Articles | Volume 16, issue 13
https://doi.org/10.5194/gmd-16-3809-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-3809-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Developing spring wheat in the Noah-MP land surface model (v4.4) for growing season dynamics and responses to temperature stress
Zhe Zhang
Global Institute for Water Security, University of Saskatchewan, 11
Innovation Blvd, Saskatoon, SK, S7N 3H5, Canada
Global Institute for Water Security, University of Saskatchewan, 11
Innovation Blvd, Saskatoon, SK, S7N 3H5, Canada
Fei Chen
National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO,
USA
Phillip Harder
Global Institute for Water Security, University of Saskatchewan, 11
Innovation Blvd, Saskatoon, SK, S7N 3H5, Canada
College of Engineering, University of Saskatchewan, 57 Campus Dr,
Saskatoon, SK, S7N 5A9, Canada
Warren Helgason
Global Institute for Water Security, University of Saskatchewan, 11
Innovation Blvd, Saskatoon, SK, S7N 3H5, Canada
College of Engineering, University of Saskatchewan, 57 Campus Dr,
Saskatoon, SK, S7N 5A9, Canada
James Famiglietti
Global Institute for Water Security, University of Saskatchewan, 11
Innovation Blvd, Saskatoon, SK, S7N 3H5, Canada
School of Sustainability, Arizona State University, Tempe, AZ, USA
Prasanth Valayamkunnath
National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO,
USA
School of Earth Environment and Sustainability Sciences, Indian
Institute of Science Education and Research, Thiruvananthapuram, 695551, India
Cenlin He
National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO,
USA
Zhenhua Li
Global Institute for Water Security, University of Saskatchewan, 11
Innovation Blvd, Saskatoon, SK, S7N 3H5, Canada
Related authors
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci., 27, 1583–1606, https://doi.org/10.5194/hess-27-1583-2023, https://doi.org/10.5194/hess-27-1583-2023, 2023
Short summary
Short summary
This study highlights the role of integrating vegetation and multi-source soil moisture observations in regional climate models via a hybrid data assimilation and machine learning method. In particular, we show that this approach can improve land surface fluxes, near-surface atmospheric conditions, and land–atmosphere interactions by implementing detailed land characterization information in basins with complex underlying surfaces.
Yanyan Cheng, Kalli Furtado, Cenlin He, Fei Chen, Alan Ziegler, Song Chen, Matteo Detto, Yuna Mao, Baoxiang Pan, Yoshiko Kosugi, Marryanna Lion, Shoji Noguchi, Satoru Takanashi, Lulie Melling, and Baoqing Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3898, https://doi.org/10.5194/egusphere-2025-3898, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Tropical land surface processes shape the Earth’s climate, but models often lack accuracy in the tropics due to limited data for validation. We improved the Noah-MP land surface model for the tropics using data from forests in Panama and Malaysia, and an urban site in Singapore. Calibration enhanced simulations of energy and water fluxes, and revealed key vegetation and soil parameters, as well as future directions for model improvement in tropical regions.
Chayan Roychoudhury, Cenlin He, Rajesh Kumar, and Avelino F. Arellano Jr.
Earth Syst. Dynam., 16, 1237–1266, https://doi.org/10.5194/esd-16-1237-2025, https://doi.org/10.5194/esd-16-1237-2025, 2025
Short summary
Short summary
We present a novel data-driven approach to understand how pollution and weather processes interact to influence snowmelt in Asian glaciers and how these interactions are represented in three climate models. Our findings show where models need improvement in predicting snowmelt, particularly dust and its transport. This method can support future model development for reliable predictions in climate-vulnerable regions.
Alan Barr, T. Andrew Black, Warren Helgason, Andrew Ireson, Bruce Johnson, J. Harry McCaughey, Zoran Nesic, Charmaine Hrynkiw, Amber Ross, and Newell Hedstrom
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-492, https://doi.org/10.5194/essd-2024-492, 2025
Preprint under review for ESSD
Short summary
Short summary
The Boreal Ecosystem Research and Monitoring Sites comprise three forest and one wetland flux towers near the southern edge of the boreal forest in western Canada. The data, spanning 1997 to 2023, have been used to: characterize the exchanges of carbon, water and energy between boreal ecosystems and the atmosphere; improve climate, hydrologic, and ecosystem carbon-cycle models, and refine remote-sensing methods.
