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Abstract. The paper presents a simplification of the Kalman
smoother that can be run as a post-processing step using
only minimal stored information from a Kalman filter anal-
ysis, which is intended for use with large model products
such as the reanalyses of the Earth system. A simple decay
assumption is applied to cross-time error covariances, and
we show how the resulting equations relate formally to the
fixed-lag Kalman smoother and how they can be solved to
give a smoother analysis along with an uncertainty estimate.
The method is demonstrated in the Lorenz (1963) idealised
system which is applied to both an extended and ensem-
ble Kalman filter and smoother. In each case, the root mean
square errors (RMSEs) against the truth, for both assimilated
and unassimilated (independent) data, of the new smoother
analyses are substantially smaller than for the original fil-
ter analyses, while being larger than for the full smoother
solution. Up to 70 % (40 %) of the full smoother error re-
duction, with respect to the extended (ensemble) filters, re-
spectively, is achieved. The uncertainties derived for the new
smoother also agree remarkably well with the actual RMSE
values throughout the assimilation period. The ability to run
this smoother very efficiently as a post-processor should al-
low it to be useful for really large model reanalysis products
and especially for ensemble products that are already being
developed by various operational centres.

1 Introduction

Data assimilation is widely used for making atmosphere
and ocean predictions, providing a best estimate of the cur-
rent state of the system, by combining the information from

model forecasts with new observations available up to the
current time (Buizza et al., 2018). These state estimates are
used for two purposes. First, they are used to initialise new
model forecasts (from minutes to seasons ahead). Second,
the state estimates can provide reanalysis products represent-
ing a best estimate of past environmental conditions. This
involves assimilating historical observational data using the
newest models and assimilation methods available to us to-
day (e.g. Uppala et al., 2005; Balmaseda et al., 2013). How-
ever, assimilation systems suitable for initialising forecasts
may be less than optimal when used for reanalysis produc-
tion.

The main distinction we will draw is between sequential
assimilation methods, which use only past data, as appropri-
ate, for forecasting, and temporal smoothing methods, which
can use past and future data to obtain a better state estimation
and which may be more useful for reanalysis. Although the
four-dimensional variational analysis (4D-Var) is used in op-
erational meteorology and provides some temporal smooth-
ing, it is only used to smooth within a short past data window
when applied to initialise forecasts.

The archetypal sequential data assimilation approach,
originally for linear systems, is the Kalman filter (KF;
e.g. Chap. 6 of Evensen et al., 2022). While the basic KF is
inefficient to use in applications with large state spaces (due
to the difficulty with respect to propagating very large error
covariance matrices from one time to the next), the ensem-
ble Kalman filter (EnKF; Evensen, 1994) is a popular and
tractable approximation, which also allows nonlinear sys-
tems to be treated. The EnKF exists in many flavours, e.g. in
stochastic (Burgers et al., 1998; Houtekamer and Mitchell,
1998) and square root forms (Bishop et al., 2001; Whitaker
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and Hamill, 2002), which, like the standard KF, are all based
on Bayes’ theorem and assume that errors in observed, prior,
and posterior quantities are Gaussian distributed. Under the
EnKF, the prior distribution is described by an ensemble of
model forecast states and the posterior distribution by an en-
semble of posterior states found by assimilating current ob-
servational information. This makes the EnKF suitable for
model-based forecasting systems.

Ensemble Kalman filters, applied either on their own or
hybridised with variational approaches, have shown suc-
cess in numerous geophysical applications. These include,
for example, meteorological applications with the Canadian
forecasting system (Houtekamer et al., 2005), with the Na-
tional Centers for Environmental Prediction (NCEP) global
(Hamill et al., 2011; Wang et al., 2013) and regional (Pan
et al., 2014) models, and the Weather Research and Fore-
casting (WRF) model (Zhang and Zhang, 2012), in ocean
analysis (van Velzen et al., 2016), in ocean and sea ice anal-
ysis (Sakov et al., 2012), in atmospheric chemical analysis
(Skachko et al., 2016), and in surface trace gas analysis (Feng
et al., 2009).

However, all filtering problems, as noted above, include
only past and present observational data, but this can be ex-
tended to a smoothing problem, which also uses observations
within a future time window that is usually referred to as the
lag (e.g. Todling and Cohn, 1996). Kalman smoothers (KSs)
are made possible by the construction of cross-time error co-
variance matrices that link the observations at future times
with the current analysis, often up to some maximum lag
time. A smoother analysis will therefore use more observa-
tional data than a filter analysis and should therefore provide
a more accurate state estimate. This would seem particularly
relevant for reanalysis applications when the full time series
of past and future observations are available for construct-
ing system states. Various smoothers have been proposed for
use in the geosciences (e.g. Evensen and van Leeuwen, 2000;
Ravela and McLaughlin, 2007; Bocquet and Sakov, 2014).
These have been proposed for both reanalyses (e.g. Zhu et al.,
2003) and parameter estimation (e.g. Evensen, 2009). Just
like the EnKF, the ensemble Kalman smoother (EnKS) uses
an ensemble of model realisations to estimate the error dis-
tribution of the model forecasts, which can be very efficient.

KS has been shown to be effective in various applications.
For example, Zhu et al. (2003) designed a meteorological re-
analysis system using a fixed-lag KS and Khare et al. (2008)
with longer lags; Cosme et al. (2010) developed an EnKS for
ocean data assimilation, and Pinnington et al. (2020) used
KS techniques for land surface analysis. These applications
all rely on calculating the cross-time covariance matrix (ei-
ther explicitly or implicitly) for the smoothing.

For large operational forecasting and reanalysis systems,
especially for high-resolution global ocean, climate, or Earth
system models, which contain substantially long timescale
processes of up to weeks or months, running a smoother
with a reasonably long lag could be very expensive in terms

of the computation and thus impractical. Even for the rela-
tively cost-effective EnKS, the ensemble anomaly matrix for
each time step could consist of billions of elements, which
takes large chunks of computer memory space. In addition, it
would not be easy to retrofit a smoothing code into an opera-
tional data assimilation system that has been developed over
decades and primarily for initialising forecasts. For reanaly-
sis products developed in this way, a simpler post-processing
approach to smoothing could be very valuable.

