Articles | Volume 16, issue 14
Model evaluation paper
27 Jul 2023
Model evaluation paper |  | 27 Jul 2023

Variability and combination as an ensemble of mineral dust forecasts during the 2021 CADDIWA experiment using the WRF 3.7.1 and CHIMERE v2020r3 models

Laurent Menut

Related authors

An improved version of the piecewise parabolic method advection scheme: description and performance assessment in a bidimensional test case with stiff chemistry in toyCTM v1.0.1
Sylvain Mailler, Romain Pennel, Laurent Menut, and Arineh Cholakian
Geosci. Model Dev., 16, 7509–7526,,, 2023
Short summary
Impact of the Guinea coast upwelling on atmospheric dynamics, precipitation and pollutant transport over southern West Africa
Gaëlle de Coëtlogon, Adrien Deroubaix, Cyrille Flamant, Laurent Menut, and Marco Gaetani
Atmos. Chem. Phys., 23, 15507–15521,,, 2023
Short summary
New straightforward formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
EGUsphere,,, 2023
Short summary
A new process-based and scale-aware desert dust emission scheme for global climate models – Part I: Description and evaluation against inverse modeling emissions
Danny M. Leung, Jasper F. Kok, Longlei Li, Gregory S. Okin, Catherine Prigent, Martina Klose, Carlos Pérez García-Pando, Laurent Menut, Natalie M. Mahowald, David M. Lawrence, and Marcelo Chamecki
Atmos. Chem. Phys., 23, 6487–6523,,, 2023
Short summary
AerSett v1.0: a simple and straightforward model for the settling speed of big spherical atmospheric aerosols
Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel
Geosci. Model Dev., 16, 1119–1127,,, 2023
Short summary

Related subject area

Atmospheric sciences
GEO4PALM v1.1: an open-source geospatial data processing toolkit for the PALM model system
Dongqi Lin, Jiawei Zhang, Basit Khan, Marwan Katurji, and Laura E. Revell
Geosci. Model Dev., 17, 815–845,,, 2024
Short summary
Modeling collision–coalescence in particle microphysics: numerical convergence of mean and variance of precipitation in cloud simulations using the University of Warsaw Lagrangian Cloud Model (UWLCM) 2.1
Piotr Zmijewski, Piotr Dziekan, and Hanna Pawlowska
Geosci. Model Dev., 17, 759–780,,, 2024
Short summary
Modeling below-cloud scavenging of size-resolved particles in GEM-MACHv3.1
Roya Ghahreman, Wanmin Gong, Paul A. Makar, Alexandru Lupu, Amanda Cole, Kulbir Banwait, Colin Lee, and Ayodeji Akingunola
Geosci. Model Dev., 17, 685–707,,, 2024
Short summary
Impacts of a double-moment bulk cloud microphysics scheme (NDW6-G23) on aerosol fields in NICAM.19 with a global 14 km grid resolution
Daisuke Goto, Tatsuya Seiki, Kentaroh Suzuki, Hisashi Yashiro, and Toshihiko Takemura
Geosci. Model Dev., 17, 651–684,,, 2024
Short summary
Sensitivity of air quality model responses to emission changes: comparison of results based on four EU inventories through FAIRMODE benchmarking methodology
Alexander de Meij, Cornelis Cuvelier, Philippe Thunis, Enrico Pisoni, and Bertrand Bessagnet
Geosci. Model Dev., 17, 587–606,,, 2024
Short summary

Cited articles

Alfaro, S. C. and Gomes, L.: Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distribution in source areas, J. Geophys. Res., 106, 18075–18084, 2001. a
Atger, F.: The skill of ensemble prediction systems, Mon. Weather Rev, 127, 1941–1953, 1999. a
Benedetti, A., Reid, J. S., Knippertz, P., Marsham, J. H., Di Giuseppe, F., Rémy, S., Basart, S., Boucher, O., Brooks, I. M., Menut, L., Mona, L., Laj, P., Pappalardo, G., Wiedensohler, A., Baklanov, A., Brooks, M., Colarco, P. R., Cuevas, E., da Silva, A., Escribano, J., Flemming, J., Huneeus, N., Jorba, O., Kazadzis, S., Kinne, S., Popp, T., Quinn, P. K., Sekiyama, T. T., Tanaka, T., and Terradellas, E.: Status and future of numerical atmospheric aerosol prediction with a focus on data requirements, Atmos. Chem. Phys., 18, 10615–10643,, 2018. a
Bowler, N. E., Arribas, A., and Mylne, K. R.: The Benefits of Multianalysis and Poor Man's Ensembles, Mon. Weather Rev., 136, 4113–4129,, 2008. a
Buizza, R., Richardson, D. S., and Palmer, T. N.: Benefits of increased resolution in the ECMWF ensemble system and comparison with poor-man's ensembles, Q. J. Roy. Meteor. Soc., 129, 1269–1288,, 2003. a
Short summary
This study analyzes forecasts that were made in 2021 to help trigger measurements during the CADDIWA experiment. The WRF and CHIMERE models were run each day, and the first goal is to quantify the variability of the forecast as a function of forecast leads and forecast location. The possibility of using the different leads as an ensemble is also tested. For some locations, the correlation scores are better with this approach. This could be tested on operational forecast chains in the future.