Rajesh Kumar, Piyush Bhardwaj, Cenlin He, Jennifer Boehnert, Forrest Lacey, Stefano Alessandrini, Kevin Sampson, Matthew Casali, Scott Swerdlin, Olga Wilhelmi, Gabriele G. Pfister, Benjamin Gaubert, and Helen Worden
Earth Syst. Sci. Data, 17, 1807–1834, https://doi.org/10.5194/essd-17-1807-2025, https://doi.org/10.5194/essd-17-1807-2025, 2025
Short summary
Short summary
We have created a 14-year hourly air quality dataset at 12 km resolution by combining satellite observations of atmospheric composition with air quality models over the contiguous United States (CONUS). The dataset has been found to reproduce key observed features of air quality over the CONUS. To enable easy visualization and interpretation of county-level air quality measures and trends by stakeholders, an ArcGIS air quality dashboard has also been developed.
Parag Joshi, Tzu-Shun Lin, Cenlin He, and Katia Lamer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1751, https://doi.org/10.5194/egusphere-2025-1751, 2025
Short summary
Short summary
Study revisits urban representation (using canopy models & bulk parameterization) in the Weather Research & Forecasting model. We propose methods to identify evaluable parameters via field measurements and found inconsistencies between UCM physics and code implementation. Simulations reveal small errors can significantly impact outputs, highlighting the need for precise physics implementation.
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci., 29, 1221–1240, https://doi.org/10.5194/hess-29-1221-2025, https://doi.org/10.5194/hess-29-1221-2025, 2025
Short summary
Short summary
This study evaluates how different methods of simulating runoff impact river flow predictions globally. By comparing seven approaches within the Noah-Multi-parameterisation (Noah-MP) land surface model, we found significant differences in accuracy, with some methods underestimating or overestimating runoff. The results are crucial for improving water resource management and flood prediction. Our work highlights the need for precise modelling to better prepare for climate-related challenges.
Cenlin He, Tzu-Shun Lin, David M. Mocko, Ronnie Abolafia-Rosenzweig, Jerry W. Wegiel, and Sujay V. Kumar
EGUsphere, https://doi.org/10.5194/egusphere-2024-4176, https://doi.org/10.5194/egusphere-2024-4176, 2025
Short summary
Short summary
This study integrates the refactored community Noah-MP version 5.0 model with the NASA Land Information System (LIS) version 7.5.2 to streamline the synchronization, development, and maintenance of Noah-MP within LIS and to enhance their interoperability and applicability. The model benchmarking and evaluation results reveal key model strengths and weaknesses in simulating land surface quantities and show implications for future model improvements.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025, https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
Xiao Ma, Yanping Li, Zhenhua Li, and Fei Huo
Atmos. Chem. Phys., 24, 12013–12030, https://doi.org/10.5194/acp-24-12013-2024, https://doi.org/10.5194/acp-24-12013-2024, 2024
Short summary
Short summary
This study uses 4 km Weather Research and Forecasting simulations to investigate the features of low-level jets (LLJs) in North America. It identifies significant LLJ systems, such as the Great Plains LLJ. It also provides insight into LLJs poorly captured in coarser models, such as the northerly Quebec LLJ and the small-scale, low-level wind maxima around the Rocky Mountains. Furthermore, the study examines different physical mechanisms of forming three distinct types of LLJs.