Dong et al. (2021) recently proposed a new smoother de-
signed to be used offline through the post-processing of a
filter analysis. It was based on simplifying the physical as-
sumption of decaying error covariances across time, result-
ing in a formulation similar to an autoregressive model. This
smoother uses only the filtering increments, without needing
to seek other information. The method was shown to be ca-
pable of improving the Met Office GloSea5 ocean reanalysis
(MacLachlan et al., 2015), reducing the root mean square er-
ror (RMSE) against both assimilated and independent data
and producing a more realistically smooth temporal variabil-
ity for important quantities such as the ocean heat content.

In this study, we further explore the characteristics of
the Dong et al. (2021) smoother as an approximation to
the Kalman smoother framework. We demonstrate that with
proper assumptions, this method can be reproduced within
an extended Kalman smoother and an ensemble Kalman
smoother, with the latter case retaining the benefit of the
ensemble’s flow-dependent covariances. We also extend
the theory to show how the uncertainty estimates of the
smoothed analyses can be obtained from post-processed filter
information. The full and approximate smoother approaches
are implemented in the Lorenz (1963) model, and the re-
sults are compared. We show that the Dong et al. (2021)
post-processing method produces intermediate error results
between the filter and the full Kalman smoother, without sig-
nificant computational costs or adapting the filter codes.

Section 2 derives the Dong et al. (2021) smoother from
the full, extended KS equations, and the theory is extended
to include the simplified smoothing of uncertainty estimates.
Section 3 presents the implementation of the extended fil-
ter and smoother, in both the full and approximated forms,
in the Lorenz (1963) system. Section 4 adapts the methods
presented earlier for the application of the EnKF and EnKS
and presents both the full and approximated results for these
methods (also in the Lorenz, 1963 system). Section 5 is a dis-
cussion of the applicability of these approximations in larger
models, in which the simplifications should allow for the
post-processor smoothing of operational reanalysis products.
Section 6 presents the conclusions and recommendations for
stored variables that would allow post-processed smoothing
in larger systems. The Appendix reviews the conventional
KF and fixed-lag KS equations and shows more formally
where approximations are applied to lead to our simplified
smoothing algorithms.
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2 Methods

2.1 The simple smoother method

In Dong et al. (2021), a simple smoother method (hereafter
referred to as the DHM smoother; it is an acronym made
up of the initials of the authors’ names) was presented for
application in operational ocean reanalysis products, where
the original analysis had been performed with a purely time-
sequential approach, such as in forecasting situations for
which future data are never available. This simple approach
was designed to use the archive of increments to create a post
hoc smoothing of the original reanalysis. Dong et al. (2021)
showed the positive impact of this smoothing on a full ocean
reanalysis and also on the low-dimensional Lorenz (1963,
hereafter L63) system. The algorithm is as follows: let At be
the forward-sequential (filtering) analysis at time t , and let
It be the analysis increment field used to produce At . The
smoother solution at time t is denoted St . The smoother al-
gorithm is then written as follows. First, for S0,

S0 = A0+ γaI1+ γ
2
a I2+ γ

3
a I3+ γ

4
a I4+ . . ., (1)

where 0< γa < 1 is the increment decay rate per analysis
time window, so that analysis increments from future analy-
sis times decay in their influence on S0. Similarly, for S1,

S1 = A1+ γaI2+ γ
2
a I3+ γ

3
a I4+ γ

4
a I5+ . . .. (2)

By rearrangement, we obtain

S0 = A0+ γa(S1−A1+ I1)= A0+SI0, (3)

with

SI0 = γa(SI1+ I1), (4)

where SIt = St −At defines the smoother increment. These
recursive relationships allow the smoother to be applied as
a post-processing algorithm run backwards in time, starting
with the final sequentially analysed time window and using
the stored archive of filter increments. Later it will be con-
venient to define the increment decay per model time step,
which we will write as γ , where γN = γa, and N is the num-
ber of model time steps between filter analyses. Then we will
assume that each analysis window consists of one time step,
with N = 1 and γ = γa. The decay timescale τ associated
with the smoothing is given, in time steps of δt , by

τ =−δt/(lnγ ), (5)

which is effectively a measure of the smoother lag. This
equation can also be rearranged to be γ = e−

δt
τ , implying

an exponential increase in the forecast error. These smoother
Eqs. (1) and (2) do not have a fixed-lag cutoff, unlike the
fixed-lag smoothers discussed below.

We now discuss how this simple smoother is related to the
conventional KS approach (a more formal proof of equiva-
lence is given in the Appendix).

2.2 Extended Kalman filter and extended Kalman
smoother

We start from the classical extended Kalman filter (ExtKF)
and fixed-lag extended Kalman smoother (ExtKS) formula-
tions, in which a tangent linear model is used for error covari-
ance propagation when the model is nonlinear. Superscripts f,
a, and s describe filter forecasts, filter analyses, and smoother
analyses, respectively. The analysis of the Kalman filter at
time k is given by

xa
k = xf

k +Ka
k(yk −Hk(x

f
k)), (6)

where the subscript represents the time step, x ∈ Rn is the
n-dimensional state vector, y ∈ Rm is the observations, and
Hk is the observation operator. In the ExtKF, the observation
operator and the model can both be nonlinear, where the state
vector evolves with a model xk =M(xk−1).

Ka
k ∈ R

n×m is the Kalman gain for the analysis, which is
given by

Ka
k = Pf

kH
T
k (HkPf

kH
T
k +Rk)−1, (7)

with Pf
k ∈ R

n×n being the forecast error covariance matrix,
Rk ∈ Rm×m being the observation error covariance, and T be-
ing the transpose operator, all at time step k. Here, instead of
the nonlinear observation operator, the tangent linear approx-
imation, Hk ∈ Rm×n, is used in the gain below, and the tan-
gent linear model, Mk ∈ Rn×n, is used for the propagation of
the forecast error covariance matrix, Pf

k =MkPf
k−1MT

k . Fi-
nally, the analysis error covariance can be derived from the
forecast error covariance as follows:

Pa
k = Pf

k −Ka
kHkPf

k. (8)

For the fixed-lag ExtKS, Todling and Cohn (1996, here-
after TC96) derive backward-looking equations for the
smoother, which run interleaved with every filter time step;
however, here we will present forward-looking equations
aimed at expressing the fully smoothed state, including con-
tributions from multiple future filter steps, as presented for
the simple smoother in Eqs. 1–5. The full equivalence be-
tween the TC96 notation and our notation is demonstrated in
the Appendix.

