,
https://www.pnnl.gov/main/publications/external/technical_reports/pnnl-15870rev1.pdf,
2011. a
McKinney, G.: MCNP6 Cosmic and Terrestrial Background Particle Fluxes,
LA-UR-13-24293, release
3,
https://mcnp.lanl.gov/pdf_files/la-ur-13-24293.pdf, 2013. a
McKinney, G., Armstrong, H., James, M., Clem, J., and Goldhagen, P.: MCNP6
Cosmic-Source Option, LA-UR-12-22318,
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-12-22318,
2012. a
Metropolis, N. and Ulam, S.: The Monte Carlo Method, J. Am.
Stat. Assoc., 44, 335–341, https://doi.org/10.2307/2280232, 1949. a
Nelms, A.: Energy loss and range of electrons and positrons, United States
Department of Commerce, national
Bureau of Standards Circular 577 and Suppl.,
https://catalog.hathitrust.org/Record/007291096 (last access: 18 January 2023), 1956. a
Niita, K.: QMD and JAM Calculations for High Energy Nucleon-Nucleus
Collisions, J. Nucl. Sci. Technol., 39, 714–719,
https://doi.org/10.1080/00223131.2002.10875198, 2002. a
Niita, K., Takada, H., Meigo, S., and Ikeda, Y.: High-energy particle transport
code NMTC/JAM, Nucl. Instrum. Meth. B, 184, 406–420,
https://doi.org/10.1016/S0168-583X(01)00784-4, 2001. a
Otuka, N., Dupont, E., Semkova, V., Pritychenko, B., Blokhin, A., Aikawa, M.,
Babykina, S., Bossant, M., Chen, G., Dunaeva, S., Forrest, R., Fukahori, T.,
Furutachi, N., Ganesan, S., Ge, Z., Gritzay, O., Herman, M., Hlavač,
S., Kato, K., Lalremruata, B., Lee, Y., Makinaga, A., Matsumoto, K.,
Mikhaylyukova, M., Pikulina, G., Pronyaev, V., Saxena, A., Schwerer, O.,
Simakov, S., Soppera, N., Suzuki, R., Takács, S., Tao, X., Taova, S.,
Tárkányi, F., Varlamov, V., Wang, J., Yang, S., Zerkin, V., and
Zhuang, Y.: Towards a More Complete and Accurate Experimental Nuclear
Reaction Data Library (EXFOR): International Collaboration Between Nuclear
Reaction Data Centres (NRDC), Nucl. Data Sheets, 120, 272–276,
https://doi.org/10.1016/j.nds.2014.07.065, 2014. a
Pazianotto, M., Cortés-Giraldo, M., Federico, C., Gonçalez, O.,
Quesada, J., and Carlson, B.: Determination of the cosmic-ray-induced neutron
flux and ambient dose equivalent at flight altitude, J. Phys.
Conf. Ser., 630, 012022, https://doi.org/10.1088/1742-6596/630/1/012022, 2015. a
Peggs, S., et al.: European Spallation Source Technical Design Report,
Technical Design Report ESS, ESS, Lundt, ESS-2013-001,
http://docdb01.esss.lu.se/DocDB/0002/000274/006/TDR_final_130423_print_ch1.pdf,
2013. a
Prael, R. and Lichtenstein, H.: User Guide to LCS: The LAHET Code System,
LA-UR-89-3014,
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-89-3014,
1989. a
Rasche, D., Köhli, M., Schrön, M., Blume, T., and Güntner, A.: Towards disentangling heterogeneous soil moisture patterns in cosmic-ray neutron sensor footprints, Hydrol. Earth Syst. Sci., 25, 6547–6566, https://doi.org/10.5194/hess-25-6547-2021, 2021. a
Romano, P. and Forget, B.: The OpenMC Monte Carlo particle transport code,
Ann. Nucl. Energ., 51, 274–281, https://doi.org/10.1016/j.anucene.2012.06.040,
2013. a, b
Roth, S.: Ray casting for modeling solids, Comput. Vision Graph., 18, 109–144, https://doi.org/10.1016/0146-664X(82)90169-1, 1982. a
Šaroun, J. and Kulda, J.: RESTRAX – a program for TAS
resolution calculation and scan profile simulation, Physica B, 234-236, 1102–1104, https://doi.org/10.1016/s0921-4526(97)00037-9, 1997. a