Phillip Harder, Warren D. Helgason, and John W. Pomeroy
The Cryosphere, 18, 3277–3295, https://doi.org/10.5194/tc-18-3277-2024, https://doi.org/10.5194/tc-18-3277-2024, 2024
Short summary
Short summary
Remote sensing the amount of water in snow (SWE) at high spatial resolutions is an unresolved challenge. In this work, we tested a drone-mounted passive gamma spectrometer to quantify SWE. We found that the gamma observations could resolve the average and spatial variability of SWE down to 22.5 m resolutions. Further, by combining drone gamma SWE and lidar snow depth we could estimate SWE at sub-metre resolutions which is a new opportunity to improve the measurement of shallow snowpacks.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Jinghua Xiong, Abhishek, Li Xu, Hrishikesh A. Chandanpurkar, James S. Famiglietti, Chong Zhang, Gionata Ghiggi, Shenglian Guo, Yun Pan, and Bramha Dutt Vishwakarma
Earth Syst. Sci. Data, 15, 4571–4597, https://doi.org/10.5194/essd-15-4571-2023, https://doi.org/10.5194/essd-15-4571-2023, 2023
Short summary
Short summary
To overcome the shortcomings associated with limited spatiotemporal coverage, input data quality, and model simplifications in prevailing evaporation (ET) estimates, we developed an ensemble of 4669 unique terrestrial ET subsets using an independent mass balance approach. Long-term mean annual ET is within 500–600 mm yr−1 with a unimodal seasonal cycle and several piecewise trends during 2002–2021. The uncertainty-constrained results underpin the notion of increasing ET in a warming climate.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023, https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire by decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offset some of the fire reduction.
Quang-Van Doan, Toshiyuki Amagasa, Thanh-Ha Pham, Takuto Sato, Fei Chen, and Hiroyuki Kusaka
Geosci. Model Dev., 16, 2215–2233, https://doi.org/10.5194/gmd-16-2215-2023, https://doi.org/10.5194/gmd-16-2215-2023, 2023
Short summary
Short summary
This study proposes (i) the structural k-means (S k-means) algorithm for clustering spatiotemporally structured climate data and (ii) the clustering uncertainty evaluation framework (CUEF) based on the mutual-information concept.
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci., 27, 1583–1606, https://doi.org/10.5194/hess-27-1583-2023, https://doi.org/10.5194/hess-27-1583-2023, 2023
Short summary
Short summary
This study highlights the role of integrating vegetation and multi-source soil moisture observations in regional climate models via a hybrid data assimilation and machine learning method. In particular, we show that this approach can improve land surface fluxes, near-surface atmospheric conditions, and land–atmosphere interactions by implementing detailed land characterization information in basins with complex underlying surfaces.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022, https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Short summary
The relationship between environmental flow violations and freshwater biodiversity at a large scale is not well explored. This study intended to carry out an exploratory evaluation of this relationship at a large scale. While our results suggest that streamflow and EF may not be the only determinants of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods or with other biodiversity data or metrics.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022, https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
Short summary
A farm-scale hydroclimatic machine learning framework to advise farmers was developed. FarmCan uses remote sensing data and farmers' input to forecast crop water deficits. The 8 d composite variables are better than daily ones for forecasting water deficit. Evapotranspiration (ET) and potential ET are more effective than soil moisture at predicting crop water deficit. FarmCan uses a crop-specific schedule to use surface or root zone soil moisture.
Chaman Gul, Shichang Kang, Siva Praveen Puppala, Xiaokang Wu, Cenlin He, Yangyang Xu, Inka Koch, Sher Muhammad, Rajesh Kumar, and Getachew Dubache
Atmos. Chem. Phys., 22, 8725–8737, https://doi.org/10.5194/acp-22-8725-2022, https://doi.org/10.5194/acp-22-8725-2022, 2022
Short summary
Short summary
This work aims to understand concentrations, spatial variability, and potential source regions of light-absorbing impurities (black carbon aerosols, dust particles, and organic carbon) in the surface snow of central and western Himalayan glaciers and their impact on snow albedo and radiative forcing.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Quang-Van Doan, Hiroyuki Kusaka, Takuto Sato, and Fei Chen
Geosci. Model Dev., 14, 2097–2111, https://doi.org/10.5194/gmd-14-2097-2021, https://doi.org/10.5194/gmd-14-2097-2021, 2021
Short summary
Short summary
This study proposes a novel structural self-organizing map (S-SOM) algorithm. The superiority of S-SOM is that it can better recognize the difference (or similarity) among spatial (or temporal) data used for training and thus improve the clustering quality compared to traditional SOM algorithms.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Julián Gelman Constantin, Lucas Ruiz, Gustavo Villarosa, Valeria Outes, Facundo N. Bajano, Cenlin He, Hector Bajano, and Laura Dawidowski
The Cryosphere, 14, 4581–4601, https://doi.org/10.5194/tc-14-4581-2020, https://doi.org/10.5194/tc-14-4581-2020, 2020
Short summary
Short summary
We present the results of two field campaigns and modeling activities on the impact of atmospheric particles on Alerce Glacier (Argentinean Andes). We found that volcanic ash remains at different snow layers several years after eruption, increasing light absorption on the glacier surface (with a minor contribution of soot). This leads to 36 % higher annual glacier melting. We find remarkably that volcano eruptions in 2011 and 2015 have a relevant effect on the glacier even in 2016 and 2017.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Yonghoon Choi, Joshua P. DiGangi, Glenn S. Diskin, Xiaomei Xu, Cenlin He, Helen Worden, Simone Tilmes, Rebecca Buchholz, Hannah S. Halliday, and Avelino F. Arellano
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-864, https://doi.org/10.5194/acp-2020-864, 2020
Revised manuscript not accepted
Short summary
Short summary
A specific demonstration of the potential use of correlative information from carbon monoxide to refine estimates of regional carbon dioxide emissions from fossil fuel combustion.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Cited articles
Agyeman, R. Y. K., Huo, F., Li, Z., and Li, Y.: Modelled changes in selected
agroclimatic indices over the croplands of western Canada under the RCP8.5
scenario, Q. J. Roy. Meteor. Soc., 147, 4454–4467,
https://doi.org/10.1002/qj.4188, 2021.