The contributions from observations at time step k+ ` to
the smoother solution at time step k can be written in the
same Kalman gain notation as follows:

Ks
k,k+`(yk+`−Hk+`(x

f
k+`)). (9)

We note that if the filter states are only stored at some assim-
ilation frequency, e.g. once per day, then the index ` can be
defined at the same frequency as these filter increments, as
smoother states are only required at the same frequency as
the stored filter states.

The full smoother solution for time step k is then obtained
by the summation of smoother increments from all future
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time steps (here assumed to be truncated to the maximum
lag L) as follows (see the Appendix):

xs
k = xa

k +

L∑
`=1

Ks
k,k+`(yk+`−Hk+`(x

f
k+`)). (10)

The cross-time smoother gain matrix is simply a modified
version of the standard ExtKF gain and can be written as
follows:

Ks
k,k+` = Pk,k+`HT

k+`(Hk+`Pf
k+`H

T
k+`+Rk+`)−1. (11)

There is a subtlety here because in the Appendix we will see
that the cross-time error covariance Pk,k+` is not independent
of Pk,k+`−1. However, this will not be the case in the simple
smoother approximation as applied below.

To introduce the key simple smoother approximation,
we rewrite the cross-time error covariance as a decay rate
and consequently also neglect any interdependence of the
smoother contributions from different times.

Pk,k+` ≈ γ `P
f
k+`, (12)

which is equivalent to assuming

Ks
k,k+` ≈ γ

`Ka
k+`. (13)

This Eq. (13), when substituted into Eq. (10), clearly ex-
presses the approximation being made to recover the simple
smoother solution from the ExtKS equations.

xs
k ≈ xa

k +

L∑
`=1

γ `Ka
k+`(yk+`−Hk+`(x

f
k+`)) (14)

When using Eq. (6), this gives

xs
k ≈ xa

k +

L∑
`=1

γ `I k+`, (15)

where I k+` = xa
k+`− xf

k+`, thereby reproducing the sim-
ple smoother under the additional assumption that L� τ in
Eq. (5). The smoother is now defined entirely in terms of
the sequential analysis increments that will therefore allow
post-processing from an archive of increments from the se-
quential filter run. Another way to interpret this approxima-
tion is to say that the spatial and temporal error covariances
in the KS are assumed to be separable, with the spatial (and
cross-variable) error covariances being determined by the KF
equations, but the temporal covariances (from times k+ ` to
k) being approximated by a simple decay. We will return to
this description later when we seek to extend the approxima-
tions to the EnKS case.

It is also possible to make the equivalent approximations
to the smoothed uncertainties. For each smoother increment
introduced in Eq. (9), there will be a corresponding reduction
in the smoother error covariance given by

−Ks
k,k+`Hk+`Pk+`,k, (16)

so that the fully smoothed error covariance can be written as
follows (see the Appendix):

Ps
k = Pa

k −

L∑
`=1

Ks
k,k+`Hk+`Pk+`,k. (17)

Then, by making the simple smoother approximation,
Eqs. (12) and (13) give

Ps
k ≈ Pa

k −

L∑
`=1

γ 2`Ka
k+`Hk+`Pf

k+`. (18)

Now returning to use Eq. (8), we finally obtain

Ps
k ≈ Pa

k −

L∑
`=1

γ 2`IPk+`, (19)

where IPk+` = Pf
k+`−Pa

k+` are the filter error covariance in-
crements, mirroring Eq. (15), forming the simple smoother
equations for the increments. The smoothing Eqs. (15) and
(19) could clearly both be written in a recursive format like
that of Eq. (3) for easier post-processing. In the following
sections, we investigate how well these approximations work
through comparisons in the L63 system.

3 Extended Kalman smoother experiments in the L63
system

3.1 Assimilation set-up

A twin experiment using the L63 model was carried out to
evaluate the smoother. The L63 uses a classical set-up with
model equations.

dx
dt
= σ(y− x) (20)

dy
dt
= ρx− y− xz (21)

dz
dt
= xy−βz, (22)

where the standard model parameters are chosen as σ =
10,ρ = 28, and β = 8

3 . The model parameter set-up is con-
sistent with that in the DHM smoother (Dong et al., 2021).
All experiments are run for 20 time units, with each time unit
consisting of 100 time steps of 0.01. We performed a “truth”
run first with x, y, and z values of 5 as the initial condition.
Observations are assigned for x and y with a frequency of
5 and 20 time steps, respectively, and Gaussian errors added
with standard deviations of 2. No observations are taken for
z.

Dong et al. (2021) used a three-dimensional variational
(3DVAR) method for assimilation into L63, with a fixed
background error covariance prescribed as the time mean er-
ror covariance from a single separate L63 run. Here we ran
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the extended Kalman filter (ExtKF) and extended Kalman
smoother (ExtKS) with 100 different initial conditions in
which the background error covariance is modelled. How-
ever, with this assimilation frequency, we found that in order
to avoid filter divergence, we needed a hybrid forecast error
covariance that retained a 5 % weighting of the L63 clima-
tological covariances in the background error. The smoother
uses fixed-lag L= 40 time steps, as we found that this lag
gives the smallest errors in our experiments.

The simple smoother (DHM; Eqs. 1–5) was executed with
γa = 0.9 (equivalent to γ = 0.9 in our experimental set-up),
which is when the smoothing results have the smallest error
compared to other values (experiments not shown). We also
ran a modified Kalman smoother (hereafter MKS), using the
approximated cross-time Kalman gain as in Eq. (13). This is
implemented by directly substituting the approximation into
the full KS equations described in the Appendix and is used
to demonstrate DHM-equivalent results. The uncertainty es-
timates for the MKS smoother are also obtained in the same
way.

