Articles | Volume 16, issue 14
https://doi.org/10.5194/gmd-16-4233-2023
https://doi.org/10.5194/gmd-16-4233-2023
Development and technical paper
 | 
27 Jul 2023
Development and technical paper |  | 27 Jul 2023

Simplified Kalman smoother and ensemble Kalman smoother for improving reanalyses

Bo Dong, Ross Bannister, Yumeng Chen, Alison Fowler, and Keith Haines

Related authors

Water and energy budgets over hydrological basins on short and long timescales
Samantha Petch, Bo Dong, Tristan Quaife, Robert P. King, and Keith Haines
Hydrol. Earth Syst. Sci., 27, 1723–1744, https://doi.org/10.5194/hess-27-1723-2023,https://doi.org/10.5194/hess-27-1723-2023, 2023
Short summary

Related subject area

Climate and Earth system modeling
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024,https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024,https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024,https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary
Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024,https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024,https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary

Cited articles

Balmaseda, M. A., Mogensen, K., and Weaver, A. T.: Evaluation of the ECMWF ocean reanalysis system ORAS4, Q. J. Roy. Meteor. Soc., 139, 1132–1161, 2013. a
Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects, Mon. Weather Rev., 129, 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2, 2001. a, b
Bocquet, M. and Sakov, P.: An iterative ensemble Kalman smoother, Q. J. Roy. Meteor. Soc., 140, 1521–1535, https://doi.org/10.1002/qj.2236, 2014. a, b
Buizza, R., Poli, P., Rixen, M., Alonso-Balmaseda, M., Bosilovich, M. G., Brönnimann, S., Compo, G. P., Dee, D. P., Desiato, F., Doutriaux-Boucher, M., Fujiwara, M., Kaiser-Weiss, A. K., Kobayashi, S., Liu, Z., Masina, S., Mathieu, P.-P., Rayner, N., Richter, C., Seneviratne, S. I., Simmons, A. J., Thépaut, J.-N., Auger, J. D., Bechtold, M., Berntell, E., Dong, B., Kozubek, M., Sharif, K., Thomas, C., Schimanke, S., Storto, A., Tuma, M., Välisuo, I., and Vaselali, A.: Advancing Global and Regional Reanalyses, B. Am. Meteorol. Soc., 99, ES139–ES144, https://doi.org/10.1175/BAMS-D-17-0312.1, 2018. a
Burgers, G., Van Leeuwen, P. J., and Evensen, G.: Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev., 126, 1719–1724, 1998. a
Download
Short summary
Traditional Kalman smoothers are expensive to apply in large global ocean operational forecast and reanalysis systems. We develop a cost-efficient method to overcome the technical constraints and to improve the performance of existing reanalysis products.