Annual Crop Inventory: Agriculture and Agri-Food Canada, https://www.agr.gc.ca/atlas/apps/metrics/index-en.html?appid=aci-iac; last access: October 2022.
Bernacchi, C. J., Bagley, J. E., Serbin, S. P., Ruiz-Vera, U. M.,
Rosenthal, D. M., and Vanloocke, A.: Modelling C3 photosynthesis from the
chloroplast to the ecosystem, Plant. Cell Environ., 36, 1641–1657,
https://doi.org/10.1111/pce.12118, 2013.
Carew, R., Meng, T., Florkowski, W. J., Smith, R., and Blair, D.: Climate change impacts on hard red spring wheat yield and production risk: evidence from Manitoba, Canada, Can. J. Plant Sci., 98, 782–795, https://doi.org/10.1139/cjps-2017-0135, 2017.
Cenlin_He, Barlage, M., xutr-bnu, Zhang, Z., Mocko, D., and Chen, F.: CharlesZheZhang/hrldas: HRLDAS driver for NoahMP LSM v4.4 with spring wheat (v4.4), Zenodo [code], https://doi.org/10.5281/zenodo.7556048, 2023a.
Cenlin_He, Barlage, M., Valayamkunnath, P., Gill, D., Mocko, D., and Chen, F.: CharlesZheZhang/noahmp: NoahMP LSM v4.4 with spring wheat (v4.4), Zenodo [code], https://doi.org/10.5281/zenodo.7556046, 2023b.
Chen, F., Manning, K. W., Lemone, M. A., Trier, S. B., Alfieri, J. G.,
Roberts, R., Tewari, M., Niyogi, D., Horst, T. W., Oncley, S. P., Basara, J.
B., and Blanken, P. D.: Description and evaluation of the characteristics of
the NCAR high-resolution land data assimilation system, J. Appl. Meteorol.
Clim., 46, 694–713, https://doi.org/10.1175/JAM2463.1, 2007.
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and
environmental regulation of stomatal conductance, photosynthesis and
transpiration: a model that includes a laminar boundary layer, Agr. Forest
Meteorol., 54, 107–136, https://doi.org/10.1016/0168-1923(91)90002-8, 1991.
CropScape, USDA NASS and GMU: https://nassgeodata.gmu.edu/CropScape/, last access: October 2022.
De Wit, A. and Boogaard, H.: A gentle introduction to WOFOST, in: Wageningen
Environmental Research, November, https://www.wur.nl/en/research-results/research-institutes/environmental-research/facilities-tools/software-models-and-databases/wofost/documentation-wofost.htm (last access: October 2022), 2021.
ERS USDA wheat: https://www.ers.usda.gov/topics/crops/wheat/wheat-sector-at-a-glance/,
last access: October 2022.
Han, W., Yang, Z., Di, L., and Mueller, R.: CropScape: A Web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support, Comput. Electron. Agr., 84, 111–123, https://doi.org/10.1016/j.compag.2012.03.005, 2012.