3.2 ExtKS assimilation results

Across the 100 assimilation runs, we calculated the root
mean square error (RMSE) time series against the truth for
each smoothing method. Figure 1a, b, and c show a portion
of the (x,y,z) RMSE time series, respectively, for the filter
and the different smoothing methods in the solid lines. For
most time steps, the KF errors are larger than the smoother
errors. The full ExtKS has the smallest errors; however, the
DHM and MKS are almost identical and lie in between those
for the KF and KS. Also in Fig. 1, there are dashed lines
representing the average of the smoothed standard deviation
(SD) uncertainty estimates for the ExtKS runs (blue; Eq. 17)
and MKS runs (green; Eq. 19), respectively. It should be em-
phasised that these uncertainty estimates are calculated en-
tirely independently of the actual truth values themselves,
which would not be known in a real assimilation problem.
The level of agreement between these uncertainty estimates
and the RMSE against truth is remarkable.

The time mean RMSEs for x,y,z are summarised in Ta-
ble 1, along with the uncertainty SD, where calculated, over
the entire 20 time units of the runs. Both DHM and MKS
provide an improvement on the ExtKF results by 60 %–70 %,
relative to the ExtKS improvements for x and y, although the
RMSE for z is not reduced in DHM and MKS. This is per-
haps because the instantaneous error covariances between z
and the assimilated x,y variables, as used in DHM, are insuf-
ficient to improve z, whereas the full ExtKS allows some his-
tory of the x,y evolution to be used for deriving z smoothing
increments. The RMSE numbers in parentheses are evaluated
only at the filter update time steps, where observation data are
assimilated. These errors are smaller than all-time-step RM-
SEs by ∼ 5 %, which is as a result of the data assimilation
at these time steps. This is consistent with the RMSE time

series in Fig. 1, where the Kalman filter (orange line) usually
declines sharply when data are available. The smoother solu-
tions, however, also yield much-improved analyses between
observation time steps.

Figure 2a, b, and c show the actual x,y,z increments, re-
spectively, being introduced by the ExtKF and the differ-
ent smoothers through the analysis times. In each case, the
smoother increments are additional to the filter increments,
which appear clearly as orange spikes for every five time
steps when data are available. Smoother increments between
analysis times can be seen, with the DHM and MKS incre-
ments being virtually identical and decaying backwards in
time from each filter increment. The ExtKS increments are
more complex, sometimes being similar to the DHM, but
sometimes they can be considerably larger.

If we look at the mean ratio of the cross-time error co-
variances relative to the filter forecast error covariances in
comparison to the simplified γ decay representation across
time in Fig. 3, we can understand something about the per-
formance of the smoothers. We do not expect these to be
identical because the full cross-time smoother covariances
for larger lags, `, take account of the increments from in-
termediate times. For small lag values, the average cross-
time error decay rates are fairly similar; however, for larger
lag values, the model-derived cross-time error covariance on
average takes the opposite sign. This happens on a similar
timescale to the short oscillation period of x,y in L63 and is
associated with the growing amplitude of these oscillations
as they reach larger and smaller x,y values before the phase
lobe transitions. This is a very model-specific behaviour, and
the simple smoother’s γ decay error covariances cannot rep-
resent this. This also explains why larger γ values make the
simple smoother worse in L63 because the positive cross-
time error covariances are used for larger lags when the neg-
ative cross-time error covariances are more appropriate.

The key point is that the simplified smoother DHM pro-
vides substantial improvement over the ExtKF, while incur-
ring very little computational cost (no tangent linear model
or TLM runs and no storage of cross-time error covariances)
compared to the ExtKS. The DHM smoother can therefore be
applied in its entirety through the post-processing of the filter
results. While this was demonstrated in Dong et al. (2021),
here we show more clearly how the equivalent MKS approx-
imation is derived from the ExtKS equations, and we also
show how the smoothed uncertainties can be cheaply post-
processed and still give useful information.

In the next section, we extend the decay assumption
for cross-time error covariances to apply to the ensemble
Kalman filter and smoother equations, which are much more
relevant to large nonlinear models for which the direct mod-
elling of error covariances across time is infeasible.
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Figure 1. The RMSE time series for the KF and KS, along with the MKS and the DHM smoother, in the L63 system for (a) x, (b) y, and (c) z.
The RMSEs are averaged across 100 independent assimilation runs starting from different initial conditions and assimilating observations
from the same 20 time unit truth run. Only two time units of the run are shown to allow the behaviour around the analysis times to be
clearly seen. Dotted green lines and dotted blue lines (see the panel insets for details) are the posterior uncertainty SD (square root of error
covariance P) estimates for the MKS and KS, respectively.

Table 1. Time mean RMSE against truth for the ExtKF and ExtKS, along with the modified MKS and the simplified DHM smoother for
each variable in the L63 system (see also legend for Fig. 1). The numbers in parentheses are the mean RMSE values at observation time steps
only (not independent data). The time mean of the standard deviations calculated for the uncertainties are also shown as SD. Time averaging
is now over the entire 20 time units of each assimilation run.

Method RMSE (x) SD (x) RMSE(y) SD (y) RMSE (z) SD (z)

KF 1.13 (1.09) 0.93 1.79 (1.73) 1.50 1.64 (1.62) 1.41
KS 0.75 (0.75) 0.50 1.10 (1.09) 0.74 1.36 (1.35) 0.98
MKS 0.87 (0.87) 0.76 1.29 (1.29) 1.25 1.64 (1.64) 1.28
DHM 0.87 (0.87) 0.76 1.29 (1.29) 1.25 1.64 (1.64) 1.28

4 Ensemble Kalman smoother experiments in the L63
system

4.1 Approximating ensemble error covariances

In the ExtKF and ExtKS, a TLM propagates the flow-
dependent error statistics, which are then used to calculate
increments. However, the TLM reliability declines sharply
with propagation time for a system as nonlinear as the L63
model. The ensemble Kalman filter (EnKF) can then give
better results by estimating the error statistics with a finite

ensemble of state realisations propagated by the full non-
linear model rather than by a TLM. This can then improve
the quality of the forecast error covariance matrix. How-
ever, the update gains for the EnKF and ensemble Kalman
smoother (EnKS) are defined identically to Eqs. (7) and (9),
respectively, although the error covariances, Pf

k (the error
covariance at time step k) and Pk,k+` (the error covariance
between time steps k and k+ `) are calculated differently,
since they are emulated from the limited ensemble of state
vectors whose variability represents the uncertainty in the
system. While ensemble filter methods have been adopted
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Figure 2. As in Fig. 1 but the filter and smoother increments are shown for situations where the smoother increments, when applied, add to
the filter increments.