Sato, T.: Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly
Anytime and Anywhere in the World: Extension of PARMA/EXPACS, PLOS ONE, 10,
1–33, https://doi.org/10.1371/journal.pone.0144679, 2015. a
Sato, T. and Niita, K.: Analytical Functions to Predict Cosmic-Ray Neutron
Spectra in the Atmosphere, Radiation Research, 166, 544–555,
https://doi.org/10.1667/RR0610.1, 2006. a
Sato, T., Yasuda, H., Niita, K., Endo, A., and Sihver, L.: Development of
PARMA: PHITS-based Analytical Radiation Model in the Atmosphere,
Radiat. Res., 170, 244–259, https://doi.org/10.1667/RR1094.1, 2008. a, b, c
Schattan, P., Köhli, M., Schrön, M., Baroni, G., and Oswald, S.:
Sensing Area-Average Snow Water Equivalent with Cosmic-Ray Neutrons: The
Influence of Fractional Snow Cover, Water Resour. Res., 55,
10796–10812, https://doi.org/10.1029/2019WR025647, 2019. a, b
Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity, Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, 2017. a, b
Schrön, M., Rosolem, R., Köhli, M., Piussi, L., Schröter, I.,
Iwema, J., Kögler, S., Oswald, S., Wollschläger, U., Samaniego, L.,
Dietrich, P., and Zacharias, S.: Cosmic-ray Neutron Rover Surveys of Field
Soil Moisture and the Influence of Roads, Water Resour. Res., 54,
6441–6459, https://doi.org/10.1029/2017WR021719, 2018. a
Schrön, M., Zacharias, S., Womack, G., Köhli, M., Desilets, D., Oswald, S. E., Bumberger, J., Mollenhauer, H., Kögler, S., Remmler, P., Kasner, M., Denk, A., and Dietrich, P.: Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment, Geosci. Instrum. Method. Data Syst., 7, 83–99, https://doi.org/10.5194/gi-7-83-2018, 2018. a, b, c
Schrön, M., Oswald, S., Zacharias, S., Kasner, M., Dietrich, P., and
Attinger, S.: Neutrons on Rails: Transregional Monitoring of Soil Moisture
and Snow Water Equivalent, Geophys. Res. Lett., 48, e2021GL093924,
https://doi.org/10.1029/2021gl093924, 2021. a
Shibata, K., Iwamoto, O., Nakagawa, T., Iwamoto, N., Ichihara, A., Kunieda, S.,
Chiba, S., Furutaka, K., Otuka, N., Ohsawa, T., Murata, T., Matsunobu, H.,
Zukeran, A., Kamada, S., and Katakura, J.: JENDL-4.0: A New Library for
Nuclear Science and Engineering, J. Nucl. Sci. Technol.,
48, 1–30, https://doi.org/10.1080/18811248.2011.9711675, 2011. a
Smith, A., Fields, P., and Roberts, J.: Spontaneous Fission Neutron Spectrum of
252Cf, Phys. Rev., 108, 411–413,
https://doi.org/10.1103/PhysRev.108.411, 1957. a
Solovyev, A., Fedorov, V., Kharlov, V., and Stepanova, U.: Comparative analysis
of MCNPX and GEANT4 codes for fast-neutron radiation treatment planning,
Nucl. Energ. Technol., 1, 14–19, https://doi.org/10.1016/j.nucet.2015.11.004,
2015. a
Sun Programmers Group: Fortran 77 Reference Manual, Tech. rep., SunSoft,
http://wwwcdf.pd.infn.it/localdoc/f77_sun.pdf,
1995a. a
Sun Programmers Group: Fortran 90 User's Guide, Tech. rep., SunSoft,
http://smdc.sinp.msu.ru/doc/Fortran90UsersGuide.pdf,
1995b. a
Sweezy, J., Hertel, N., and Veinot, K.: BUMS – Bonner Sphere Unfolding
Made Simple: an HTML based multisphere neutron spectrometer unfolding
package, Nucl. Instrum. Meth. A, 476,
263–269, https://doi.org/10.1016/S0168-9002(01)01466-8,
2002. a
Terrell, J.: Fission Neutron Spectra and Nuclear Temperatures, Phys. Rev.,
113, 527–541, https://doi.org/10.1103/PhysRev.113.527, 1959. a