Harley, P. C. and Tenhunen, J. D.: Modeling the Photosynthetic Response of
C3 Leaves to Environmental Factors, in Modeling Crop Photosynthesis – from
Biochemistry to Canopy, 17–39, https://doi.org/10.2135/cssaspecpub19.c2, 1991.
Iizumi, T., Kim, W., and Nishimori, M.: Modeling the Global Sowing and
Harvesting Windows of Major Crops Around the Year 2000, J. Adv. Model. Earth
Sy., 11, 99–112, 2018.
IPCC: Climate change 2014: synthesis report Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Pachauri, R. K. and Meyer, L. A., Geneva, IPCC, 151 pp., 2014.
Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J.,
Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A., Fuchs, K.,
Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T., Jain, A. K., Kelly,
D., Khabarov, N., Lange, S., Lin, T.-S., Liu, W., Mialyk, O., Minoli, S.,
Moyer, E. J., Okada, M., Phillips, M., Porter, C., Rabin, S. S., Scheer, C.,
Schneider, J. M., Schyns, J. F., Skalsky, R., Smerald, A., Stella, T.,
Stephens, H., Webber, H., Zabel, F., and Rosenzweig, C.: Climate impacts on
global agriculture emerge earlier in new generation of climate and crop
models, Nat. Food, 2, 873–885, https://doi.org/10.1038/s43016-021-00400-y, 2021.
Lesk, C., Anderson, W., Rigden, A., Coast, O., Jägermeyr, J., McDermid,
S., Davis, K. F. and Konar, M.: Compound heat and moisture extreme impacts
on global crop yields under climate change, Nat. Rev. Earth Environ., 3,
872–889, https://doi.org/10.1038/s43017-022-00368-8, 2022.
Levis, S.: Crop heat stress in the context of Earth System modeling,
Environ. Res. Lett., 9, 061002, https://doi.org/10.1088/1748-9326/9/6/061002, 2014.
Li, Y., Li, Z., Zhang, Z., Chen, L., Kurkute, S., Scaff, L., and Pan, X.: High-resolution regional climate modeling and projection over western Canada using a weather research forecasting model with a pseudo-global warming approach, Hydrol. Earth Syst. Sci., 23, 4635–4659, https://doi.org/10.5194/hess-23-4635-2019, 2019.
Liu, C., Ikeda, K., Rasmussen, R., Barlage, M., Newman, A. J., Prein, A.
F., Chen, F., Chen, L., Clark, M., Dai, A., Dudhia, J., Eidhammer, T.,
Gochis, D., Gutmann, E., Kurkute, S., Li, Y., Thompson, G., and Yates, D.:
Continental-scale convection-permitting modeling of the current and future
climate of North America, Clim. Dynam., 49, 71–95,
https://doi.org/10.1007/s00382-016-3327-9, 2017.
Liu, X., Chen, F., Barlage, M., Zhou, G., and Niyogi, D.: Noah-MP-Crop:
Introducing dynamic crop growth in the Noah-MP land surface model, J.
Geophys. Res.-Atmos., 121, 13953–13972, https://doi.org/10.1002/2016JD025597,
2016.
Lobell, D. B., Schlenker, W., and Costa-Roberts, J.: Climate Trends and
Global Crop Production Since 1980, Science, 80, 616–620,
https://doi.org/10.1126/science.1204531, 2011a.
Lobell, D. B., Bänziger, M., Magorokosho, C., and Vivek, B.: Nonlinear
heat effects on African maize as evidenced by historical yield trials, Nat.
Clim. Change, 1, 42–45, https://doi.org/10.1038/nclimate1043, 2011b.
McDermid, S. S., Mearns, L. O., and Ruane, A. C.: Representing agriculture
in Earth System Models: Approaches and priorities for development, J. Adv.
Model. Earth Sy., 9, 2230–2265, https://doi.org/10.1002/2016MS000749, 2017.
Mondal, S., Singh, R. P., Mason, E. R., Huerta-Espino, J., Autrique, E., and
Joshi, A. K.: Grain yield, adaptation and progress in breeding for
early-maturing and heat-tolerant wheat lines in South Asia, F. Crop. Res.,
192, 78–85, https://doi.org/10.1016/j.fcr.2016.04.017, 2016.