Figure 3. Cross-time error covariance decay rates for the ExtKS and the DHM smoother. For the ExtKS, the y axis is the smoother cross-time
error covariance divided by the filter forecast error covariance and averaged for all times over the 20 time unit L63 run. This is compared to
the decay of γ ` used in the DHM smoother, as a test of Eq. (12).

for larger environmental models, these have not generally
added smoother steps because the cost to store, update, and
apply posterior ensemble covariances still makes ensemble
smoother methods generally infeasible.

However, these constraints can again be overcome by re-
taining the EnKF flow-dependent ensemble spreads to repre-
sent current errors, while making a simple decay approxima-
tion for the time shift error covariances, which is similar to
our modified ExtKS in Sect. 2.2. For comparison purposes,
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we demonstrate this method in the general EnKS form in
state space, keeping the same notation as we used previously,
although the actual computation is performed in ensemble
space, as in the ensemble transform Kalman filter (ETKF;
e.g. Bishop et al., 2001; Zeng and Janjić, 2016).

Pf
k =Xf

kX
f
k

T
, (23)

where

[Xf
k]i =

(xf
k)i − xf

k
√
Ne− 1

(24)

is the normalised anomaly of the ith ensemble member from
the mean in an Ne member ensemble of forecasts.

The first step in the ensemble filter is to update the ensem-
ble mean,

xa
k = xf

k +Ka
k(yk −H(xf

k)), (25)

and the second step is to update the uncertainty, using Eq. (8).
Then, in order to regenerate the ensemble of analysis pertur-
bations, the ETKF uses the following transformation:

Xa
k =Xf

kTk, (26)

where Tk is chosen to ensure that Eq. (8) is satisfied. Then,
following the EnKF, the cross-time covariances in the EnKS
can be expressed in state space as follows:

Pk,k+` =XkX
f
k+`

T
. (27)

As explained in the Appendix, the full cross-time error co-
variances are calculated between the filter forecast (Xf

k+` in
the EnKS) and previous partially smoothed states (Xk again
in the EnKS), which require both past ensemble means and
error covariances to be repeatedly smoothed. However, this is
not necessary for the modified (simple) ensemble smoother,
which we here call MEnKS. The ensemble mean smoothing
using Eqs. 13 and 10 can be written as follows:

xs
k ≈ xa

k +

L∑
`=1

γ `Ka
k+`(yk+`−Hk+`(x

f
k+`)), (28)

and then Eq. (18) can be used to obtain the smoothed uncer-
tainties.

This is a great simplification because performing a full en-
semble smoothing would require the whole past ensemble to
be stored at all times and reprocessed. Equation (19) suggests
that the error covariance increments must also be stored dur-
ing the EnKF filter phase, which could still be a large stor-
age requirement for a big model; however, in fact only the
diagonal elements of Ps are likely to be of interest, i.e. the
uncertainty variance of the state fields, or even just a subset
of these, so only a smaller set of uncertainty increments may
be of interest and worth storing for post-processing through
Eq. (19). In the next subsection, we show the results of ap-
plying these approximations in L63.

4.2 EnKS assimilation results

Using the same L63 twin experiment as in Sect. 3, we solve
a full smoother (EnKS) and use the modified (MEnKS) algo-
rithm Eq. (28). To be consistent with the extended KS con-
figuration, we use an ensemble size of 100 and a fixed lag
of 40 time steps for smoothing. Figure 4a, b, and c show the
x,y,z RMSE and SD uncertainties, respectively, from these
ensemble filter and smoother runs in the same format used in
Fig. 1 for the extended Kalman filter.

These ensemble results are seen to produce lower RMSE
values than the equivalent ExtKF or KS results (cf. Fig. 1),
demonstrating the superiority of the ensemble assimilation
method for dealing with the nonlinearity of the L63 model.
Again, the EnKS substantially reduces the RMSE compared
to the filter, and again, the approximated simple ensemble
filter MEnKS gives intermediate RMSE results, with much
less computational effort than the full EnKS. Although not
as optimal as the EnKS, the simplified MEnKS shows a
much smoother temporal evolution of the RMSE than the
filter, which would be a significant improvement if, for ex-
ample, applied to an ocean reanalysis. The post-processed
uncertainty estimates also reproduce a reasonable estimate of
the true RMSEs of the smoothed ensemble mean analyses.

Figure 5a, b, and c show the mean x,y,z increment
time series, respectively, for the ensemble filter and the two
smoothers. The increments are smaller than those from the
ExtKF/KS (Fig. 2), reflecting the improved assimilation ap-
proaches. Table 2 summarises the average RMSE and SD un-
certainty results over the full 20 time units of the ensemble
runs.

5 Discussion

The aim of this paper is clearly not to present an improved
data assimilation approach for simple models but to ex-
plore traceable simplifications to the current assimilation ap-
proaches which could be applied to high-dimensional mod-
els. In particular, ocean and Earth system models are starting
to be used for the reanalysis of past climate states, using es-
sentially the same codes that have been developed for oper-
ational forecasting and especially of the atmosphere (i.e. se-
quential filter codes). Even when 4D-Var approaches are be-
ing used, e.g. at ECMWF, the effective temporal smoothing
window timescales are generally short, reflecting the valid-
ity of the tangent linear and adjoint modelling for the atmo-
sphere. In these cases, Kalman smoothing approaches could
still yield tangible benefits, especially for long timescale pro-
cess variables associated with the Earth system and when re-
analysing by using sparse historical observing systems.

However, there are still further challenges to applying
smoother algorithms in really large systems. In Dong et al.
(2021), the simple smoother was applied to an ocean reanal-
ysis, and it was found that the smoothed analysis gave re-
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Figure 4. As in Fig. 1 but for EnKF, EnKS, and MEnKS.

Figure 5. As in Fig. 2 but for EnKF, EnKS, and MEnKS.
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Table 2. Time mean RMSE and SD uncertainties for each variable in EnKF, EnKS, and MEnKS in the L63 model, averaged over time
units from 1–20. The numbers in parentheses are the RMSE values calculated at time steps with observations only (no independent data
comparison). The lag is 40, and γ = 0.9.

