Articles | Volume 16, issue 14
https://doi.org/10.5194/gmd-16-4193-2023
https://doi.org/10.5194/gmd-16-4193-2023
Development and technical paper
 | 
26 Jul 2023
Development and technical paper |  | 26 Jul 2023

Breakups are complicated: an efficient representation of collisional breakup in the superdroplet method

Emily de Jong, John Ben Mackay, Oleksii Bulenok, Anna Jaruga, and Sylwester Arabas

Related authors

The impact of aerosol mixing state on immersion freezing: Insights from classical nucleation theory and particle-resolved simulations
Wenhan Tang, Sylwester Arabas, Jeffrey H. Curtis, Daniel A. Knopf, Matthew West, and Nicole Riemer
EGUsphere, https://doi.org/10.5194/egusphere-2025-4326,https://doi.org/10.5194/egusphere-2025-4326, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0
Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas
Geosci. Model Dev., 15, 3879–3899, https://doi.org/10.5194/gmd-15-3879-2022,https://doi.org/10.5194/gmd-15-3879-2022, 2022
Short summary

Cited articles

Andrejczuk, M., Reisner, J. M., Henson, B., Dubey, M. K., and Jeffery, C. A.: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type?, J. Geophys. Res.-Atmos., 113, D19204, https://doi.org/10.1029/2007JD009445, 2008. a
Andrejczuk, M., Grabowski, W. W., Reisner, J., and Gadian, A.: Cloud-aerosol interactions for boundary layer stratocumulus in the Lagrangian Cloud Model, J. Geophys. Res.-Atmos., 115, D22214, https://doi.org/10.1029/2010JD014248, 2010. a
Arabas, S., Jaruga, A., Pawlowska, H., and Grabowski, W. W.: libcloudph++ 1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++, Geosci. Model Dev., 8, 1677–1707, https://doi.org/10.5194/gmd-8-1677-2015, 2015. a
Arabas, S., Bartman, P., de Jong, E., Singer, C., Olesik, M. A., Mackay, B., Bulenok, O., Azimi, S., Górski, K., Jaruga, A., Piasecki, B., and Badger, C.: atmos-cloud-sim-uj/PySDM: PySDM v2.12, Zenodo [code], https://doi.org/10.5281/zenodo.7037182, 2022. a
Arabas, S., Azimi, S., Bartman, P., Bulenok, O., de Jong, E., Derlatka, K., Dula, I., Górski, K., Jaruga, A., Łazarski, G., Mackay, J. B., Olesik, M., Piasecki, B., Singer, C. E., Talar, A., and Ward, R. X.: PySDM (v2.20), Zenodo [code], https://doi.org/10.5281/zenodo.7851352, 2023a. a
Download
Short summary
In clouds, collisional breakup occurs when two colliding droplets splinter into new, smaller fragments. Particle-based modeling approaches often do not represent breakup because of the computational demands of creating new droplets. We present a particle-based breakup method that preserves the computational efficiency of these methods. In a series of simple demonstrations, we show that this representation alters cloud processes in reasonable and expected ways.
Share