Myneni, R., Knyazikhin, Y., and Park, T.: MOD15A2H MODIS/Terra Leaf Area
Index/FPAR 8-Day L4 Global 500m SIN Grid V006, NASA EOSDIS
Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD15A2H.006, 2015.
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-scale
measurements, J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139,
2011.
Perkins, S. E. and Alexander, L. V.: On the measurement of heat waves, J.
Climate, 26, 4500–4517, https://doi.org/10.1175/JCLI-D-12-00383.1, 2013.
Prasad, P. V. V., Pisipati, S. R., Momčilović, I., and Ristic, Z.:
Independent and Combined Effects of High Temperature and Drought Stress
During Grain Filling on Plant Yield and Chloroplast EF-Tu Expression in
Spring Wheat, J. Agron. Crop Sci., 197, 430–441,
https://doi.org/10.1111/j.1439-037X.2011.00477.x, 2011.
Prein, A. F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark, M. P., and
Holland, G. J.: The future intensification of hourly precipitation extremes,
Nat. Clim. Change, 7, 48–52, https://doi.org/10.1038/nclimate3168, 2016.
Qian, B., De Jong, R., Warren, R., Chipanshi, A., and Hill, H.: Statistical
spring wheat yield forecasting for the Canadian prairie provinces, Agr.
Forest Meteorol., 149, 1022–1031, https://doi.org/10.1016/j.agrformet.2008.12.006,
2009.
Qian, B., Zhang, X., Smith, W., Grant, B., Jing, Q., Cannon, A. J.,
Neilsen, D., McConkey, B., Li, G., Bonsal, B., Wan, H., Xue, L. and Zhao,
J.: Climate change impacts on Canadian yields of spring wheat, canola and
maize for global warming levels of 1.5 ∘C, 2.0 ∘C, 2.5 ∘C and 3.0 ∘C, Environ. Res. Lett., 14, 074005,
https://doi.org/10.1088/1748-9326/ab17fb, 2019.
Rasmussen, R. and Liu, C.: High Resolution WRF Simulations of the Current and Future Climate of North America, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D6V40SXP, 2017.
Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J.,
Thorburn, P., Antle, J. M., Nelson, G. C., Porter, C., Janssen, S., Asseng,
S., Basso, B., Ewert, F., Wallach, D., Baigorria, G., and Winter, J. M.: The
Agricultural Model Intercomparison and Improvement Project (AgMIP):
Protocols and pilot studies, Agr. Forest Meteorol., 170, 166–182,
https://doi.org/10.1016/j.agrformet.2012.09.011, 2013.
Sacks, W. J., Deryng, D., Foley, J. A., and Ramankutty, N.: Crop planting
dates: an analysis of global patterns, Global Ecol. Biogeogr., 19, 607–620,
https://doi.org/10.1111/j.1466-8238.2010.00551.x, 2010.
Saiyed, I. M., Bullock, P. R., Sapirstein, H. D., Finlay, G. J., and Jarvis,
C. K.: Thermal time models for estimating wheat phenological development and
weather-based relationships to wheat quality, Can. J. Plant Sci., 89,
429–439, https://doi.org/10.4141/CJPS07114, 2009.
Semenov, M. A. and Shewry, P. R.: Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe, Sci. Rep., 1, 66, https://doi.org/10.1038/srep00066, 2011.
Setiyono, T. D., Weiss, A., Specht, J., Bastidas, A. M., Cassman, K. G., and
Dobermann, A.: Understanding and modeling the effect of temperature and
daylength on soybean phenology under high-yield conditions, F. Crop. Res.,
100, 257–271, https://doi.org/10.1016/j.fcr.2006.07.011, 2007.
Siebert, S., Ewert, F., Eyshi Rezaei, E., Kage, H., and Graß, R.: Impact
of heat stress on crop yield – On the importance of considering canopy
temperature, Environ. Res. Lett., 9, 044012, https://doi.org/10.1088/1748-9326/9/4/044012,
2014.
Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, M., Duda, M., Huang, X.-Y., Wang, W., and Powers, J.: A Description of the Advanced Research WRF Version 3, (No. NCAR/TN-475+STR), University Corporation for Atmospheric Research, https://doi.org/10.5065/D68S4MVH, 2008.