Method RMSE (x) SD (x) RMSE (y) SD (y) RMSE (z) SD (z)

EnKF 0.82 (0.79) 0.66 1.26 (1.22) 1.03 1.23 (1.21) 0.99
EnKS 0.50 (0.48) 0.39 0.69 (0.69) 0.56 0.90 (0.89) 0.74
MEnKS 0.66 (0.66) 0.57 1.02 (0.96) 0.87 1.15 (1.15) 0.90

duced errors compared to the filter when compared against
independent, unassimilated data. However, it was also noted
that problems can occur when observations or model are bi-
ased. Biased increments can be detected when the same in-
crement is repeatedly produced by the filter, which is a signal
that the model is unable to retain the information. While this
may not invalidate the filter analysis, it could have a very
detrimental impact on the smoothing when multiple versions
of the same increment may be added without the model be-
ing rerun. While bias can be allowed for if it is identified
prior to the smoothing, any real application of smoothing
needs to consider this carefully. This is perhaps another rea-
son to prefer smoothing as a post-processing step, when bias
assessments can be made beforehand, rather than as an inte-
grated part of a sequential forward analysis, as it is usually
presented in the literature (Todling and Cohn, 1996; Evensen
and van Leeuwen, 2000; Bocquet and Sakov, 2014).

Another option not explored here, because L63 is too sim-
ple, is the ability to tune the γ decay timescale according to
different state variables. In Dong et al. (2021), this was sug-
gested as allowing the subsurface ocean increments to decay
more slowly than the surface increments, for example. In the
notation used here, γ would then become a diagonal decay
matrix multiplying the forecast error covariance to convert to
a cross-time error covariance.

A key benefit to smoothing in real systems would be to
bring the influence from observations made in the near fu-
ture, when none has been available in the near past, for in-
stance, after the deployment of new observing platforms. A
key difference between using our approach and using a full
smoother is that in a full smoother the cross-time error co-
variances depend upon observations previously assimilated
within the smoothing lag time window (see the Appendix).
Thus, a full smoother will reduce the analysed error covari-
ances due to the influence of the short lag future data first and
will therefore reduce the cross-time error covariances to be
applied for longer lag future data, thus ensuring that the most
important near-future data have the biggest smoothing influ-
ence. This reduction in longer lag influences if shorter lag
data are available is missing in the simple smoother as pre-
sented here and could cause the application of the smoother
to give poorer results when very frequent observations are
available. Further simple modifications that can take this
into account could be envisioned, for example, by allow-

ing γ to reflect upgrades in the observing network during
the period of the reanalysis. Alternatively, uncertainty re-
duction information for each future increment, as estimated
through Eq. (19), could be used to truncate or reduce γ for
the smoothing of longer lag increments through Eq. (15).

Although we have proposed how these ideas could be
used in ensemble systems, we have not explored the other
challenges of using ensembles in large model products. In
particular, localisation is often required to remove unreal-
istic error covariances arising from limited ensemble sizes
(e.g. Petrie and Dance, 2010). When extended to ensemble
smoothing, then that localisation may need to vary with the
lag for the cross-time error covariances (e.g. Desroziers et al.,
2016). When faced with such challenges, the simple smooth-
ing method is at least explicit in its assumption that the spa-
tial structure of the error covariances are static, while guaran-
teeing that the cross-time error covariances will always decay
away with time.

We have included the smoothing of uncertainty estimates
in the analysis here, despite the fact that these have rarely
been attempted for previous large model reanalysis products
– even when only forward-filtering steps are involved. How-
ever, with the recent trend towards ensemble analysis prod-
ucts, for both operational and reanalysis systems, it makes
sense to ask how well the uncertainty estimates correspond
to the errors in an idealised system where this can be eval-
uated against, for example, independent data. At the same
time, we have demonstrated the ability to evaluate smoother
uncertainty estimates, and we have found these results very
encouraging.

6 Conclusions

We have demonstrated that both the extended Kalman
smoother and the ensemble Kalman smoother can be sim-
plified to use only a relatively small amount of informa-
tion stored during a forward-filtering analysis. This permits
the simple smoothing approach to be applied through post-
processing. The essential novelty is to treat cross-time error
covariance information as decaying exponentially on some
tuneable timescale, rather than seeking to calculate these co-
variances with the system model. This allows the stored state
increments to be down-weighted and added to previous fil-
ter analyses. We also show how the smoother uncertainty
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information can be post-processed, provided the increments
(changes) in the error covariances between the forecast and
analysis for each filter assimilation window are stored. And
we note that the error variance of the state fields alone could
be smoothed, meaning that only one additional state field
needs to be stored from each filter analysis.

The method has been demonstrated, using the assimila-
tion runs of the L63 model and using the same idealised
assimilated data over a 20 time unit truth run when start-
ing the model from different initial conditions. Observa-
tional, but not model, errors are being simulated. In both
the extended and ensemble Kalman smoother cases, using
the full smoother equations gives the best RMSE results
against the truth. However, in each case, the simple smoother
method still gives substantially reduced RMSE values com-
pared with the respective Kalman filters, e.g. ∼ 70 % of the
error reduction in the extended Kalman smoother. We also
include the RMSE evaluated only at filter analysis times,
when the truth comparison data are not independent (obser-
vations from these times, albeit with added errors, have been
assimilated), and still find that the smoother results provide
substantial improvements over the filter. We include these
comparisons because operational systems do not usually hold
back independent data for assessment. The ensemble filter/s-
moother results are substantially better than the extended fil-
ter/smoother results, as would be expected for such a nonlin-
ear system as L63. The simple smoother retains this benefit,
as the flow-dependent ensemble filter error covariances are
retained, although down-weighted, for the smoother’s cross-
time errors covariances.

We also demonstrate the smoothing of the uncertainty esti-
mates in both the ExtKS and EnKS systems. Remarkably, the
uncertainty estimates, presented as the SDs of the smoother
state variances, are in very good agreement with the RMSE
errors being calculated against the truth. The uncertainties
rise and fall over time, similar to the RMSEs, as the model
moves through the more stable and unstable regions of the
phase space. Uncertainty estimates are usually a little lower
than the calculated RMSE values. The simple smoothing ap-
proach gives higher uncertainties than the full smoother esti-
mates but is in excellent agreement with the simple smoother
RMSE values.