Thomas, D. and Alevra, A.: Bonner Sphere Spectrometers – a critical
review, Nucl. Instrum. Meth. A, 476, 12–20,
https://doi.org/10.1016/S0168-9002(01)01379-1, 2002. a
van der Ende, B., Atanackovic, J., Erlandson, A., and Bentoumi, G.: Use of
GEANT4 vs. MCNPX for the characterization of a boron-lined neutron
detector, Nucl. Instrum. Meth. A, 820, 40–47,
https://doi.org/10.1016/j.nima.2016.02.082, 2016. a
Walsh, J., Forget, B., and Smith, K.: Accelerated sampling of the free gas
resonance elastic scattering kernel, Ann. Nucl. Energ., 69, 116–124,
https://doi.org/10.1016/j.anucene.2014.01.017, 2014. a
Waters, L., McKinney, G., Durkee, J., Fensin, M., Hendricks, J., James, M.,
Johns, R., and Pelowitz, D.: The MCNPX Monte Carlo Radiation Transport
Code, AIP Conf. Proc., 896, 81–90, https://doi.org/10.1063/1.2720459,
2007. a, b
Watt, B.: Energy Spectrum of Neutrons from Thermal Fission of
235U, Phys. Rev., 87, 1037–1041,
https://doi.org/10.1103/PhysRev.87.1037, 1952. a
Wechsler, D., Zsigmond, G., Streffer, F., and Mezei, F.: VITESS: Virtual
instrumentation tool for pulsed and continuous sources, Neutron News, 11,
25–28, https://doi.org/10.1080/10448630008233764, 2000. a
Weimar, J., Köhli, M., Budach, C., and Schmidt, U.: Large-Scale Boron-Lined
Neutron Detection Systems as a 3He Alternative for Cosmic Ray Neutron
Sensing, Front. Water, 2, 16, https://doi.org/10.3389/frwa.2020.00016, 2020. a, b
Weisskopf, V.: Statistics and Nuclear Reactions, Phys. Rev., 52, 295–303,
https://doi.org/10.1103/PhysRev.52.295, 1937. a
X-5 Monte Carlo Team: MCNP-A general Monte Carlo N-particle transport
code, Version 5, LA-UR-03-1987, volume I: Overview and Theory,
https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf,
2003.
a
Yamashita, M., Stephens, L., and Patterson, H.: Cosmic-ray-produced neutrons at
ground level: Neutron production rate and flux distribution, J.
Geophys. Res., 71, 3817–3834, https://doi.org/10.1029/JZ071i016p03817, 1966. a
Ziegler, J.: Terrestrial cosmic ray intensities, IBM J. Res.
Dev., 42, 117–140, https://doi.org/10.1147/rd.421.0117, 1998. a
Zreda, M., Desilets, D., Ferré, T., and Scott, R.: Measuring soil moisture
content non-invasively at intermediate spatial scale using cosmic-ray
neutrons, Geophys. Res. Lett., 35, L21402,
https://doi.org/10.1029/2008GL035655, 2008. a
Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079–4099, https://doi.org/10.5194/hess-16-4079-2012, 2012. a
Zweck, C., Zreda, M., and Desilets, D.: Snow shielding factors for cosmogenic
nuclide dating inferred from Monte Carlo neutron transport simulations,
Earth Planet. Sc. Lett., 379, 64–71,
https://doi.org/10.1016/j.epsl.2013.07.023, 2013. a
Short summary
In the last decades, Monte Carlo codes were often consulted to study neutrons near the surface. As an alternative for the growing community of CRNS, we developed URANOS. The main model features are tracking of particle histories from creation to detection, detector representations as layers or geometric shapes, a voxel-based geometry model, and material setup based on color codes in ASCII matrices or bitmap images. The entire software is developed in C++ and features a graphical user interface.
In the last decades, Monte Carlo codes were often consulted to study neutrons near the surface....