Statistics Canada: Table 32-10-0002-01 Estimated areas, yield and production of principal field crops by Small Area Data Regions, in metric and imperial units, https://doi.org/10.25318/3210000201-eng, web archive: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210000201, last access: October 2022.
United States U.S. National Agricultural Statistics Service NASS (US NASS): Web archive, https://quickstats.nass.usda.gov/, last access: October 2022.
USDA NASS: Economics, Statistics and Market Information System, Usual
Planting and Harvesting Dates for US Field Crops, https://usda.library.cornell.edu/concern/publications/vm40xr56k (last access: October 2022), 2010.
Wang, E., Martre, P., Zhao, Z., Ewert, F., Maiorano, A., Rötter, R. P.,
Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P.,
Alderman, P. D., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C.,
Cammarano, D., Challinor, A. J., De Sanctis, G., Doltra, J., Fereres, E.,
Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L. A., Izaurralde, R. C.,
Jabloun, M., Jones, C. D., Kersebaum, K. C., Koehler, A. K., Liu, L.,
Müller, C., Naresh Kumar, S., Nendel, C., O'Leary, G., Olesen, J. E.,
Palosuo, T., Priesack, E., Eyshi Rezaei, E., Ripoche, D., Ruane, A. C.,
Semenov, M. A., Shcherbak, I., Stöckle, C., Stratonovitch, P., Streck,
T., Supit, I., Tao, F., Thorburn, P., Waha, K., Wallach, D., Wang, Z., Wolf,
J., Zhu, Y., and Asseng, S.: The uncertainty of crop yield projections is
reduced by improved temperature response functions, Nat. Plants, 3, 17102,
https://doi.org/10.1038/nplants.2017.102, 2017.
Wang, E., Brown, H. E., Rebetzke, G. J., Zhao, Z., Zheng, B., and Chapman,
S. C.: Improving process-based crop models to better capture
genotype × environment × management interactions, J. Exp.
Bot., 70, 2389–2401, https://doi.org/10.1093/jxb/erz092, 2019.
Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., Menzer, O., and Reichstein, M.: Basic and extensible post-processing of eddy covariance flux data with REddyProc, Biogeosciences, 15, 5015–5030, https://doi.org/10.5194/bg-15-5015-2018, 2018.
Xu, X., Chen, F., Barlage, M., Gochis, D., Miao, S., and Shen, S.: Lessons
Learned From Modeling Irrigation From Field to Regional Scales, J. Adv.
Model. Earth Sy., 11, 2428–2448, https://doi.org/10.1029/2018MS001595, 2019.
Yang, Z. L., Niu, G. Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Longuevergne, L., Manning, K., Niyogi, D., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 2. Evaluation over global river basins, J. Geophys. Res.-Atmos.,
116, 1–16, https://doi.org/10.1029/2010JD015140, 2011.
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson,
T. C., Trewin, B., and Zwiers, F. W.: Indices for monitoring changes in
extremes based on daily temperature and precipitation data, WIREs Clim.
Chang., 2, 851–870, https://doi.org/10.1002/wcc.147, 2011.
Zhang, Z.: Noah-MP data for modeling Canadian spring wheat study, Zenodo [data set], https://doi.org/10.5281/zenodo.7023831, 2022.
Zhang, Z., Li, Y., Chen, F., Barlage, M., and Li, Z.: Evaluation of
convection-permitting WRF CONUS simulation on the relationship between soil
moisture and heatwaves, Clim. Dynam., 55, 235–252, https://doi.org/10.1007/s00382-018-4508-5, 2018.
Zhang, Z., Li, Y., Barlage, M., Chen, F., Miguez-Macho, G., Ireson, A., and Li, Z.: Modeling groundwater responses to climate change in the Prairie Pothole Region, Hydrol. Earth Syst. Sci., 24, 655–672, https://doi.org/10.5194/hess-24-655-2020, 2020a.
Zhang, Z., Barlage, M., Chen, F., Li, Y., Helgason, W., Xu, X., Liu, X., and
Li, Z.: Joint Modeling of Crop and Irrigation in the central United States
Using the Noah-MP Land Surface Model, J. Adv. Model. Earth Sy., 12, 7,
https://doi.org/10.1029/2020MS002159, 2020b.
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Crop models incorporated in Earth system models are essential to accurately simulate crop growth...