We believe that this approach offers a feasible offline post-
processing approach for improving reanalyses in really large
Earth system models. An initial paper with the first results
from smoothing the Met Office ocean reanalysis using stored
increments was presented in Dong et al. (2021). This pa-
per demonstrates the traceable origin of the approach from
Kalman filtering roots and puts the method in a wider con-
text, including showing how it can be used in ensemble sys-
tems that are just starting to be used operationally in order to
obtain better representations of uncertainty.

We summarise the post-processing requirements that
would allow the smoothing of large model datasets as fol-
lows.

1. If increments from the sequential filter analysis are
stored, then this should be sufficient to allow the post-
processing of a smoother solution.

2. If an ensemble product is being generated, then only the
ensemble mean fields and ensemble mean increments
would be needed to obtain a smoothed ensemble mean
solution.

3. If an uncertainty estimate is also needed for the
smoother solution, then the minimum additional re-
quirement would be to store the increments of those
components of the error covariance matrix of interest.
This may consist of the error variances of each state
field or only a subset of state fields, e.g. only surface
fields from an ocean model.

4. If uncertainty information from an ensemble product is
required, then the minimum additional storage require-
ment would still only be the filter increments in the error
covariance components of interest. The whole past en-
semble analyses would not be needed.

Appendix A: Formal derivation of the simple smoother
system from the Kalman filter and Kalman smoother
equations

In order to show formally how our simple smoother system in
Sect. 2.1 is related to the classical Kalman smoother, we start
with a brief summary of the Kalman filter (KF) and fixed-lag
Kalman smoother (KS) formulations. We base our system
of equations on Todling and Cohn (1996, hereafter TC96),
which we use as our reference for the classical smoother. We
therefore adopt a notation similar to theirs. This is a more
complex notation than that of the main part of this paper but
is useful for complete traceability.

A1 Background to the Kalman filter and smoother

The analysis of the KF at time k and its error covariance are
given by

xa
k|k = xf

k|k−1+Kk|k

(
yk −Hk(x

f
k|k−1)

)
, (A1)

Pa
k|k = Pf

k|k−1−Kk|kHkPf
k|k−1, (A2)

where Kk|k = Pf
k|k−1HT

k

(
HkPf

k|k−1HT
k +Rk

)−1
. (A3)

Here the subscript k|k− 1 indicates that the object is valid
at time step k and has been formed from observations up
to and including time step k− 1. States xf

k|k−1 and xa
k|k are

the forecast state and filter analysis, respectively, at valid-
ity time k, where xf

k|k−1 has been evolved by the model M,
e.g. xf

k|k−1 =M(xa
k−1|k−1). The forecast state error covari-

ance Pf
k|k−1 may be evolved by the model (as in the extended

KF) or obtained from an ensemble of model state forecasts
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(ensemble KF), but either way, the analysis error covariance
Eq. (A2) for Pa

k|k is obtained. The vector yk represents the
observations at k, whose model counterparts are found us-
ing the observation operator Hk via Hk(x

f
k|k−1), and Hk is

the tangent linear operator of Hk . Rk is the observation er-
ror covariance matrix, and Kk|k is the Kalman gain. Equa-
tions (A1), (A2), and (A3) are the same equations as Eqs. (6),
(8), and (7), respectively, in the main paper but use the TC96
notation.

For the classical fixed-lag KS of maximum lag L, an in-
terval of L+ 1 time steps are updated together after every
filter time step. These L+ 1 states are valid for time steps k,
k−1, . . .,k−L and are to be updated by observations at time
step k. This is the backward-looking scheme of TC96, which
runs interleaved with the filter (below we use j to represent
the backward-looking intervals). Prior to this update – and
using a similar notation to TC96 – these states are xf

k|k−1,
xa
k−1|k−1, . . . , xa

k−L|k−1. These are shown as the black states
in Fig. A1a. At this point, only observations up to k−1 have
been assimilated, which is reflected in the notation, and so su-
perscript “a” refers to partially smoothed analyses generated
only using observations up to time k− 1. The state xa

k−1|k−1
is the pure k−1 filter analysis, and xf

k|k−1 is the filter forecast
at k derived from it. The covariances of, and between, these
states are the black block matrices in Fig. A1b, which are
used to form the gain matrices in the current update (below).

The fixed-lag KS determines how observations at k update
the states at the previous time levels to give xa

k|k , xa
k−1|k , . . .

, xa
k−L|k (the red states in Fig. A1a), and their covariances

(the red matrices in Fig. A1b). The first state, xa
k|k , and its

covariance, Pa
k|k , are updated using the KF equations, but the

remaining states, xa
k−j |k , and their covariances, Pa

k−j |k (1≤
j ≤ L) are updated by the KS equations as follows:

xa
k−j |k = xa

k−j |k−1+Kk−j |k

(
yk −Hk(x

f
k|k−1)

)
, (A4)

Pa
k−j |k = Pa

k−j |k−1−Kk−j |kHkPfa
k,k−j |k−1, (A5)

where Kk−j |k =

Paf
k−j,k|k−1HT

k

(
HkPf

k|k−1HT
k +Rk

)−1
. (A6)

The new objects are xa
k−j |k , the updated smoothed state at

k− j due to observations at k, and Pa
k−j |k the corresponding

updated covariance. Both objects are obtained using Kk−j |k ,
which is the gain for the smoother state at k−j due to obser-
vations at k.

To make these updates requires a new kind of covariance
for errors between different times. These have a subscript of
the form k,k′|k− 1, which indicates that the covariance is
between the time steps k and k′ and has been formed from
information up to and including time step k−1. In the above,

Paf
k−j,k|k−1 =

(
Pfa
k,k−j |k−1

)T
are the covariances between er-

rors in xa
k−j |k−1 and xf

k|k−1. Each Paf
k−j,k|k−1 is obtained

from Paa
k−j,k−1|k−1 in Fig. A1b as separate covariance prop-

agations (or from an ensemble of forecasts in the EnKS) for
each k− j . If the EnKS is being used, then these error co-
variances are not derived directly but require all the partially
smoothed ensemble members within the lag L to be retained.
These are the same covariances as those expressed in Eq. (27)
in the main text’s truncated notation.

Equation (A4) is a version of TC96’s Eq. (26), Eq. (A5)
is their Eq. (39), and Eq. (A6) is their Eq. (35). Notice
that the same error covariance matrix, Pf

k|k−1, appears in the
parentheses in Eqs. (A3) and (A6). The incremental part of
Eq. (A5) is the same as Eq. (16) in the main paper, and
Eq. (A6) is the same as Eq. (11) but using the TC96 nota-
tion here. There is no equivalent for Eq. (A4) given in the
main paper. The KS system is advanced by one time step by
propagating xa

k|k , using the model, to xf
k+1|k (the blue state

in Fig. A1a), giving a shifted interval of states (blue box in
Fig. A1a). The covariances are propagated by the tangent lin-
ear model (the blue block matrices in Fig. A1b) or by prop-
agating the ensemble of the new analyses, giving a shifted
interval of covariances (blue box in Fig. A1b).

A2 Equations for maximally smoothed states and
covariances and equivalence to the simple smoother

Given the maximum lag, L, the sequence of states
xa

0|L,x
a
1|L+1,x

a
2|L+2, . . . (and their error covariances

Pa
0|L,P

a
1|L+1,P

a
2|L+2, . . .) exploit the maximum amount of

observational information, as they have been updated with
all L+ 1 sets of present and future observations. These are
the states that are analogous to S0,S1,S2. . . in Sect. 2.1.
For a general k, the fully smoothed states here are xa

k|k+L,
which can be found from cyclic application of the KS
equations. By recursively applying Eq. (A4) over the lag
window, it is straightforward to find the following explicit
full smoothing solution (where the superscript “s” is used
in main text) in a forward-looking perspective (with ` to
represent forward-looking intervals; cf. Eq. 10 in the main
paper).

xa
k|k+L = xa

k|k +

L∑
`=1

Kk|k+`

(
yk+`−Hk+`(x

f
k+`|k+`−1)

)
(A7)

Similarly, recursively applying Eq. (A5) over the lag win-
dow leads to the following explicit covariance of this fully
smoothed estimate (cf. Eq. 17):

Pa
k|k+L = Pa

k|k −

L∑
`=1

Kk|k+`Hk+`Pfa
k+`,k|k+`−1. (A8)

We will now use Eqs. (A7) and (A8) to show the neces-
sary approximations needed to give the simplified smoothing
equations shown in Sects. 2.1 and 2.2.

The fundamental approximation is applied to the cross-
time error covariances (as they appear in Eq. A6), using
a temporal covariance decay and writing the following (cf.
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Figure A1. Schema of the fixed-lag KS of TC96. Panel (a) shows the update and evolution of the set of states within the fixed-lag interval
of L+ 1 time steps. The smoother update starts with the set of states in black, which are updated (or smoothed) by observations at k to
the set of states in red, using Eq. (A1) for the most recent state (at the top) and Eq. (A4) for the remainder. The subscripts have the form
k|p, where k is the state’s validity time, and p is the time step of the latest observations that have contributed to estimating that state. The
Kalman gains (Eqs. A3 and A6) rely on knowledge of the covariances in panel (b), with reference to the first column of the black matrix.
The lag interval then progresses by one time step (blue box in panel a), where the forecast (blue state) is evolved from the latest analysis
using the model. Panel (b) shows the update and evolution of the error covariances within the fixed-lag interval. The black matrix blocks are
the error covariances of the set of black states in panel (a). The diagonal blocks have a subscript with the same form as the states, but the
off-diagonal blocks have subscripts of the form k,k′|p, which correspond to cross-covariances between time steps k and k′. The smoother
updates the black covariances to the red covariances, using equations not fully shown in this paper (see Eqs. 37, 39, and 41 of TC96, which
use information from the black matrices). The lag interval then progresses, as it does for the states, by one time step (blue box), where the
extra covariances (blue) are propagated from the red covariances using Eqs. (46) and (47) of TC96 and the tangent linear model.

Eq. 12):

Paf
k−j,k|k−1 ≈ γ

jPf
k|k−1. (A9)

This is equivalent to writing Kk−j |k , using Eqs. (A6) and
(A3), as follows (cf. Eq. 13):

Kk−j |k ≈ γ
jPf

k|k−1HT
k

(
HkPf

k|k−1HT
k +Rk

)−1
= γ jKk|k,

which, by reindexing, is Kk|k+` ≈ γ
`Kk+`|k+`. (A10)

Equation (A10) is in a forward-looking form, allowing it to
be used in Eq. (A7).

xa
k|k+L ≈ xa

k|k +

L∑
`=1

γ `Kk+`|k+`

(
yk+`−Hk+`(x

f
k+`|k+`−1)

)
,

= xa
k|k +

L∑
`=1

γ `
(
xa
k+`|k+`− xf

k+`|k+`−1

)
, (A11)

where the last line follows from the first using the filter,
Eq. (A1), and allowing us to relate the simplified smoother
updates to the later filter increments. Equation (A11) is anal-
ogous to the simplified scheme of Eq. (1), where xa

k|k+L is
the post hoc smoothing analysis (S0 in Eq. 1), xa

k|k is the
previous filtering analysis (A0), and the terms in parentheses
form the filter analysis increments at future times (Ij ). Also
compare this information to Eq. (15).

It is possible to make the equivalent approximations to
the smoothed covariances in Eq. (A8). Using Eqs. (A9) and
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(A10) gives

Pa
k|k+L ≈ Pa

k|k −

L∑
`=1

γ 2`Kk+`|k+`Hk+`Pf
k+`|k+`−1.

From Eq. (A2), Kk+`|k+`Hk+`Pf
k+`|k+`−1 in the above is

equal to the difference between the forecast and filter anal-
ysis error covariance matrices, making the above

Pa
k|k+L ≈ Pa

k|k −

L∑
`=1

γ 2`
(

Pf
k+`|k+`−1−Pa

k+`|k+`

)
. (A12)

This is the same as Eq. (19) in the main body of the paper
except for using the TC96 notation.

Code and data availability. Implementations of the L63 system for
the ExtKF and ExtKS codes and the EnKF and EnKS codes
are available on Zenodo (https://doi.org/10.5281/zenodo.7675286;
Dong and Chen, 2023). The implementation here is based on
the Python-based data assimilation templates of DAPPER (https://
github.com/nansencenter/DAPPER, last access: 24 February 2023,
https://doi.org/10.5281/zenodo.2029296, Raanes et al., 2018).
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